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Nonlinear Kinetic Parameter Identification through Map Inversion

Neil Shenvi, J. M. Geremia, and Herschel Rabitz*
Department of Chemistry, Princeton Wersity, Princeton, New Jersey 08544

Receied: July 31, 2002

A nonlinear method for parameter identification in kinetic systems is presented. Parameter identification is
achieved through the use of HDMR (high-dimensional model representation), which can reduce greatly the
computational cost of high-dimensional function inversion. The technique is demonstrated in simulations to
extract rate constants from concentration data in a linear kinetic system, the reactipwitti Br,, and the
oxidation of formaldehyde. The results of inversion for the latter case are compared with a previously published
linear inversion procedure. The new algorithm shows excellent performance in identifying the full distribution
of rate constants consitent with the data. The speed and accuracy of the HDMR permits full inversion of all
relevant model parameters without the introduction of hidden biases from prior assumptions on the quality of
the model parameters.

I. Introduction Third, chemical kinetics problems are often ill-posed in the
Kinetic experiments are routinely performed to determine sense that there can be multiple solutions that are consistent
P y P with the experimental dafd:12Because the distributions of the

values for the rate constants of chemical reactioRsThe . L . -
i . recovered parameter values are desired, it is insufficient to find
reaction dynamics of such systems can often be modeled by a

; . . X - only one solution. Instead, the parameter space must be
setof ordinary differential equations. Models of this type depend thoroughly explored to ensure that all solutions consistent with
on many parameters, such as the rate constants, the initial ghly exp

concentrations, and the initial temperature. Some of thesethe experimental data have been identified. A related issue is

parameters can be estimated or may be measured directly. Foihe l(_estlmait(l_ont_of err%rsl In It\;ne tpar?:mtlaters %trgcﬁd frorg the
instance, the initial concentrations of the species are usuallynon Inéar kinetic models. Monte L.arlo methods have been

known to some degree of accuracy. Similarly, a subset of the proven effective in nonlinear error propagatior_l, but they rely
rate constants may be assigned values previously reported iro" Iar.ge numbgrg oflzepeated model evaluations to produce
the literature. The remaining unknown parameters must be Meaningful statistics>
determined by ensuring that the reaction model is consistent The difficulties of high-dimensional chemical kinetic inver-
with the experimental dafa. sion can be palliated by replacing explicit evaluations of the
The inversion probiem of determining the unknown param- kinetics for trial values of the rate constants Wltmapof the
eters is generaiiy nonlinear even if the kinetic mechanism is kinetics. A useful map function has the fOIlOWing characteristics:
linear (ie., first-order). Thus, an analytic solution to the inverse
problem frequently does not exist, and a nonlinear inversion a. It approximates the actual reaction model to a high degree
technique must be used to find a set of parameters that besif accuracy.
models the experimental data. The most common method of p |t js easy to construct despite high-dimensionality.
nonlinear kinetic parameter inversion involves model optimiza-
tion using the conjugate gradient algorithm, or a variation
thereof, which finds a locally optimal solution through a series
of line minimizations’-
The gradient descent method and other nonlinear fitting
methods, such as simulated annealing or genetic algorithms,
face several formidable obstacles when applied to chemica

c. It can be evaluated efficiently.

Such a map function can be used in place of the actual
reaction model. Provided that the map function is sufficiently
accurate, the optimal solutions obtained by inverting the map
function will accurately approximate the solutions that would
(have been obtained by inverting the original reaction model.

kinetic inversion. First, all nonlinear optimization routines rely The increased efficiency of map evaluation relative to model
on the repeated evaluation of the reaction model. In the case of€Valuation permits a thorough sampling of the parameter space
chemical kinetics, this evaluation involves the integration of without requiring excessive resources. Thus, the full dlst_rlbutlon
large systems of differential equations, which can be resource©f Parameters consistent with the data can be determined.
intensive and numerically difficult. Because an optimization can  In this paper, we have used map functions generated by the
require thousands or even millions of model evaluations, the HDMR (high-dimensional model representation) algorithm, a
resources required for the inversion process can be prohibitive.general mapping technique that has been used successfully in a
Second, the volume of the searchable parameter space growsariety of problems%1516 The evaluation of HDMR maps
exponentially with the number of unknown parameters becauserequires only low-dimensional interpolation, making map evalu-
each of the parameters can be varied independently. As aation very fast. In addition, the overhead associated with map
consequence, the number of trial parameters that must beconstruction is minimal because HDMR uses a relatively small
sampled to obtain a good quality inversion can quickly become set of representative kinetic models to learn the system’stnput
unmanageable, an obstacle referred to as the “curse of dimen-output relationship. The accuracy of the HDMR maps compared
sionality” .1 to the reaction model is problem dependent, but it was found
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that HDMR maps were sufficiently accurate for all of the The coupled eqgs 3 were integrated using the LSODE integrator,
systems simulated here. which is based on the algorithm due to G&&¥ Let X, Xo,

The contents of this paper are organized as follows: Section ..., Xg be theB observable species whose concentrations were
Il describes the mathematical basis of HDMR and the imple- measured at time, t,, ..., ta. The model generates the vector
mentation of the inversion algorithm. Section Il discusses the yca’°with components
results of the application of the algorithm to three kinetic al
systems. Conclusions are presented in section IV. Yab (K) = Xy(K,t,) (5)

II. Technique fora=1,2,..,Aandb =1, 2, .., B. The value ofJ(k) in eq
) ) ) 1 can be evaluated for any set of trial parameters the
Nonlinear data inversion can be expressed as a minimizationgpecified parameter space. However, direct evaluatiai{kf

problem!’” Given the vector of experimental observatioyss, involves numerical integration of the kinetic equations for the
and the vector of model predictiongs@qk), (i.e., depending system, which can be computationally expensive.
explicitly on the vector of unknown parameteksand implicitly Reduction of the cost of inversion can be accomplished
on the known parameteré) we define a cost functiod(k), through the creation of a map function. lfgi(k) be a suitable
bs calc map function fory®@9k) that meets the requirements (a), (b),
A B Yao = Yan 1 = €ab and (c) listed in section I. Then,
J(k) = ZZ —yggs_ ale(k) i bs alc, (1) alq k) ~ f.(k 6
3 . Va. — Yab | = €ab > (K) ~ fan(k) ©6)
Vab for replacement in eq 1. Once such a map function is generated,
minimization of eq 1 can be performed on the map function
whereeyp is the experimental error in the measuremerygﬁf rather than on the calculated function. To ensure that the map
Here, the indicea = 1, 2, ...,Aandb = 1, 2, .., B refer, function inversion yields accurate results, we require that the
respectively, to the discrete data sample times and the observe@rror of the map function approximation be negligible compared
species. to the experimental measurement errags, If this criterion is

Because we desire to find the distribution of parameter met, then the optimal parameters obtained from the inversion
vectors k, consistent with the data, we must perform a global of the map function will be an accurate approximation to the
minimization ofJ(k) on the domain ok. Although techniques  results that would have been obtained by an inversion of the
such as gradient descent can very efficiently locate local minima, parent model. However, the efficiency of the inversion process
only a thorough sampling of the function over the entire domain will be greatly improved because each expensive model
ensures that we find the distribution of minima consistent with evaluation is replaced with a map evaluation. To ensure accuracy
the data and its errors. If the calculation k) is expensive, in the inversion, a final round of optimization may be performed
then the cost function evaluation will limit the optimization usingy-29k) starting with the distribution of optimal param-
methods that can be employed, often preventing the use of globakters found with the map.
techniques. To meet criterion (b) for a feasible map function, the overhead

Furthermore, convergence to a local minimum, which is often required to generate the map must be considered. Determining
used as an a posteriori verification that a minimization algorithm the value offa(k) for an arbitraryk in the domaing”is an
was successful, is not necessarily informative. Because eachN-dimensional interpolation problem, for which many algo-

measurement’, is accurate only within some toleranegs, rithms are knowrt® In low dimensions, interpolation is ex-
there could be a large set of solutios$P! that satisfy the tremely fast and by increasing the sampligghe interpolation
condition can be made arbitrarily accurate. Unfortunately, the number of
sample points needed to generate a look-up table to perform
Y2S — YEKOPY| < ey ) N-dimensional interpolation grows a¥% wheres s the number

of points sampled per dimension. Thus, the overhead of map
Each of these solution&°?, is a local minimum of the cost  generation and the cost of map evaluation by this direct approach
function, J(k), such thati(k°f) = 0. quickly become excessive.

To evaluate the cost function)(k), for a trial set of An accurate, efficient map that does not require excessive
parametersk, a means for calculating values of the observed sampling can be obtained through the use of the HDMR
concentrationsy@<, must be available. In the present study, algorithm. Given anN-dimensional model functioryc@qk)
the chemical system is taken as spatially homogeneous, suchiwhere thea and b indices are suppressed for notational
that the concentrations of the species are described by a set otonvenience) defined on a hypercubic domaifi

temporal differential equations of the form _ i .
F={kIK" <k = kI k" < ky < kg ., Ky < ky <
dx
i h(x,k;0) 3) ket (7)
i | i i 0,21

wherex is the vector of concentrations of all species ., ..., we can rewritey**!(k) in the following fornt
xs We will assume that the vector of known parametés, N
includes the initial concentrations of the reactants, the temper-y*@9k) = [f, + Zfi(ki) + Zfij(ki,kj)] +o s N
ature (taken as constant), and all known rate constants. Because T

1<)

the known parameterg, are included implicitly in the model, (kK. k) (8)
the vectorx is dependent only on the unknown rate constants,
k, and time, wherefy is a constant, the terrfi(k;) describes the dependence

of the output on the independent actionkpfthe termf;(ki,k;)
X = x(k,t) (4) describes the dependence of the output on the nonseparable,
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cooperative action df; andk;, and higher order terms describe
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Issues of HDMR order and domain size are problem depend-

the dependence of the output on the cooperative action of threeent due to the possibly different behavior of each kinetic system.

or more variables. This form is exact because the lastfterm-
(k1,kz,... kn) can capture any residual cooperative action involv-
ing all the variables.

The central assumption of HDMR is that higher order
cooperation is insignificant in well-defined physical systems and
eq 8 may be truncated to low order without sacrificing accuracy
or nonlinearity. AnLth-order HDMR is obtained by truncating
all terms describing correlation of more tharvariables. For
instance, a second-order HDMR expansiffk), would have
included only the bracketed terms in eq 8,

S (k) (©)

1<]

N
i) =fo+ 3 ) +

It has been found that for many physical systems a second-

order HDMR approximation is sufficiently accurate over the
domains of interes-1516

The HDMR expansion functions can be obtained in several
ways2?2 We have chosen to evaluate the HDMR functions with
respect to a nominal poinE, known as the “cut-center”. The
terms in the expansion are defined as follows,

fo — ycalc(Rl,T,RN)
filk) = Yy, ki, k) — To

(10)
(11)

fi(kuk) = v (e, =k, k= ky) — fi(k) — fi(k) (12)

where= denotes all arguments set to their cut-center values.
The terms in an HDMR expansion can be viewed as low-
dimensional cuts of the function domair through the cut-
center point. The constafy is defined to be the value of the
function y°@c at the cut-center. The first-order functiohsare
evaluated by sampling the functigffc along thek; axis through

the cut-center and then subtracting off the contributiorfpof
The second-order functiorfy are evaluated by sampling the
function y°@° in the kik-plane through the cut-center and
subtracting off zeroth-order and first-order contributions. It is

also possible to define HDMR expansions at multiple cut-centers

within the domain%”. By creating several local maps rather

than a single global map, we can sometimes increase the overal

model approximation accuracy and efficierféy.

Two important issues of a general nature must be addresse
during the HDMR generation stage of the algorithm. First, the
order of the HDMR map needed to achieve sufficient accuracy
must be determined. In general, btih-order HDMR requires
O(s*NY) function evaluations. The HDMR representation ef-
fectively reduces the original problem of interpolating Nh
dimensions down to performing interpolation over a set of
L-dimensional subspaces with< N. Thus, the sampling cost
has been reduced from exponential to polynomial scaling.
Increasing the order of the HDMR expansion improves map

accuracy at the cost of a decrease in computational efficiency.
In the present studies, sufficient accuracy was found for second-

order maps. As a second issue, the domaifipf the HDMR

Before or during the inversion, the accuracy of the HDMR maps
should be tested as an intrinsic part of the overall inversion
algorithm. In this work, we have tested the error of each HDMR
map through random sampling on the parameter donijno
ensure that the map error is negligible compared to the
uncertainties in the experimental data subject to inversion. The
details of this process will be described in section Ill.

Because a global inversion of the parameter space is needed
to identify multiple minima, we chose to use the steady-state
genetic algorithm described by Goldberg to perform the map
inversion?24Global sampling is made feasible by the efficiency
of the map functions. The end result of a successful genetic
algorithm inversion is not a single solution but a family of
multiple solutions all of which satisfy eq 2, thereby providing
a distribution of model parameters consistent with the laboratory
data.

Section Il provides three illustrations of the HDMR map
inversion process. The first test case had linear, first-order
reaction kinetics. This system was used to explore the depen-
dence of map accuracy on domain size and other map
parameters. The second system, the reactionoWvith Bry,
probed the quality of the inverted rate constants with respect to
the completeness of the input data and experimental error.
Finally, results obtained from the inversion of data from the
reaction of formaldehyde with OH were compared with earlier
results?

1. lllustrations

The methodology presented in section Il can be applied to
any kinetic inversion problem, but the efficiency of the inversion
depends on the accuracy of the maps. A series of quasi-local
maps can be very effective in overcoming the error in any
particular ma? but here we focus on utilizing a single global
map. It is therefore necessary to know how map accuracy is
related to the order of the HDMR approximation and the domain
size. To this end, the map inversion algorithm described in
section Il was applied to three different kinetic systems.

A. Linear Kinetic System. The first test of the algorithm
was performed on a system of linear kinetic equations. Linear
kinetic processes occur in many real systems, including
pydrocarbon cracking? The word “linear” refers only to the
chemical kinetics, and not to the map functidagk), which

f£an be highly nonlinear. The linear kinetic equations are

prescribed by the mechanistn

X1 ==X Xy=Xg ... Xg 1= Xs (13)

This mechanism produces a system of equations,

dx

4= Mx (14)

where the elements of tHd matrix are

map must be specified. A large domain is desirable to capture
as much of the parameter space as possible. Unfortunately,
increasing the size of the domain often reduces map accuracy.
Ideally, the HDMR map is large enough to include all of the
parameter space of interest, while still being accurate enough
to perform a valid inversion.

K
T YK =]

i =]
(15)
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TABLE 1: Confidence Intervals for the Distribution of the

Shenvi et al.

Extracted Parameters from the Linear Kinetic Inversion

K| K> K3 K4 K's Ks
target values (se¢) 0.80 0.31 0.57 0.19 0.22 0.24
68% confidence [0.76, 0.83] [0.27,0.32] [0.50, 0.64] [0.08, 0.26] [0.34,0.74] [0.14,0.32]
90% confidence [0.74, 0.85] [0.26, 0.34] [0.46, 0.66] [0.07,0.28] [0.19, 0.82] [0.09, 0.33]

=3
&

Average RMS map error

107 107 10°

Time / sec

Figure 1. Map error versus time for the linear kinetic system. The
accuracy of the HDMR map was dependent on both the sample time
and the size of the domai#t’= {i} over which the map was created.

and where the rate constakjtcorresponds to the reaction; X
— Xj. Equation 14 has the solution,

x(t) = €"'x(0) (16)
We note that the rate constamfsandk; corresponding to the
forward and reverse reactions;, % X; and X — X;, are related
by detailed balance,

k,fJ e(G}—GI)/ZRT: k;| e(G,f—Gf)/zRT (17)

whereT is the temperatureR is the ideal gas constant, aﬁiﬁl
andG! are the free energies of speciesaxd X, respectively.
The temperatureT, the initial concentrationss;(0), x2(0), ...,
xg(0), and the free energie@;fl,sz, Gfs, were treated as the
known parametersf). Rather than perform a constrained
optimization with eq 17 on the original rate constants, $he
Sdiagonal transformation matrix is introduced such that

— o O'2RT

(18)
From eq 17,
M=T'PT (19)
whereP is a symmetric matrix. So eq 16 can be rewritten as
x(t) = T %e™Tx(0) (20)

TheN = §S— 1)/2 upper-triangular elements Bfare the new,

TABLE 2: Root Mean Squared Relative Error for the Set
of Maps Describing Each System Calculated Using Eq 22 by
a Random Sample ofR = 1000 Test Point3

first-order second-order

maps maps
linear,S=4,{1} 0.05 0.009
HBr, data set [ 0.5} 0.03 0.004
HBr, data set 1{0.5 0.04 0.003
HBr, data set I1{ 0.5} 0.07 0.009
formaldehyde, partigl2} 0.12 0.01
formaldehyde, full 0.29 0.03

a 97'= {i} is the logarithmic domain size along each aKis

l0g10(P13), ---, kn = 10010(P(s-1)9)- Finally, combining eqgs 5 and
20, we obtain
(21)

) =5 (€O, x(0)
J

The linear system studied involve&}i= 4 species witiN = 6
parametersk’, given in Table 1, with the tilde label denoting
the true (target) value of the constants. The experimental data
to be inverted was simulated using the kinetics model from eq
21 with arbitrary initial conditions away from equilibrium. The
simulated experimental data vectgPbs consisted of the
concentrations of all four specieB & 4) sampled aA = 20
intervals over the range= 0 s tot = 0.2 s.

The map accuracy was determined with respect to the
parameter domain size and the time of reaction. The domain,
97, of the parameters, in eq 7 is related logarithmically to
the elements of the matriR. Hence, a uniform domain of size
7= {2} spans 2 orders of magnitude with respect to the off-
diagonal elements d?. The accuracy of a set of HDMR maps,
fap(k) for all a andb, was characterized by its root-mean-squared
relative error.R random pointsks, Ko, ..., kg, were sampled
from the domain7. For each poink,, the value ofy~2° was
generated using eq 21 and the average RMS relative error per
sample poinErus® of the maps was given by

al

C(kr) - fab(kr) 2

1 A B R b
k)

ABRL 22

Table 2 givesEgys for the sets of maps used in each of the
systems studied, including those used in the present case with
domain%% = {1}. In all cases, the second-order maps were of
excellent accuracy over a significant dynamic range of the
parameter spaces.

Using the cut-HDMR algorithm described in section I,
second-order HDMR maps were generated for the concentrations
of all four species X Xz, X3, and X at a series of sample
times.

It was found that map accuracy decreased as the size of the

Eavs = (22)

unconstrained parameters sought after by inversion. Becauseparameter domain increased. Furthermore, the map accuracy
rate constants can vary over many orders of magnitude, theexhibited a dependence on the time of observation. Figure 1

HDMR variables were scaled logarithmically with respect to
the rate constants. Thus, the unknown model paramekgrs,
k, ..., kn, used for HDMR map construction were the logarithms
of the N off-diagonal elements oP: ki = logio(p12), ke =

shows the dependence of map accuracy on domain size and
time of observation. Near = 0 andt — o, the maps were
naturally accurate for simple physical reasons. Near0, the
concentrations of all species were close to their initial concen-
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Figure 2. lllustration of species concentrations versus time for the
linear kinetic system calculated from the original kinetic model (lines)
and from the HDMR maps (points).

trations, which are specified by tligterm in eq 9, whereas for
t — oo the system approaches its equilibrium concentrations,
which are independent of the rate constants.

The inversion was performed on a domaifi= {1} with
second-order maps that produced an RMS erroxd% for
each sample time. A total of 80 HDMR maps of second-order
were generated by describing the concentrations oBthe4
species sampled & = 20 intervals over the range= 0 s to
t = 0.2 s. Figure 2 compares the results of model evaluation to
map evaluation for the concentrations arising from a randomly
selected set of parameters on the domain.

The map-facilitated inversion was performed with a steady-
state genetic algorithm using 100 noninteracting populations
each containing 100 individuals. This large-scale search was
performed to ensure a reliable identification of the full family
of rate constants consistent with the data. The genetic algorithm
was run for 100 generations and involving a total of 4.40°
map evaluations. Each population converged to a distinct
solution fork, which minimized the value of the cost function

. Phys. Chem. A, Vol.

106, No. 51, 2002319
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Figure 3. Histogram of the distribution of the extracted parameters
ki, ko, and ks for the linear kinetic system. From Table 1 the target
values for these parameters are respectively 0.80, 0.31, and 0.57. The
distribution is tightly clustered around the target valueskioandk..

On the other handgs was poorly defined by the experimental data.
See Table 1 for the target values.

1" T T T

10

Concentration /M

T T T

;
— [HBrx10°
- Brx10°
= Hx107 ]

Time /10° sec

J(k) in eq 1. The present simulations took the data as ideal with Figure 4. Species concentrations versus time for the HBr kinetic
system calculated from the original kinetic model (lines) and from the

no measurement error.€i, €ap = 0), but a finite amount of
data will generally still produce a distribution of consistent
model parameters. The genetic algorithm found the set of
solutions that minimized the average RMS error between the
experimental data and the map prediction. The solutions
identified hadJ values ranging from 2.4 105to 3.4 x 1073,
corresponding to average RMS errors of 53075 and 6.5x

the parametersk;, kp, andks.

HDMR maps (points).

through the use of maps permitting large numbers (more than

1P in the present case) of system evaluations.
B. H, + Br, Reaction. The second kinetic system that we
investigated was the oxidation of,ly Br, to form HBr. This

: - ALY reaction has been studied for a long titi@nd we adopted the
1073, respectively. Figure 3 shows the distribution for three of following mechanisn?®

A statistical measure such as sample variance could be used

to characterize these distributions, but this measure is misleading

due to the nonlinearity of the inverse problem, which generally
produces a nonnormal distribution (cthe distribution forks

in Figure 3). Instead, these distributions were characterized using
confidence interval§*23Table 1 shows the confidence intervals

for the inverted parameters. Although the extracted parameters

are clustered around the target valueswhich were used to

generate the data, there are a wide range of values consistent g+ 4 g —

with the experimental data. The determination of such true
parameter distributions should be the goal in any reliable
inversion, and this information will generally only be available

Br,— Br" + Br’
Br* + Br"— Br,
Br'+H,— HBr + H’
HBr+H —Br +H,
Br, + H’

Br, + H*— Br" + HBr

K, =1.58x 10 °s™*
K,=1.34x 10°L mol *s™*
ky=7.08x 10°L mol 's™*
k,=7.08x 10°L mol 's™
ki =2.51x 10°L mol™*s™*

k,=2.09x 10 °L mol*s*
(23)
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Figure 5. Distribution of extracted values fd& in the HBr system using the three different sets of simulated, error-free data. The true value of
the parameter i& = 10.40.

The experimental data were simulated by specifying the assumed to be exagt,, = 0) and a set of 100 best-fit solutions
initial concentrations and temperature from the original to the experimental data were generated for each data set. All
work by Bodenstein and Lingf. The target values for the  of the best solutions identified by the genetic algorithm produced
unknown rate constantk,, were the literature values listed concentrations that agreed with the data points within an average
in eq 2328730 Because the values of the rate constants differed RMS error of <1%.
by many orders of magnitude, the HDMR variablks,were

again scaled logarithmically with respect to the rate constants, '€ €ffect of the extra data points present in cases I and Il
K was significant. Figure 5 shows the distribution of values for

The simulated datay®®s were generated by numerically ks obtained from the three inversiorig. was not well-defined
integrating the differential equations associated with the mech- by data sets | ?”d . bL!t'was accura.tely identified by “I'. Clearly,
anism in eq 23 using LSOD. Eight samples were taken the value ofks is sensitive to I which was observed in data
betweert = 0's and = 7.2 x 10 s. and the data were divided  S€t!ll- Similar dependencies were found betwkeand H and
into categories 1, I, and Ill. Data set | contained only the ks and Br.
concentration of HBr at each measurement, data set Il included  The inclusion of experimental error in the inversion process

HBr and Br, and data set lll included the concentrations of naturally will affect the distributions of inverted parameter
HBr, Br, and H. Thus, the three simulated experiments yajyes. The average RMS relative error of the best solutions in
contained 8, 16, and 24 data points, respectively, permitting ane €ap = O inversion arising from the finite amount of data
analysis of the influence of the nature of the experimental data ranged from 0.092% to 0.76%. Simulated experimental error
on rate constant inversion. The influence of experimental error, \, o< then introduced throughsa and the inversions were re-

<ap In €q 1, on the distribution of the inverted rate constants ,, \when the experimental error was set to 2% or more, then
was also |nv§st|gated. o all of the genetic algorithm populations converged to a solution
An analysis of map accuracy versus domain size Was for which J(k) = O (i.e., the experimental data were fit within
performed with maps constructeq for the concentrations of HBr, 1o specified tolerance at every data point). Figure 6 shows the
Br, and H at the eight sample times. It was found that for & gisiputions of values foks obtained from data set 111 witha,
domain of sizes#”= {0.5}, second-order maps could model —_ 0%, 2%, and 5% for each data point. In general, greater error

the data from data sets |, Il, and Ill with an average RMS error . : e
o : in the experimental data produced a broader distribution of
0, 0, 0
0f 0.35%, 0.29%, and 0.91%, respectively (see Table 2). Thus’values of the parameters. Similar distribution broadening was

the maps provided an excellent approximation of the full kinetic ) .
o o - . observed for all three sets of experimental data and for all six
model within the specified parameter domain. Figure 4 com- rate constants

pares the results of model versus map evaluation for con-
centrations using a randomly selected set of parameters on the C. Oxidation of Formaldehyde. The HDMR map inversion
domain. algorithm was tested on the oxidation of formaldehyde by OH,
Separate inversions of the data simulated in data sets I, I, because an extensive inversion of this system was performed
and Il were performed using the same methodology applied in using a linear sensitivity analysis methd@he formaldehyde
section HlIA. Initially, all experimental measurements were system is described by a set of 17 reactions involving 15
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Figure 6. Distribution of extracted values fde in the HBr system
using simulated data set Ill with errors of 0%, 2%, and 5%.

chemical species,
H+NO,— OH+NO  1.28x 10 cm’molecule’s*
OH + H,CO—H,0 + HCO K,

HCO + NO,— H + CO, + NO
4.00x 10 *em® molecule st

HCO+ 0,— HO, + CO 5.50x 10 **cm’ molecule™* s™*

HO, + NO — OH + NO, 8.30x 10 **cm® moleculé*s™*
H + O,(++M) — HO,(+M)

5.44x 10 *°*cm’ molecule* s™*
H 4+ H,CO— H, + HCO 6.69x 10 " cm® moleculé*s™*

OH+ HCO—H,0+ CO
5.00x 10 *em® moleculets™

H+ HCO—H,+ CO 5.00x 10 **cm’ molecule*s™
H — destruction 10"
OH — destruction 58"

HCO— destruction 10§

HO, — destruction 10§
OH+OH—H,0+0 1.99x 10 *cm’ molecule's™
OH + HO, — H,0 + O, 6.40x 10 **cm® molecule*s™*
H+ HO,— OH+ OH 7.00x 10 **cm® molecule*s™*

OH + H,CO— HCOOH+H K, (24)

The methodology employed earfiezxtracted onlyk;, andk;-
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Figure 7. Distribution of the extracted values fés in the formalde-

hyde system using a full and partial inversion technique.
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The first HDMR map inversion was designed to follow the
earlier procedureas closely as possibie. The experimental data
for inversion were generated by numerical integration of the
model equations using the best-fit values for reported
previously? k, = 7.75 x 1072 cm® molecule’! st andk;, =
2.00 x 10718 cm® molecule® s™%. These simulated data are
very close to the actual laboratory data for the systeand
they therefore provide a realistic test of the HDMR algorithm.
The data consisted of the OH radical concentration at 10 sample
times for 11 runs under different reaction conditions. The
reaction conditions used for each run are the same as those in
Table 2 of the article by Yetter et &ln addition, the reported
5% experimental error in the measurement of OH was used as
the error tolerancesay, for the HDMR-based inversion. The
HDMR variables were scaled logarithmically with respect to
the model rate constants.

The first inversion treated rate constakjsks, k;,..., kjc as
known parameters that were set to their literature values. A set
of second-order HDMR maps using orilyandk;; as variables
with a domain size of”'= {2} was generated for each OH
concentrationyS2®. In this case, the indek refers to the 11
runs under different reaction conditions. A modification was
made in the inversion procedure to take into account the
uncertainty inherent in the values of the known rate constants.

Because the values of the parametésyere not known
exactly, the errors associated with the value® afffected the
values obtained fok;, andk;,. Instead of approximating the
propagation of errors using linear sensitivity analysis, we used
the efficiency of the HDMR maps to perform a Monte Carlo
analysis of the error propagation, as suggested by Alpertét al.
A set of values for the known rate constarfiswas selected
from a uniform distribution over their reported confidence
intervals? Then second-order HDMR maps were generated
usingk, andk;7 as the HDMR variables. Finally, these maps
were inverted using the genetic algorithm to find a single, best
solution. By repeating this process 100 times, a distribution of

with the other 15 rate constants treated as known and assignedbest solutions was generated fgrandk; 7. These distributions
literature values. Because these latter 15 rate constants wereeflected both the effects of the 5% error in the experimental
specified only within some confidence interval, their uncertainty measurementg°s and the effects of error in the selected values

contributed to the uncertainty of the extracted valuek,@nd

of the known parameter®, on k, andkj7.

ki, In the previous paper, the uncertainty analysis was carried Figures 7 and 8 show the distributionskefandki7 generated
out using a linear sensitivity analysis. In the present work, two by this partial inversion. The average values obtainedkfor

HDMR-facilitated inversions were carried out with different
assumptions and conditions.

andk;, were 8.0x 10 '2and 2.0x 10713 compared to 7.&
10"12and 2.0x 10 8 reported by Yetter et &The confidence
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40 . : : . T . T — TABLE 3: Efficiency of Model Evaluation vs Map
= rtial inversit .
Evaluation?®

35§ i

model evaluation HDMR evaluation

gl linear 3.2x 1073 9.7x 1072
ot i HBr, data set | 1.1 102 3.5x 102
i HBr, data set Il 1.2« 102 4.0x 1072
2511 E HBr, data set IlI 1.1x 102 4.7 x 1072
il formaldehyde, partial 2510t 6.8x 1072
gzo_: : | formaldehyde, full 2.5¢ 107! 8.4x 102
& : I. aValues given in seconds/evaluation.
I ]
j : \ possible false error in the extracted rate constants. The ability
1of ' /'I '\_\ AT to employ high-speed, accurate maps relieves this problem to
I _ RV allow for an efficient, full and consistent inversion with each
sk '| ————— X ] \ of the extracted parameters left as free to set its true distribution
_ Y consistent with the data.
R T Ty TRy e Y SRR T YRR a— Although the three inversion examples in this paper illustrated
ki the accuracy of the map inversion algorithm, the efficiency of
Figure 8. Distribution of extracted values fdg- in the formaldehyde the process also deserves attention. Table 3 shows the efficien-
system using a full and partial inversion technique. cies of map inversion relative to model inversior.(isolving

the system of differential equations to acceptable accuracy for

intervals obtained by the partial inversion and those reported a single run). For the linear system, the map inversion was
by Yetter et al. were also similar. In both studigswas found actually less efficient than model inversion because a simple
to be well-defined and, was found to be poorly defined by  analytic form for the model in eq 13 was available. Map
the experimental data. However, it should be noted that only evaluation was also less efficient than model evaluation for the
10 out of the 100 solutions generated by the partial inversion HBr system, which is a small kinetic system involving few
had J values of 0. TheJ values associated with the other 90 species. However, the HDMR algorithm outperformed model
solutions generated ranged from k110 2to 1.7, correspond-  evaluation by more than a factor of 3 for the full inversion of
ing to average RMS relative errors of 1:01072 and 1.3x the formaldehyde system and by a factor of almost 30 for the
107, respectively. partial inversion of the formaldehyde system. Although there

Because the nominal values of the known rate constants werejs an overhead associated with the sampling and construction
selected from a uniform distribution over their confidence ofthe HDMR maps, it is negligible compared to the cost of the
intervals before each inversion, they often differed substantially inversion process. In general, systems with the most compli-
from their true values,.¢.,, the values that had been used to cated, costly kinetic models will benefit the most from map
generate the simulated experimental data. In the limit of an inversion. In these cases, the model evaluation is prohibitively
arbitrarily large number of inversions, the correct values of these costly, and the inversion process can be greatly expedited by
parameters could be determined. However, in this limit the the use of a map generating algorithm such as HDMR.
“known” parameters should be treated as variables subject to
inversion over the domain of their confidence intervals by |v. conclusions
performing a full inversion rather than a partial inversion. The
HDMR mapping technique provides an efficient means to ~ Data inversion to extract rate constants can benefit from
perform a full inversion over all rate constants. increased computing power, but a sufficiently cost-intensive

In the full inversion, the variableks, ks, Ks, ..., kig were model often precludes thorough inversion using even the fastest
inverted over the domain of their reported uncertainties. A larger computers. Methods such as conjugate gradient optimization,
domain could have been searched, but it was assumed that th&vhich limit the number of function evaluations, can be locally
uncertainty ranges reported in the literature were accurate, i  €ffective but neglect the possibility of globally distinct multiple
the real values okj, ks, Ks, ..., kg fell within the literature solutions. The presence of multiple solutions can greatly

uncertainties. On the other hand, the two variatideand k;- influence rate constant uncertainties. To obtain a reliable and
were inverted over a domain of 2 orders of magnitude to ensure accurate understanding of rate constant uncertainties, a thorough
as general an inversion as possible. yet efficient search of the parameter space must be performed.

Table 2 shows the accuracy of the maps obtained for the full This process is made feasible by map inversion.
and partial inversions. Figures 7 and 8 compare the distributions  For the cases studied in this paper, map inversion proved to
obtained fork, andky7 by the full inversion to the distributions ~ be an accurate technique for nonlinear model approximation.
obtained by the partial inversion. Unlike the solutions generated For the formaldehyde system, the speed of HDMR evaluation
by the partial inversion, of which only 10 modeled the made possible an extensive exploration of the parameter space,
experimental data within the specified tolerances, all 100 of the which would have been excessively time-consuming using
solutions generated by the full inversion modeled the data conventional methods. Monte Carlo error analysis was also
perfectly 0 = 0) within the stated data error limits. This result facilitated by the maps. In general, any process that relies on
implies that the information provided byP°s specifiedky, ks, repeated model evaluation can be expedited by the use of an
ks, ..., kis to greater accuracy than their literature uncertainties! appropriate map function.
This behavior points out that caution is called for in considering  More advanced map-facilitated inversion algorithms can be
the standard procedure of fixing a subset of the rate constantsdeveloped with HDMR and possibly other technigé@s some
at prior determined nominal values while aiming to extract a cases, it may be more efficient to use a series of quasi-local
small set of the remainder. Although this procedure seems nonlinear maps rather than seek a single global map. These
logical, it can introduce hidden inconsistencies that show up as general techniques hold promise for providing more thorough
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and reliable inversions of laboratory data in chemical kinetics

as well as other applications.
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