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A nonlinear method for parameter identification in kinetic systems is presented. Parameter identification is
achieved through the use of HDMR (high-dimensional model representation), which can reduce greatly the
computational cost of high-dimensional function inversion. The technique is demonstrated in simulations to
extract rate constants from concentration data in a linear kinetic system, the reaction of H2 with Br2, and the
oxidation of formaldehyde. The results of inversion for the latter case are compared with a previously published
linear inversion procedure. The new algorithm shows excellent performance in identifying the full distribution
of rate constants consitent with the data. The speed and accuracy of the HDMR permits full inversion of all
relevant model parameters without the introduction of hidden biases from prior assumptions on the quality of
the model parameters.

I. Introduction

Kinetic experiments are routinely performed to determine
values for the rate constants of chemical reactions.1-5 The
reaction dynamics of such systems can often be modeled by a
set of ordinary differential equations. Models of this type depend
on many parameters, such as the rate constants, the initial
concentrations, and the initial temperature. Some of these
parameters can be estimated or may be measured directly. For
instance, the initial concentrations of the species are usually
known to some degree of accuracy. Similarly, a subset of the
rate constants may be assigned values previously reported in
the literature. The remaining unknown parameters must be
determined by ensuring that the reaction model is consistent
with the experimental data.6

The inversion problem of determining the unknown param-
eters is generally nonlinear even if the kinetic mechanism is
linear (i.e., first-order). Thus, an analytic solution to the inverse
problem frequently does not exist, and a nonlinear inversion
technique must be used to find a set of parameters that best
models the experimental data. The most common method of
nonlinear kinetic parameter inversion involves model optimiza-
tion using the conjugate gradient algorithm, or a variation
thereof, which finds a locally optimal solution through a series
of line minimizations.7,8

The gradient descent method and other nonlinear fitting
methods, such as simulated annealing or genetic algorithms,9

face several formidable obstacles when applied to chemical
kinetic inversion. First, all nonlinear optimization routines rely
on the repeated evaluation of the reaction model. In the case of
chemical kinetics, this evaluation involves the integration of
large systems of differential equations, which can be resource
intensive and numerically difficult. Because an optimization can
require thousands or even millions of model evaluations, the
resources required for the inversion process can be prohibitive.
Second, the volume of the searchable parameter space grows
exponentially with the number of unknown parameters because
each of the parameters can be varied independently. As a
consequence, the number of trial parameters that must be
sampled to obtain a good quality inversion can quickly become
unmanageable, an obstacle referred to as the “curse of dimen-
sionality”.10

Third, chemical kinetics problems are often ill-posed in the
sense that there can be multiple solutions that are consistent
with the experimental data.11,12Because the distributions of the
recovered parameter values are desired, it is insufficient to find
only one solution. Instead, the parameter space must be
thoroughly explored to ensure that all solutions consistent with
the experimental data have been identified. A related issue is
the estimation of errors in the parameters extracted from the
nonlinear kinetic models. Monte Carlo methods have been
proven effective in nonlinear error propagation, but they rely
on large numbers of repeated model evaluations to produce
meaningful statistics.13,14

The difficulties of high-dimensional chemical kinetic inver-
sion can be palliated by replacing explicit evaluations of the
kinetics for trial values of the rate constants with amapof the
kinetics. A useful map function has the following characteristics:
10

a. It approximates the actual reaction model to a high degree
of accuracy.

b. It is easy to construct despite high-dimensionality.
c. It can be evaluated efficiently.
Such a map function can be used in place of the actual

reaction model. Provided that the map function is sufficiently
accurate, the optimal solutions obtained by inverting the map
function will accurately approximate the solutions that would
have been obtained by inverting the original reaction model.
The increased efficiency of map evaluation relative to model
evaluation permits a thorough sampling of the parameter space
without requiring excessive resources. Thus, the full distribution
of parameters consistent with the data can be determined.

In this paper, we have used map functions generated by the
HDMR (high-dimensional model representation) algorithm, a
general mapping technique that has been used successfully in a
variety of problems.10,15,16 The evaluation of HDMR maps
requires only low-dimensional interpolation, making map evalu-
ation very fast. In addition, the overhead associated with map
construction is minimal because HDMR uses a relatively small
set of representative kinetic models to learn the system’s input-
output relationship. The accuracy of the HDMR maps compared
to the reaction model is problem dependent, but it was found
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that HDMR maps were sufficiently accurate for all of the
systems simulated here.

The contents of this paper are organized as follows: Section
II describes the mathematical basis of HDMR and the imple-
mentation of the inversion algorithm. Section III discusses the
results of the application of the algorithm to three kinetic
systems. Conclusions are presented in section IV.

II. Technique

Nonlinear data inversion can be expressed as a minimization
problem.17 Given the vector of experimental observations,yobs,
and the vector of model predictions,ycalc(k), (i.e., depending
explicitly on the vector of unknown parameters,k, and implicitly
on the known parameters,θ) we define a cost functionJ(k),

whereεab is the experimental error in the measurement ofyab
obs.

Here, the indicesa ) 1, 2, ...,A and b ) 1, 2, ..., B refer,
respectively, to the discrete data sample times and the observed
species.

Because we desire to find the distribution of parameter
vectors,k, consistent with the data, we must perform a global
minimization ofJ(k) on the domain ofk. Although techniques
such as gradient descent can very efficiently locate local minima,
only a thorough sampling of the function over the entire domain
ensures that we find the distribution of minima consistent with
the data and its errors. If the calculation ofJ(k) is expensive,
then the cost function evaluation will limit the optimization
methods that can be employed, often preventing the use of global
techniques.

Furthermore, convergence to a local minimum, which is often
used as an a posteriori verification that a minimization algorithm
was successful, is not necessarily informative. Because each
measurement,yab

obs, is accurate only within some tolerance,εab,
there could be a large set of solutions,kopt, that satisfy the
condition

Each of these solutions,kopt, is a local minimum of the cost
function,J(k), such thatJ(kopt) ) 0.

To evaluate the cost function,J(k), for a trial set of
parameters,k, a means for calculating values of the observed
concentrations,ycalc, must be available. In the present study,
the chemical system is taken as spatially homogeneous, such
that the concentrations of the species are described by a set of
temporal differential equations of the form

wherex is the vector of concentrations of all species,x1, x2, ...,
xS. We will assume that the vector of known parameters,θ,
includes the initial concentrations of the reactants, the temper-
ature (taken as constant), and all known rate constants. Because
the known parameters,θ, are included implicitly in the model,
the vectorx is dependent only on the unknown rate constants,
k, and time,

The coupled eqs 3 were integrated using the LSODE integrator,
which is based on the algorithm due to Gear.18,19 Let X1, X2,
..., XB be theB observable species whose concentrations were
measured at timest1, t2, ..., tA. The model generates the vector
ycalc with components

for a ) 1,2, ...,A andb ) 1, 2, ..., B. The value ofJ(k) in eq
1 can be evaluated for any set of trial parametersk in the
specified parameter space. However, direct evaluation ofJ(k)
involves numerical integration of the kinetic equations for the
system, which can be computationally expensive.

Reduction of the cost of inversion can be accomplished
through the creation of a map function. Letfab(k) be a suitable
map function foryab

calc(k) that meets the requirements (a), (b),
and (c) listed in section I. Then,

for replacement in eq 1. Once such a map function is generated,
minimization of eq 1 can be performed on the map function
rather than on the calculated function. To ensure that the map
function inversion yields accurate results, we require that the
error of the map function approximation be negligible compared
to the experimental measurement errors,εab. If this criterion is
met, then the optimal parameters obtained from the inversion
of the map function will be an accurate approximation to the
results that would have been obtained by an inversion of the
parent model. However, the efficiency of the inversion process
will be greatly improved because each expensive model
evaluation is replaced with a map evaluation. To ensure accuracy
in the inversion, a final round of optimization may be performed
using yab

calc(k) starting with the distribution of optimal param-
eters found with the map.

To meet criterion (b) for a feasible map function, the overhead
required to generate the map must be considered. Determining
the value offab(k) for an arbitraryk in the domainK is an
N-dimensional interpolation problem, for which many algo-
rithms are known.20 In low dimensions, interpolation is ex-
tremely fast and by increasing the sampling,s, the interpolation
can be made arbitrarily accurate. Unfortunately, the number of
sample points needed to generate a look-up table to perform
N-dimensional interpolation grows assN, wheres is the number
of points sampled per dimension. Thus, the overhead of map
generation and the cost of map evaluation by this direct approach
quickly become excessive.

An accurate, efficient map that does not require excessive
sampling can be obtained through the use of the HDMR
algorithm. Given anN-dimensional model functionycalc(k)
(where thea and b indices are suppressed for notational
convenience) defined on a hypercubic domainK,

we can rewriteycalc(k) in the following form10,21

wheref0 is a constant, the termfi(ki) describes the dependence
of the output on the independent action ofki, the termfij(ki,kj)
describes the dependence of the output on the nonseparable,

J(k) ≡ ∑
a

A

∑
b

B {0 |yab
obs- yab

calc| e εab

(yab
obs- yab

calc(k)

yab
obs )2

|yab
obs- yab

calc| > εab } (1)

|yab
obs- yab

calc(kopt)| e εab (2)

dx
dt

) h(x,k;θ) (3)

x ) x(k,t) (4)

yab
calc(k) ) xb(k,ta) (5)

yab
calc(k) ≈ fab(k) (6)

K ≡ {k|k1
min e k1 e k1

max, k2
min e k2 e k2

max, ..., kN
min e kN e

kN
max} (7)

ycalc(k) ≡ [f0 + ∑
i

N

fi(ki) + ∑
i<j

fij(ki,kj)] + ... + f1,2,...,N

(k1,k2,...,kN) (8)
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cooperative action ofki andkj, and higher order terms describe
the dependence of the output on the cooperative action of three
or more variables. This form is exact because the last termf1,2...,N-
(k1,k2,...,kN) can capture any residual cooperative action involv-
ing all the variables.

The central assumption of HDMR is that higher order
cooperation is insignificant in well-defined physical systems and
eq 8 may be truncated to low order without sacrificing accuracy
or nonlinearity. AnLth-order HDMR is obtained by truncating
all terms describing correlation of more thanL variables. For
instance, a second-order HDMR expansion,f(k), would have
included only the bracketed terms in eq 8,

It has been found that for many physical systems a second-
order HDMR approximation is sufficiently accurate over the
domains of interest.10,15,16

The HDMR expansion functions can be obtained in several
ways.22 We have chosen to evaluate the HDMR functions with
respect to a nominal point,kh, known as the “cut-center”. The
terms in the expansion are defined as follows,

where. denotes all arguments set to their cut-center values.
The terms in an HDMR expansion can be viewed as low-
dimensional cuts of the function domainK through the cut-
center point. The constantf0 is defined to be the value of the
function ycalc at the cut-center. The first-order functionsfi are
evaluated by sampling the functionycalcalong theki axis through
the cut-center and then subtracting off the contribution off0.
The second-order functionsfij are evaluated by sampling the
function ycalc in the ki,kj-plane through the cut-center and
subtracting off zeroth-order and first-order contributions. It is
also possible to define HDMR expansions at multiple cut-centers
within the domainK. By creating several local maps rather
than a single global map, we can sometimes increase the overall
model approximation accuracy and efficiency.23

Two important issues of a general nature must be addressed
during the HDMR generation stage of the algorithm. First, the
order of the HDMR map needed to achieve sufficient accuracy
must be determined. In general, anLth-order HDMR requires
O(sLNL) function evaluations. The HDMR representation ef-
fectively reduces the original problem of interpolating inN
dimensions down to performing interpolation over a set of
L-dimensional subspaces withL , N. Thus, the sampling cost
has been reduced from exponential to polynomial scaling.
Increasing the order of the HDMR expansion improves map
accuracy at the cost of a decrease in computational efficiency.
In the present studies, sufficient accuracy was found for second-
order maps. As a second issue, the domain,K, of the HDMR
map must be specified. A large domain is desirable to capture
as much of the parameter space as possible. Unfortunately,
increasing the size of the domain often reduces map accuracy.
Ideally, the HDMR map is large enough to include all of the
parameter space of interest, while still being accurate enough
to perform a valid inversion.

Issues of HDMR order and domain size are problem depend-
ent due to the possibly different behavior of each kinetic system.
Before or during the inversion, the accuracy of the HDMR maps
should be tested as an intrinsic part of the overall inversion
algorithm. In this work, we have tested the error of each HDMR
map through random sampling on the parameter domain,K, to
ensure that the map error is negligible compared to the
uncertainties in the experimental data subject to inversion. The
details of this process will be described in section III.

Because a global inversion of the parameter space is needed
to identify multiple minima, we chose to use the steady-state
genetic algorithm described by Goldberg to perform the map
inversion.9,24Global sampling is made feasible by the efficiency
of the map functions. The end result of a successful genetic
algorithm inversion is not a single solution but a family of
multiple solutions all of which satisfy eq 2, thereby providing
a distribution of model parameters consistent with the laboratory
data.

Section III provides three illustrations of the HDMR map
inversion process. The first test case had linear, first-order
reaction kinetics. This system was used to explore the depen-
dence of map accuracy on domain size and other map
parameters. The second system, the reaction of H2 with Br2,
probed the quality of the inverted rate constants with respect to
the completeness of the input data and experimental error.
Finally, results obtained from the inversion of data from the
reaction of formaldehyde with OH were compared with earlier
results.2

III. Illustrations

The methodology presented in section II can be applied to
any kinetic inversion problem, but the efficiency of the inversion
depends on the accuracy of the maps. A series of quasi-local
maps can be very effective in overcoming the error in any
particular map,23 but here we focus on utilizing a single global
map. It is therefore necessary to know how map accuracy is
related to the order of the HDMR approximation and the domain
size. To this end, the map inversion algorithm described in
section II was applied to three different kinetic systems.

A. Linear Kinetic System. The first test of the algorithm
was performed on a system of linear kinetic equations. Linear
kinetic processes occur in many real systems, including
hydrocarbon cracking.25 The word “linear” refers only to the
chemical kinetics, and not to the map functionsfab(k), which
can be highly nonlinear. The linear kinetic equations are
prescribed by the mechanism26

This mechanism produces a system of equations,

where the elements of theM matrix are

f(k) ) f0 + ∑
i

N

fi(ki) + ∑
i<j

fij(ki,kj) (9)

f0 ≡ ycalc(kh1,.,khN) (10)

fi(ki) ≡ ycalc(kh1,.,ki,.,khN) - f0 (11)

fij(ki,kj) ≡ ycalc(kh1,.ki,.,kj.,khN) - fi(ki) - fj(kj) (12)

mij ) {k′j,i, i * j

-∑
l,l*i

k′i,l, i ) j } (15)

X1 h X2

X1 h X3 X2 h X3

l l ···
X1 h XS X2 h XS ... XS-1 h XS (13)

dx
dt

) Mx (14)
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and where the rate constantk′ij corresponds to the reaction, Xi

f X j. Equation 14 has the solution,

We note that the rate constantsk′ij andk′ji corresponding to the
forward and reverse reactions, Xi f X j and Xj f X i, are related
by detailed balance,

whereT is the temperature,R is the ideal gas constant, andGi
f

andGj
f are the free energies of species Xi and Xj, respectively.

The temperature,T, the initial concentrations,x1(0), x2(0), ...,
xS(0), and the free energies,G1

f ,G2
f , ..., GS

f , were treated as the
known parameters,θ. Rather than perform a constrained
optimization with eq 17 on the original rate constants, theS×
S diagonal transformation matrixT is introduced such that

From eq 17,

whereP is a symmetric matrix. So eq 16 can be rewritten as

TheN ) S(S- 1)/2 upper-triangular elements ofP are the new,
unconstrained parameters sought after by inversion. Because
rate constants can vary over many orders of magnitude, the
HDMR variables were scaled logarithmically with respect to
the rate constants. Thus, the unknown model parameters,k1,
k2, ...,kN, used for HDMR map construction were the logarithms
of the N off-diagonal elements ofP: k1 ) log10(p12), k2 )

log10(p13), ...,kN ) log10(p(S-1)S). Finally, combining eqs 5 and
20, we obtain

The linear system studied involvedS ) 4 species withN ) 6
parameters,k′, given in Table 1, with the tilde label denoting
the true (target) value of the constants. The experimental data
to be inverted was simulated using the kinetics model from eq
21 with arbitrary initial conditions away from equilibrium. The
simulated experimental data vectoryobs consisted of the
concentrations of all four species (B ) 4) sampled atA ) 20
intervals over the ranget ) 0 s to t ) 0.2 s.

The map accuracy was determined with respect to the
parameter domain size and the time of reaction. The domain,
K, of the parameters,k, in eq 7 is related logarithmically to
the elements of the matrixP. Hence, a uniform domain of size
K ) {2} spans 2 orders of magnitude with respect to the off-
diagonal elements ofP. The accuracy of a set of HDMR maps,
fab(k) for all a andb, was characterized by its root-mean-squared
relative error.R random points,k1, k2, ..., kR, were sampled
from the domainK. For each pointkr, the value ofyab

calc was
generated using eq 21 and the average RMS relative error per
sample pointERMS

av of the maps was given by

Table 2 givesERMS
av for the sets of maps used in each of the

systems studied, including those used in the present case with
domainK ) {1}. In all cases, the second-order maps were of
excellent accuracy over a significant dynamic range of the
parameter spaces.

Using the cut-HDMR algorithm described in section II,
second-order HDMR maps were generated for the concentrations
of all four species X1, X2, X3, and X4 at a series of sample
times.

It was found that map accuracy decreased as the size of the
parameter domain increased. Furthermore, the map accuracy
exhibited a dependence on the time of observation. Figure 1
shows the dependence of map accuracy on domain size and
time of observation. Neart ) 0 and t f ∞, the maps were
naturally accurate for simple physical reasons. Neart ) 0, the
concentrations of all species were close to their initial concen-

TABLE 1: Confidence Intervals for the Distribution of the Extracted Parameters from the Linear Kinetic Inversion

k′l k′2 k′3 k′4 k′5 k′6
target values (sec-1) 0.80 0.31 0.57 0.19 0.22 0.24
68% confidence [0.76, 0.83] [0.27, 0.32] [0.50, 0.64] [0.08, 0.26] [0.34, 0.74] [0.14, 0.32]
90% confidence [0.74, 0.85] [0.26, 0.34] [0.46, 0.66] [0.07, 0.28] [0.19, 0.82] [0.09, 0.33]

Figure 1. Map error versus time for the linear kinetic system. The
accuracy of the HDMR map was dependent on both the sample time
and the size of the domainK ) {i} over which the map was created.

TABLE 2: Root Mean Squared Relative Error for the Set
of Maps Describing Each System Calculated Using Eq 22 by
a Random Sample ofR ) 1000 Test Pointsa

first-order
maps

second-order
maps

linear,S) 4, {1} 0.05 0.009
HBr, data set I{0.5} 0.03 0.004
HBr, data set II{0.5} 0.04 0.003
HBr, data set III{0.5} 0.07 0.009
formaldehyde, partial{2} 0.12 0.01
formaldehyde, full 0.29 0.03

a K ) {i} is the logarithmic domain size along each axisKi.

x(t) ) eM tx(0) (16)

k′i,je
(Gj

f-Gi
f)/2RT) k′j,ie

(Gi
f-Gi

f)/2RT (17)

tii ) e-Gi
f
/2RT (18)

M ) T-1PT (19)

x(t) ) T-1ePtTx(0) (20)

yab
calc(k) ) ∑

j

(e(T-1P(k)T)ta)bjxj(0) (21)

ERMS
av. ) x 1

ABR
∑

a

A

∑
b

B

∑
r

R (yab
calc(kr) - fab(kr)

yab
calc(kr)

)2

(22)
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trations, which are specified by thef0 term in eq 9, whereas for
t f ∞ the system approaches its equilibrium concentrations,
which are independent of the rate constants.

The inversion was performed on a domainK ) {1} with
second-order maps that produced an RMS error of<1% for
each sample time. A total of 80 HDMR maps of second-order
were generated by describing the concentrations of theB ) 4
species sampled atA ) 20 intervals over the ranget ) 0 s to
t ) 0.2 s. Figure 2 compares the results of model evaluation to
map evaluation for the concentrations arising from a randomly
selected set of parameters on the domain.

The map-facilitated inversion was performed with a steady-
state genetic algorithm using 100 noninteracting populations
each containing 100 individuals. This large-scale search was
performed to ensure a reliable identification of the full family
of rate constants consistent with the data. The genetic algorithm
was run for 100 generations and involving a total of 4.4× 106

map evaluations. Each population converged to a distinct
solution fork, which minimized the value of the cost function
J(k) in eq 1. The present simulations took the data as ideal with
no measurement error (i.e., εab ) 0), but a finite amount of
data will generally still produce a distribution of consistent
model parameters. The genetic algorithm found the set of
solutions that minimized the average RMS error between the
experimental data and the map prediction. The solutions
identified hadJ values ranging from 2.4× 10-5 to 3.4× 10-3,
corresponding to average RMS errors of 5.5× 10-5 and 6.5×
10-3, respectively. Figure 3 shows the distribution for three of
the parameters:kl, k2, andk5.

A statistical measure such as sample variance could be used
to characterize these distributions, but this measure is misleading
due to the nonlinearity of the inverse problem, which generally
produces a nonnormal distribution (cf., the distribution fork5

in Figure 3). Instead, these distributions were characterized using
confidence intervals.14,23Table 1 shows the confidence intervals
for the inverted parameters. Although the extracted parameters
are clustered around the target values,k̃, which were used to
generate the data, there are a wide range of values consistent
with the experimental data. The determination of such true
parameter distributions should be the goal in any reliable
inversion, and this information will generally only be available

through the use of maps permitting large numbers (more than
106 in the present case) of system evaluations.

B. H2 + Br2 Reaction. The second kinetic system that we
investigated was the oxidation of H2 by Br2 to form HBr. This
reaction has been studied for a long time,27 and we adopted the
following mechanism,28

Figure 2. Illustration of species concentrations versus time for the
linear kinetic system calculated from the original kinetic model (lines)
and from the HDMR maps (points).

Figure 3. Histogram of the distribution of the extracted parameters
k1, k2, and k5 for the linear kinetic system. From Table 1 the target
values for these parameters are respectively 0.80, 0.31, and 0.57. The
distribution is tightly clustered around the target values fork1 andk2.
On the other hand,k5 was poorly defined by the experimental data.
See Table 1 for the target values.

Figure 4. Species concentrations versus time for the HBr kinetic
system calculated from the original kinetic model (lines) and from the
HDMR maps (points).

Br2 f Br• + Br• k′1 ) 1.58× 10-6 s-1

Br• + Br• f Br2 k′2 ) 1.34× 109 L mol-1 s-1

Br• +H2 f HBr + H• k′3 ) 7.08× 102 L mol-1 s-1

HBr + H• f Br• + H2 k′4 ) 7.08× 109 L mol-1 s-1

Br• + HBr f Br2 + H• k′5 ) 2.51× 1010 L mol-1 s-1

Br2 + H• f Br• + HBr k′6 ) 2.09× 10-8 L mol-1 s-1

(23)
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The experimental data were simulated by specifying the
initial concentrations and temperature from the original
work by Bodenstein and Lind.27 The target values for the
unknown rate constants,k′, were the literature values listed
in eq 23.28-30 Because the values of the rate constants differed
by many orders of magnitude, the HDMR variables,k, were
again scaled logarithmically with respect to the rate constants,
k′.

The simulated data,yobs, were generated by numerically
integrating the differential equations associated with the mech-
anism in eq 23 using LSODE.18 Eight samples were taken
betweent ) 0 s andt ) 7.2× 105 s, and the data were divided
into categories I, II, and III. Data set I contained only the
concentration of HBr at each measurement, data set II included
HBr and Br•, and data set III included the concentrations of
HBr, Br•, and H•. Thus, the three simulated experiments
contained 8, 16, and 24 data points, respectively, permitting an
analysis of the influence of the nature of the experimental data
on rate constant inversion. The influence of experimental error,
Eab in eq 1, on the distribution of the inverted rate constants
was also investigated.

An analysis of map accuracy versus domain size was
performed with maps constructed for the concentrations of HBr,
Br•, and H• at the eight sample times. It was found that for a
domain of sizeK ) {0.5}, second-order maps could model
the data from data sets I, II, and III with an average RMS error
of 0.35%, 0.29%, and 0.91%, respectively (see Table 2). Thus,
the maps provided an excellent approximation of the full kinetic
model within the specified parameter domain. Figure 4 com-
pares the results of model versus map evaluation for con-
centrations using a randomly selected set of parameters on the
domain.

Separate inversions of the data simulated in data sets I, II,
and III were performed using the same methodology applied in
section IIIA. Initially, all experimental measurements were

assumed to be exact(εab ) 0) and a set of 100 best-fit solutions
to the experimental data were generated for each data set. All
of the best solutions identified by the genetic algorithm produced
concentrations that agreed with the data points within an average
RMS error of<1%.

The effect of the extra data points present in cases II and III
was significant. Figure 5 shows the distribution of values for
k5 obtained from the three inversions.k5 was not well-defined
by data sets I and II but was accurately identified by III. Clearly,
the value ofk5 is sensitive to H•, which was observed in data
set III. Similar dependencies were found betweenk4 and H• and
k3 and Br•.

The inclusion of experimental error in the inversion process
naturally will affect the distributions of inverted parameter
values. The average RMS relative error of the best solutions in
the εab ) 0 inversion arising from the finite amount of data
ranged from 0.092% to 0.76%. Simulated experimental error
was then introduced throughεba and the inversions were re-
run. When the experimental error was set to 2% or more, then
all of the genetic algorithm populations converged to a solution
for which J(k) ) 0 (i.e., the experimental data were fit within
the specified tolerance at every data point). Figure 6 shows the
distributions of values fork5 obtained from data set III withεab

) 0%, 2%, and 5% for each data point. In general, greater error
in the experimental data produced a broader distribution of
values of the parameters. Similar distribution broadening was
observed for all three sets of experimental data and for all six
rate constants.

C. Oxidation of Formaldehyde.The HDMR map inversion
algorithm was tested on the oxidation of formaldehyde by OH,
because an extensive inversion of this system was performed
using a linear sensitivity analysis method.2 The formaldehyde
system is described by a set of 17 reactions involving 15

Figure 5. Distribution of extracted values fork5 in the HBr system using the three different sets of simulated, error-free data. The true value of
the parameter isk5 ) 10.40.
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chemical species,2

The methodology employed earlier2 extracted onlyk′2 andk′17
with the other 15 rate constants treated as known and assigned
literature values. Because these latter 15 rate constants were
specified only within some confidence interval, their uncertainty
contributed to the uncertainty of the extracted values ofk′2 and
k′17. In the previous paper, the uncertainty analysis was carried
out using a linear sensitivity analysis. In the present work, two
HDMR-facilitated inversions were carried out with different
assumptions and conditions.

The first HDMR map inversion was designed to follow the
earlier procedure2 as closely as possibie. The experimental data
for inversion were generated by numerical integration of the
model equations using the best-fit values fork′ reported
previously:2 k′2 ) 7.75× 10-12 cm3 molecule-1 s-1 andk′17 )
2.00 × 10-13 cm3 molecule-1 s-1. These simulated data are
very close to the actual laboratory data for the system,2 and
they therefore provide a realistic test of the HDMR algorithm.
The data consisted of the OH radical concentration at 10 sample
times for 11 runs under different reaction conditions. The
reaction conditions used for each run are the same as those in
Table 2 of the article by Yetter et al.2 In addition, the reported
5% experimental error in the measurement of OH was used as
the error tolerance,εab, for the HDMR-based inversion. The
HDMR variables were scaled logarithmically with respect to
the model rate constants.

The first inversion treated rate constantsk′1, k′2, k′4,..., k′16 as
known parameters that were set to their literature values. A set
of second-order HDMR maps using onlyk2 andk17 as variables
with a domain size ofK ) {2} was generated for each OH
concentration,yab

calc. In this case, the indexb refers to the 11
runs under different reaction conditions. A modification was
made in the inversion procedure to take into account the
uncertainty inherent in the values of the known rate constants.

Because the values of the parameters,θ, were not known
exactly, the errors associated with the values ofθ affected the
values obtained fork′2 and k′17. Instead of approximating the
propagation of errors using linear sensitivity analysis, we used
the efficiency of the HDMR maps to perform a Monte Carlo
analysis of the error propagation, as suggested by Alper et al.14

A set of values for the known rate constants,θ, was selected
from a uniform distribution over their reported confidence
intervals.2 Then second-order HDMR maps were generated
usingk2 andk17 as the HDMR variables. Finally, these maps
were inverted using the genetic algorithm to find a single, best
solution. By repeating this process 100 times, a distribution of
best solutions was generated fork2 andk17. These distributions
reflected both the effects of the 5% error in the experimental
measurements,yobs, and the effects of error in the selected values
of the known parameters,θ, on k2 andk17.

Figures 7 and 8 show the distributions ofk2 andk17 generated
by this partial inversion. The average values obtained fork′2
andk′17 were 8.0× 10-12 and 2.0× 10-13, compared to 7.8×
10-12 and 2.0× 10-3 reported by Yetter et al.2 The confidence

Figure 6. Distribution of extracted values fork5 in the HBr system
using simulated data set III with errors of 0%, 2%, and 5%.

Figure 7. Distribution of the extracted values fork2 in the formalde-
hyde system using a full and partial inversion technique.

H + NO2 f OH + NO 1.28× 10-10 cm3molecule-1s-1

OH + H2CO f H2O + HCO k′2
HCO + NO2 f H + CO2 + NO

4.00× 10-11 cm3 molecule-1 s-1

HCO + O2 f HO2 + CO 5.50× 10-12 cm3 molecule-1 s-1

HO2 + NO f OH + NO2 8.30× 10-12 cm3 molecule-1 s-1

H + O2(+M) f HO2(+M)

5.44× 10-15 cm3 molecule-1 s-1

H + H2CO f H2 + HCO 6.69× 10-14 cm3 molecule-1 s-1

OH + HCO f H2O + CO

5.00× 10-11 cm3 molecule-1 s-1

H + HCO f H2 + CO 5.00× 10-11 cm3 molecule-1 s-1

H f destruction 10 s-1

OH f destruction 5 s-1

HCO f destruction 10 s-1

HO2 f destruction 10 s-1

OH + OH f H2O + O 1.99× 10-12 cm3 molecule-1 s-1

OH + HO2 f H2O + O2 6.40× 10-11 cm3 molecule-1 s-1

H + HO2 f OH + OH 7.00× 10-11 cm3 molecule-1 s-1

OH + H2CO f HCOOH+ H k′17 (24)
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intervals obtained by the partial inversion and those reported
by Yetter et al. were also similar. In both studies,k′2 was found
to be well-defined andk′17 was found to be poorly defined by
the experimental data. However, it should be noted that only
10 out of the 100 solutions generated by the partial inversion
had J values of 0. TheJ values associated with the other 90
solutions generated ranged from 1.1× 10-2 to 1.7, correspond-
ing to average RMS relative errors of 1.0× 10-2 and 1.3×
10-1, respectively.

Because the nominal values of the known rate constants were
selected from a uniform distribution over their confidence
intervals before each inversion, they often differed substantially
from their true values, i.e., the values that had been used to
generate the simulated experimental data. In the limit of an
arbitrarily large number of inversions, the correct values of these
parameters could be determined. However, in this limit the
“known” parameters should be treated as variables subject to
inversion over the domain of their confidence intervals by
performing a full inversion rather than a partial inversion. The
HDMR mapping technique provides an efficient means to
perform a full inversion over all rate constants.

In the full inversion, the variablesk1, k3, k4, ..., k16 were
inverted over the domain of their reported uncertainties. A larger
domain could have been searched, but it was assumed that the
uncertainty ranges reported in the literature were accurate, i.e.,
the real values ofk1, k3, k4, ..., k16 fell within the literature
uncertainties. On the other hand, the two variablesk2 andk17

were inverted over a domain of 2 orders of magnitude to ensure
as general an inversion as possible.

Table 2 shows the accuracy of the maps obtained for the full
and partial inversions. Figures 7 and 8 compare the distributions
obtained fork2 andk17 by the full inversion to the distributions
obtained by the partial inversion. Unlike the solutions generated
by the partial inversion, of which only 10 modeled the
experimental data within the specified tolerances, all 100 of the
solutions generated by the full inversion modeled the data
perfectly (J ) 0) within the stated data error limits. This result
implies that the information provided byyobs specifiedk1, k3,
k4, ...,k16 to greater accuracy than their literature uncertainties!
This behavior points out that caution is called for in considering
the standard procedure of fixing a subset of the rate constants
at prior determined nominal values while aiming to extract a
small set of the remainder. Although this procedure seems
logical, it can introduce hidden inconsistencies that show up as

possible false error in the extracted rate constants. The ability
to employ high-speed, accurate maps relieves this problem to
allow for an efficient, full and consistent inversion with each
of the extracted parameters left as free to set its true distribution
consistent with the data.

Although the three inversion examples in this paper illustrated
the accuracy of the map inversion algorithm, the efficiency of
the process also deserves attention. Table 3 shows the efficien-
cies of map inversion relative to model inversion (i.e., solving
the system of differential equations to acceptable accuracy for
a single run). For the linear system, the map inversion was
actually lessefficient than model inversion because a simple
analytic form for the model in eq 13 was available. Map
evaluation was also less efficient than model evaluation for the
HBr system, which is a small kinetic system involving few
species. However, the HDMR algorithm outperformed model
evaluation by more than a factor of 3 for the full inversion of
the formaldehyde system and by a factor of almost 30 for the
partial inversion of the formaldehyde system. Although there
is an overhead associated with the sampling and construction
of the HDMR maps, it is negligible compared to the cost of the
inversion process. In general, systems with the most compli-
cated, costly kinetic models will benefit the most from map
inversion. In these cases, the model evaluation is prohibitively
costly, and the inversion process can be greatly expedited by
the use of a map generating algorithm such as HDMR.

IV. Conclusions

Data inversion to extract rate constants can benefit from
increased computing power, but a sufficiently cost-intensive
model often precludes thorough inversion using even the fastest
computers. Methods such as conjugate gradient optimization,
which limit the number of function evaluations, can be locally
effective but neglect the possibility of globally distinct multiple
solutions. The presence of multiple solutions can greatly
influence rate constant uncertainties. To obtain a reliable and
accurate understanding of rate constant uncertainties, a thorough
yet efficient search of the parameter space must be performed.
This process is made feasible by map inversion.

For the cases studied in this paper, map inversion proved to
be an accurate technique for nonlinear model approximation.
For the formaldehyde system, the speed of HDMR evaluation
made possible an extensive exploration of the parameter space,
which would have been excessively time-consuming using
conventional methods. Monte Carlo error analysis was also
facilitated by the maps. In general, any process that relies on
repeated model evaluation can be expedited by the use of an
appropriate map function.

More advanced map-facilitated inversion algorithms can be
developed with HDMR and possibly other techniques.23 In some
cases, it may be more efficient to use a series of quasi-local
nonlinear maps rather than seek a single global map. These
general techniques hold promise for providing more thorough

Figure 8. Distribution of extracted values fork17 in the formaldehyde
system using a full and partial inversion technique.

TABLE 3: Efficiency of Model Evaluation vs Map
Evaluationa

model evaluation HDMR evaluation

linear 3.2× 10-3 9.7× 10-2

HBr, data set I 1.1× 10-2 3.5× 10-2

HBr, data set II 1.2× 10-2 4.0× 10-2

HBr, data set III 1.1× 10-2 4.7× 10-2

formaldehyde, partial 2.5× 10-1 6.8× 10-3

formaldehyde, full 2.5× 10-1 8.4× 10-2

a Values given in seconds/evaluation.
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and reliable inversions of laboratory data in chemical kinetics
as well as other applications.
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