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In this paper, new thermodynamic limits on the performance of irreversible separation processes are derived,
including work of separation in finite time (a generalization of Van't Hoff reversible work of separation for
finite rate processes), maximal productivity of heat-driven separation process (an analogue of Novikov-
Curzon-Ahlborn maximal power of a heat engine), and the minimal possible dissipation in an irreversible
distillation column, the ideal operating line, for which this dissipation level is achieved, the profile of heat
supply/removal that realizes the ideal operating line, and the distillation column’s maximal productivity.

1. Introduction

Separation processes are among the most energy-consuming
and least energy-efficient technological processes. Various types
of separation are widely used in industry, including membrane
separation, absorption-desorption cycles, distillation, centrifu-
gation, evaporation, etc. Their importance as baseline processes
explain the everlasting interest in the study of their efficiency
and especially in finding in-principle performance limits
imposed on separation by thermodynamics. Classical thermo-
dynamics provide reversible estimates of these limits. However,
these reversible estimates are significantly understated and do
not take into account kinetics of separation, so their usefulness
is limited.

Exergy analysis is often used to determine the thermodynamic
quality of separation processes.1-3 Still, the exergy loss itself
does not characterize the degree of thermodynamic perfection
to this process. In finite-time thermodynamics (FTT), it is shown
that if the productivity of the system is given and heat and mass
transfer coefficients are finite then some minimal possible
unavoidable dissipative losses (entropy production) in the system
exist. Therefore, the natural way to evaluate the degree of
thermodynamic perfection of a process with a given productivity
is by comparing the actual dissipative losses with this minimal
possible dissipation. In this paper, the minimal possible entropy
production,σmin, and its dependence on heat and mass transfer
coefficients is found for a number of irreversible gas and liquid
separation processes. Thermodynamic balances are then used
to obtain the minimal possible energy/work of separation.

First, gas separation is considered. The lower bound on the
power of gas separation with given productivity and fixed
compositions of the input and output fluxes is derived.

Second, a general heat-driven separation process (we shall
call it thermal separation) is considered. It is shown that the
productivity (rate) of thermal separation is limited. That is, if
the heat flux supplied to the system is higher than some given

value, then as the flux becomes higher, the productivity of
thermal separation becomes lower.

Third, an irreversible binary distillation column is considered.
A new estimate on minimal possible entropy production and
the ideal operating line, at which this minimal possible entropy
production is achieved, are derived. A stronger bound than the
one for a general thermal separation is obtained for the maximal
productivity of binary distillation.

2. Thermodynamic Balances of Separation Processes

Consider the system shown in Figure 1. Here, the flux of
mixture with the rateg0, compositionx0, temperatureT0, and
pressureP0 is separated in two fluxes with parametersgi, xi, Ti,
andPi (i ) 1, 2). The flow of heatq+ with the temperatureT+
is supplied to the system, and the flow of heatq- with
temperatureT- is removed from it. The mechanical work with
the powerp is also supplied to the system.

In a stationary regime, the thermodynamic balance equations
for such a system have the following form:

wherehi is the molar enthalpy of theith flux, and

Here,si is the molar entropy of theith flux.
From eqs 1 and 2, it follows thatg0 ) g1 + g2. After

elimination ofg0 from eqs 3 and 4 and introduction of enthalpy
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The Mass Balance

g0x0j - g1x1j - g2x2j ) 0, j ) 1, ...,k (1)

∑
j)1

k

xij ) 1, i ) 0, 1, 2 (2)

The Energy Balance

p + q+ - q- + g0h0 - g1h1 - g2h2 ) 0 (3)

The Entropy Balance

q+

T+
-

q-

T-
+ g0s0 - g1s1 - g2s2 + σ ) 0 (4)
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and entropy increments∆s and∆h, we get

Here,∆h0i ) h0 - hi and∆s0i ) s0 - si for i ) 1, 2.
After elimination of q- from eq 5 and substitution of the

obtained expression in eq 6, we get

Therefore, the flux of heat used in thermal separation (p ) 0)
is

Similarly, for mechanical separation (q+ ) q- ) 0),

The first term in the right-hand side of this equality depends
only on the parameters of the input and output fluxes. It
represents the reversible work of separation per unit of time,p0

(reversible power of separation). The second term describes the
kinetics of the process and dissipation caused by it.

For mixtures that are close to ideal gases and ideal solutions,
the molar enthalpies and entropies,hi andsi in eqs 3 and 4, can
be written in the following form

Here,R is the universal gas constant. In this case, the reversible
estimate of heat used in separation is

ηCarnotis the Carnot efficiency of the ideal cycle of a heat engine

The condition in eq 7 can be rewritten as

If minimal entropy productions for thermal,σmin
T , and mechan-

ical, σmin
M , separations are found, then the inequalities

determine irreversible estimates of minimal energy consumption
for each type of separation.

3. Mechanical Processes of Gas Separation

Consider a separation system that uses the work with power
p and has no heat supplied or removed (q+ ) q- ) 0). Assume
that the input and output fluxes have the same temperature (T+
) T- ) T) and pressure. After taking into account eq 10 and
the fact that for mechanical separation enthalpy increments∆h0i

are equal to zero, the equality in eq 8 can be rewritten as

The first term in this expression represents the power used for
separation in a reversible process (σ ) 0). This power,p0, is
equal to the difference between the reversible power used for
complete separation of the input flux and combined reversible
power of separation of output fluxes. Here

is the reversible work of separation of 1 mol ofith flux on pure
components, andεi ) gi/g0 is the mass fraction removed by the
ith flux. For each of the components, we have

Irreversible Estimates of Minimal Work of Separation for
a Gas Mixture. Problem Formulation.ConsiderN moles of a
mixture that is close to ideal gas and containsk components
with concentrationsxj (j ) 1, ..., k). Its separation into pure
substances requires that not less mechanical work is used than
the reversible work

One of the “methods” of separation of a mixture using
mechanical work,A0, is by using ideal semipermeable mem-
branes.4 The schematic structure of such a system is shown in
Figure 2. The central chamber contains the mixture of two gases.
Two semipermeable pistons move toward each other. The left
piston is permeable for the first gas only and the right one for
the second gas only. When the two pistons touch and the
pressures in the left and right chambers become equal, the
mixture will be separated. If the movements of the pistons are
infinitely slow and the fluxesg1 andg2 are infinitely small, then

Figure 1. Computational schema of a separation process.

q+ ) q+
0 + 1

ηCarnot
σT- (12)

q+ g q+
0 + 1

ηCarnot
σmin

T T-

p g p0 + σmin
M T- (13)

p ) g0RT[∑
i)1

2

εi∑
j)1

k

xij ln xij - ∑
j)1

k

x0j ln x0j] + Tσ ) p0 + Tσ

(14)

ai
0(xi) ) -RT∑

j)1

k

xij ln xij, i ) 0, 1, 2 (15)

εx1j + (1 - ε)x2j ) x0j

A0 ) -NRT∑
j)1

k

xj ln xj (16)

p + q+ - q- + g1∆h01 + g2∆h02 ) 0 (5)

g2∆s02 + g1∆s01 +
q+

T+
-

q-

T-
+ σ ) 0 (6)

∑
i)1

2

gi(∆s0i -
∆h0i

T-
) + q+( 1

T+

-
1

T-
) -

p

T-

+ σ ) 0

q+ )
T+

T+ - T-

[∑
i)1

2

gi(∆s0iT- - ∆h0i) + σT-] (7)

p ) ∑
i)1

2

gi(∆s0iT- - ∆h0i) + σT- (8)

hi(Ti,Pi,xi) ) ∑
j)1

k

xijhj(Ti,Pi) (9)

si(Ti,Pi,xi) ) ∑
j)1

k

xij[sj
0(Ti,Pi) - R ln xij], i ) 0, 1, 2 (10)

q+
0 )

1

ηCarnot
∑
i)1

2

gi∑
j)1

k

{[x0jsj
0(T0,P0) - xijsj

0(Ti,Pi) -

R(x0j ln x0j - xij ln xij)]T- + xijhj(Ti,Pi) - x0jhj(T0,P0)} (11)

ηCarnot)
T+ - T-

T+

Finite-Time Thermodynamics J. Phys. Chem. A, Vol. 106, No. 45, 200210927



the work spent is equal to the reversible work of separation

Here, the temperatureT remains constant and mass transfer
coefficients of the membranes do not affect the results. In a
more general case, the input mixture with concentrationsxi

0 is
separated into two output mixtures with concentrationsxi

1 and
xi

2, correspondingly. That is, there is no complete separation
here. In this case, the reversible estimate of the work of
separation is equal to the difference between the reversible work
of separation of the input mixture and the combined reversible
work of separation of each of the output substances with the
number of molesN1 and 1- N1 on pure substances:

The reversible estimates, eqs 17 and 18, are significantly
understated; the actual work of separation can be much higher.
That is why it is important to make these estimates more realistic
by taking into account the duration of separation and fixed rates
of the fluxes in the system.

These estimates are derived by choosing a distribution of mass
transfer fluxes over time or along the length of the system, where
the work of separation is minimal. But in the majority of
separation systems, the possibilities to control distribution of
fluxes (profile of concentrations) in the system are very limited.
As a rule, only boundary conditions and rates of fluxes are
controllable. The Van’t Hoff schema with two semipermeable
membranes provide more controllable separation. This makes
it an important vehicle for derivation of the work of separation
in finite time.

The Minimal Work of Separation of a Binary Mixture in
Finite Time. Consider the system that includes two ideal
semipermeable membranes, Figure 2. The left membrane is
permeable for the first component of the initial mixture and
the right one for the second component. The fluxes through the
membranes,gi, depend on the partial pressures of the corre-
sponding component on both sides of the membrane:

The partial pressures are determined by the amount of moles
in the central (N), left (N1), and right (N2 ) N(0) - N1)
chambers. The volumes of these chambers areV, V1, andV2.

During separation over the time intervalτ in addition to the
reversible work of separation, the addition energy,∆A, has to
be used. To find a lower estimate of the work of separation,
∆A has to be minimized:

Here,∆µ1 and ∆µ2 are the increments of chemical potentials
of the first and second component in the central and side
chambers. The problem of minimization of the work of
separation on pure components is reduced to the problem of
minimization of∆A subject to constraints that the average rates
through membranes are fixed, that is,

It is also necessary to include the conditions

which must hold for eacht ∈ [0, τ], and

into the problem in eqs 19 and 20.
In the general case, the problem of eqs 19-24 turns out to

be a rather complex optimal control problem. The nonnegative
control variables here areV1(t) andV2(t), of which the sum must
not exceed one (their combined volumes do not exceed the total
volume of the system). The important feature of this problem
is that the criterion of optimality (eq 19) does not depend on
the state variablesNi(t). Another feature is thatgi and∆µi depend
on the same variablesP0

i andPi. This allows us to simplify the
problem by expressing one of these functions in terms of
another.

Conditions of Optimality and Solutions. Consider the case
with one-to-one dependence between the increments of chemical
potentials and the fluxes,∆µi ) æ(gi) (i ∈ {1, 2}). The
irreversible energy losses here take the form

This criterion can be minimized with respect tog1 g 0 andg2

g 0 and subject to conditions of eq 20 only. The obtained
solution gives a lower estimate for∆A. The substitution of the
solution of the problem of eqs 19 and 20,g1

/(t) andg2
/(t) into

eqs 22 and 24 allows us to check the feasibility of this regime
by the constraints of eq 21 and the constraints onV1(t) andV2-
(t).

Note that the problem of eqs 19 and 20 can be decomposed
in two subproblems of the following form

whereN̂1 ) N(0)x1(0) andN̂2 ) N(0)(1- x1(0)). These problems
are called the averaged problems of nonlinear programming
(NP).5 Their optimal solutions,gi

/(t), are the piece-wise con-
stant functions of time, which take not more than two values.

For the optimal rategi to be unique, it is sufficient that the
Lagrange function

Figure 2. The separation system with two semipermeable membranes.∫0

τ
g1(P0

1,P1) dt ) N0x1(0), ∫0

τ
g2(P0

2,P2) dt ) N0x2(0) (20)

V0(t) + V1(t) + V2(t) ) 1 (21)

N(t)xi(t) + Ni(t) ) N0xi(0) (22)

P0
i (t) ) RT

V0(t)
N(t)xi(t), Pi(t) ) RT

Vi(t)
Ni(t) (23)

dNi

dt
) gi(P0

i ,Pi), Ni(0) ) 0, Ni(τ) ) N0xi(0), i ) 1, 2
(24)

∆A ) ∫0

τ
[g1æ1(g1) + g2æ2(g2)] dt f min (25)

∫0

τ
giæi(gi) dt f min

gi
∫0

τ
gi dt ) N̂i i ∈ {1, 2} (26)

Li ) giæi(gi) - λigi

A0 ) -NRT[x1 ln x1 + (1 - x1) ln(1 - x1)] (17)

A0 ) NRT[N1

N
∑
j)1

k

xj
1 ln xj

1 + (1 -
N1

N)∑
j)1

k

xj
2 ln xj

2 - ∑
j)1

k

xj
0 ln xj

0]
(18)

g1 ) g1(P0
1,P1), g2 ) g2(P0

2,P2)

∆A ) ∫0

τ
[g1(P0

1,P1)∆µ1(P0
1,P1) +

g2(P0
2,P2)∆µ2(P0

2,P2) dt] f min (19)
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is strictly concave. If this function is differentiable, then the
condition that the optimal flux is constant takes the form

Note that because the first term in eq 27 is positive, it is
sufficient that the second term is nonnegative for the optimal
flux to be constant. Let us consider solution of this problem
for some particular cases.

Assume that the process is close to equilibrium and the fluxes
are proportional to the difference of chemical potentials on both
sides of the membrane (gi ) Ri∆µi, i ) 1, 2). The coefficients
Ri depend on the permeability of membranes and the temper-
ature. Then

Let us break the conditions of eqs 21 and 24 and minimize∆A
subject only to the conditions of eq 20, which follow from eq
24. The problem of eqs 19 and 20 is a nonlinear programming
problem. Its optimal ratesg1

/ andg2
/ are

and the minimal work of separation is6

whereA0 corresponds to the expression in eq 16 andxi is the
initial concentration of theith component in initial mixture. The
minimal entropy production is

Characteristic dependence of the minimal irreversible work
of separation on the concentration of one of the components in
the initial mixture is shown in Figure 3. Atx1(0) ) 0 andx1(0)
) 1, the irreversible estimate of the work of separation has a
discontinuity. This explains why the work of separation of poor
mixtures (in which the concentration of one of the components
is low) is much higher than the reversible estimate. For example,

the actual work required to separate uranium isotopes exceeds
the reversible estimate by the order of 105.7 The condition of
eq 27 holds for the majority of real dependenciesφi(gi).
Therefore, the optimal fluxes through membranes are constant.

Incomplete Separation.Assume that the initial concentration
of the key component isx in all chambers and its final
concentration in the side chambers isx1 andx2. For definiteness,
we assume thatx1 > x > x2. Assume that initially there areN10

andN20 moles of input mixture with the concentration of key
componentsx in left and right chambers. In the end, in the left
chamber there areN10(1 - x) moles of the second component
and N20x moles of the first component. The total amount of
moles of mixture that is separated here is

From the balances, it follows that the ratio ofN0 moles of
mixture in the central chamber to the total amount of mixture
that is separated is

Here, x1 and x2 are the final concentrations of the key
components in the left and right chamber. For the linear law of
mass transfer,

Thus, the minimal work of separation for binary mixture ofN
moles of gas with the initial compositionx into mixtures with
compositionsx1 andx2 in finite time τ is equal to the sum of
the reversible work of incomplete separation,An

0, and the
minimal additional work caused by irreversibility in the system.
The latter is determined by the expression in eq 29 (in which it
is taken into account that in incomplete separation the volume
of the mixture that is separated isN and notN0).

If we denote the reversible work of separation of 1 mol of
mixture with concentrationx into pure components as

then the expression in eq 18 for the reversible work of
incomplete separation of binary mixture can be rewritten as

Herean
0(x) is the reversible work of incomplete separation of 1

mol of mixture with compositionx into streams with composi-
tions x1 andx2.

Power Estimate.The minimal power,p, that has to be spent
for separation of a binary mixture is

whereg ) N/τ is the rate of input mixture andx, x1, andx2

are the concentrations of the key component in the input and
output fluxes,

Figure 3. The dependence of the minimal irreversible work of
separation on the concentration of the key component in the initial
mixture.

d2Li

dgi
2

) 2
dæi

dgi
+

d2æi

dgi
2

gi > 0 (27)

∆µi )
gi

Ri
, i ) 1, 2 (28)

gi
/ ) N

xi

τ

Amin ) A0 + ∆Amin ) A0 + N2

τ [x1
2

R1
+

x2
2

R2
] (29)

σmin
M )

∆Amin

τT
) (Nτ)2

1
T[x1

2

R1
+

(1 - x1)
2

R2
] (30)

N ) N0 + N1 + N2 (31)

b(x,x1,x2) ) N0

N
)

(x - x2)(x1 - x)

x(1 - x)(x1 - x2)
(32)

g1
/ )

N0x1

τ
, g2

/ )
N0(1 - x1)

τ

A/ ) An
0 + ∆Amin(N0

N)2

) An
0 + ∆Aminb

2(x,x1,x2) (33)

a0(x) ) -RT(x ln x + (1 - x) ln(1 - x))

A0 ) N[an
0(x) -

x - x2

x1 - x2
an

0(x1) -
x1 - x

x1 - x2
an

0(x2)] ) Nan
0(x)

p ) A/

τ
) gan

0(x) + g2d(x)b2(x,x1,x2) (34)
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b(x,x1,x2) is determined by the equality of eq 32. It describes
the completeness of separation;b ) 1 corresponds to the
complete separation (on the pure components), andb ) 0
corresponds to no separation at all. The dependence of the
minimal power used in the separation of a binary gas mixture
on its composition and rateg for fixed mass transfer coefficients
and the degree of separation is shown in Figure 4. It is assumed
here that there the following relation exists between the degree
of separationb and compositions of output fluxes

From eq 30, it follows that the minimal entropy production in
gas separation driven by mechanical work depends on the rate
of mixture and compositions of input and output fluxes as

Note that if the initial temperatures of the mixture and output
products are the same and the components are close to ideal
gases then these estimate are also valid for a separation process
in which temperature is not constant.

4. Heat Energy Consumption and Limiting Productivity
of Thermal Gas Separation

Many separation processes utilize heat energy instead of
mechanical energy. They receive heat from the reservoir with
the high temperature,T+, and reject it into the low-temperature
reservoir with the temperature,T-. The derived estimates for
irreversible work of separation also allows us to estimate the
amount of heat that has to be used in thermal separation.

Assume that the heat transfer coefficientsâ+ andâ- for heat
supply and removal, correspondingly, are known. Novikov,8 and
later independently Curzon and Ahlborn,10 derived the expres-
sion for maximal power that can be obtained from a heat engine
with two reservoirs in irreversible cycle as

The irreversible process with the productivityg and fixed
compositions of input and output fluxes can be realized in heat-
driven separation schema only if the powerp, calculated from
eq 34, is lower thanpmax. If this condition holds, then the heat
consumption can be estimated using eq 12, after substitution
into it of the minimal entropy productionσmin

T . In turn, this
minimal entropy production depends on the powerp used in
separation. If the input and output gas fluxes have temperatures
that are close toT-, then the estimate for power is given by eq
34. The minimal entropy production as a function of power was
derived in ref 9 and has the form

According to eq 12, we get

Here,ηCarnot is the Carnot efficiency andη(p) is the maximal
efficiency of a heat engine with given powerp and given finite
heat transfer coefficients, obtained in ref 9,

Here,δ ) (xT+ - xT-)/(xT+ + xT-), andk ) p/pmax. Forp
f pmax, the efficiencyη(p) tends to the Novikov-Curzon-
Ahlborn limit9

If p f 0 (the process is close to reversible), thenη(p) tends to
the Carnot efficiency,ηCarnot. This can be easily shown using
l’Hopital’s rule.

Limiting Productivity of Binary Mixture Separation. The
major difference between the mechanical and thermal separation
processes is that the productivity of the latter is limited and the
productivity of the former is not. Indeed, becausep e pmax and
g is a monotonic function ofp (which follows from eq 34), the
following inequality holds

This inequality holds for any compositions of the input and
output fluxesx, x1, andx2. pmax depends on the temperatures of
the hot and cold reservoirs,T+ andT-, and on the heat transfer
coefficients on the “hot and cold end”,â+ andâ- in accordance
with eq 36.

We will find the limiting productivity of thermal gas
separation by solving eq 34 with respect tog and then by
substitutingp with pmax(T+,T-,â+,â-). For d > 0, we get

If mass transfer coefficientsR1 andR2 are very high (d f 0),
then

Figure 4. The dependence of the power used in separation on its rate
and the composition of the input flux.

η(p) ) 2δk

δk + 1 - x(1 - k)(1 - kδ2)
(39)

ηNCA ) 1 - xT-

T+

∀p∈[0,∞] g(p,x,x1,x2) e g(pmax,x,x1,x2)

gmax ) -
an

0(x)

2d(x)b2(x,x1,x2)
+

x( an
0(x)

2d(x)b2(x,x1,x2)
)2

+
pmax

d(x)b2(x,x1,x2)
(40)

gmax )
pmax(T+,T-,â+,â-)

an
0(x,x1,x2)

d(x) ) x2

R1
+

(1 - x)2

R2

x1 ) x + b(1 - x), x2 ) x(1 - b)

σmin
M ) 1

T
(gb(x,x1,x2))

2d(x,R1,R2) (35)

pmax )
â+â-

(xâ+ + xâ-)2
(xT+ - xT-)2 ) â(xT+ - xT-)2

(36)

σmin
T (p) ) p

T-
(ηCarnot

η(p)
- 1) (37)

q+ ) q+
0 +

p(ηCarnot- η(p))

ηCarnotη(p)
(38)
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The dependence ofgmax on the concentrationx in the input
mixture and the degree of separationb is shown in Figure 5.

In many cases, the productivity of the system as a function
of the flux g1 and concentrationx1 of the key component is
given. From the balances, it follows that the fluxesg and g1

depend on each other as

Substitution of this equality into eq 34 gives the dependence of
the power used in separation and the flux

Herea(x) andd(x,R1,R2) are determined by the same as in eq
34, and

The maximal productivity with respect to the key fluxg1max

can be calculated using formula 40, whereb is replaced with
b1. Whenx1 changes fromx to 1, the value of this coefficient
changes from 0 to 1/x.

5. Limiting Possibilities of Irreversible Binary Distillation

General Approach. Thermodynamic balances of the distil-
lation column link the amount of heat used for separation with
the compositions of the input and output flows and the entropy
production in the system. This amount is the sum of the
reversible and irreversible terms. Assume that the productivity
with respect to the key component (for definiteness, the flow
from the condenser) and the compositions of the output and
input flows are known. Therefore, the reversible term is fixed.
We will derive a lower bound for the irreversible term by
calculating the form of operating line that corresponds to the
minimal dissipation in a column.

Distillation is based on the conditions of equilibrium between
boiling liquid and generated vapor. If the liquid can be described
as an ideal solution and vapor as an ideal gas, then the partial
pressure of theith component in the vapor is equal to the product
of its concentration on the total pressure:

On the other hand, in equilibrium, the partial pressure of the
ith component in vapor is equal to the pressure of a saturated
vapor of pure substance,Pi

0, multiplied on the molar fraction

of this substance in the liquid

Here Pi
0 depends on the temperature. If the temperature is

fixed, then it is lower for less volatile components than for more
volatile components.

For known dependenciesPi
0(T), eqs 41 and 42 allow us to

find the equilibrium line,yi
0(xi),

For a binary mixture, we denote the fraction of the more volatile
component in the liquid asx. Then we obtain the equilibrium
line for the molar fraction of the more volatile component in
vapor,

The coefficient of relative volatility between two components
is defined as

and the equilibrium line can be rewritten as

The relative volatilityR > 1, becausey denotes the concentration
of the more volatile component.

Thermodynamic Balances in Distillation: Reversible
Estimate of the Amount of Heat Used for Separation.Unlike
ref 14, we consider a packed distillation column. The rationale
here is that our aim is to obtain a bound on dissipation. But
dissipation in a tray column is always higher than dissipation
in a packed column because of extra dissipation caused by the
hydrodynamics of the tray. Our model of distillation is based
on mass transfer and not on heat transfer as in ref 14. We assume
that the temperature varies from section to section in a column
in accordance with the variations of the corresponding equilib-
rium composition.

The distillation column is shown schematically in Figure 6.
The feed with the rategF and vector of concentrationsxF is
supplied into the column. The heat fluxq+ is supplied to the
bottom liquid in the reboiler, which partially vaporizes it. The

Figure 5. The dependence of the maximal productivity on the
concentration of the key component in the initial mixture and on the
degree of separation.
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Figure 6. The schema of the distillation column.
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resulting flow of vaporV flows upward along the column. This
creates contact between this vapor and the liquidL flowing
downward. During this contact, more volatile components are
transferred from the liquid into the vapor and less volatile
components from the vapor into the liquid. The rest of the
bottom liquid is removed via the fluxgB.

The overhead vapor, saturated with more volatile components,
enters the condenser where the heat fluxq- is removed from it
by the cooling liquid and it is condensed to obtain distillate.
The fraction of distillate,gD ) εgF, is removed from the column
as overhead product, and the rest of it,L ) V - gD, is refluxed
into the column. The fraction that is removed,ε, is one of the
controls.T- denotes the temperature in the condenser. Indexj
corresponds to thejth component of the mixture.hF, hD, andhB

denote molar enthalpies of the corresponding fluxes;sF, sD, and
sB are their entropies.σ denotes the entropy production.

From thermodynamic balances, it follows that (similar to eq
7) the amount of heat used in distillation depends on the entropy
production in it:

The first term, q+
0 , in this expression represents the heat

consumed in a reversible process. It depends only on the
parameters of the input and output flows. The second term is
nonnegative and corresponds to the dissipative energy losses.

Assume that the mixtures can be described as ideal solutions;
then the expressions of eqs 9 and 10 for entropy and enthalpy
hold. The increments of the molar enthalpy and molar entropy
when the temperature is changed are expressed via the heat
capacity,cpj(T), as

We consider the flow of distillate, removed from condenser, as
the objective flow. It representsε, fraction of the feed. Then
the reversible estimate for the heat consumption in distillation
can be rewritten in the following form

The value

represents the reversible isothermal work of separation of the
flow gF with the concentrationxF into two flows with concentra-
tions xB andxD at the temperatureT-.

Nonisothermal character of the separation yields an additional
term,

If we assume that the heat capacity does not depend on the
temperature and denote the constant heat capacities over the
intervals (T-, TF) and (TF, T+) ascpi

- andcpi
+, correspondingly,

then this additional reversible work can be rewritten

The reversible estimate for the heat consumption in distillation
can be rewritten in the following form

The removed fractionε in formulas 45-47 depends on the
compositions of the input and output flows via the conditions
of mass balance

Only if the composition of distillatexD is fixed, then such
removed fractionε should be chosen that minimizesq+

0 on ε. ε

here uniquely determines the composition of bottom flowxB.
Minimal Entropy Production in Distillation. From eq 44,

it follows that the energy consumption in the distillation column
consists of the reversible termq+

0 and an irreversible term
proportional to the entropy production in a column,σ. We will
now consider the problem of minimal entropy production in
binary distillation. We assume that this is a packed column:
the mass transfer between the flows of vapor and liquid is
equimolar (that is, the condition of constant molar overflow
holds); the mixtures are close to ideal; the temperature in each
section of the columnl is constant and the same for both liquid
and vapor; the heat of mixture is zero and there are no heat
leaks into the environment; the compositions of the vapor and
liquid are the same in both overhead condenser and bottom
reboiler. We also assume that the feedgF enters in the section
of the column where the temperature is the same as its
temperature and the composition of the liquid is the same as its
composition and that there is no excess entropy production due
to the mixing of the flows. We do not take into account the
entropy production caused by heat exchange in reboiler and
condenser because the heat transfer coefficients there are very
high.

The concentrations of the more volatile component in vapor
and liquid are denoted asy(l) and x(l), correspondingly. The
distribution of the driving force of the mass transfer process is
determined by the form of the equilibrium line and the form of
the operating line. We will derive the ideal (the least dissipative)
concentration profile (distribution of concentrations) in the
column and the corresponding value ofσmin. This profile can

q+ )
T+

T+ - T-
[gF(sFT- - hF) - gD(sDT- - hD) -

gB(sBT- - hB)] + σ
T+T-

T+ - T-
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0 + σ
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(44)
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T
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εxjD

RT-
∫T-

TF(1 -
T-
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(1 - ε)xjB
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T )cpj(T) dT] (45)
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j)1
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(46)
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be then approximated by supplying/removing heat along the
column. The ideal profile of concentrations allows us to evaluate
various new designs of distillation column.11,12

Because in the binary distillation the concentrations of the
less volatile component in the liquid and vapor flows are (1-
x) and (1- y), correspondingly, and the driving force of the
process is determined by the difference betweeny and the
equilibrium concentrationy0(x), the entropy production can be
expressed in terms of the flows and the chemical potentials as

Because each chemical potential has the form

we get

After taking into account the condition of constant molar
overflow

expression 49 takes the form

Functionsy andy0 depend onx, butσ does not explicitly depend
on x. Becausey0 is a unique and monotone function ofx andx
changes fromxB to xD in the column, the entropy production
here can be written as

The mass flow of more volatile component from liquid to
vapor g depends on the concentrationy(x), equilibrium con-
centrationy0(x), and mass transfer coefficient per unit of column
lengthk. If the independent variablel is replaced with another
variable that monotonically depends onl, then the new mass
transfer coefficientkh should be used by multiplyingk on H and
dividing it on the range of the new independent variable. For
example, ifx replacesl,

H is the height of the column. Ify0 is used, then the denominator
here isy0(H) - y0(0).

Let us calculate now the operating line, which minimizesσ,
subject to the given equivalent mass transfer load

The constantC characterizes the rate of mass transfer. It depends
on the concentrations of the input and output fluxes.

For the majority of laws of mass transfer, the problem of eqs
52 and 54 is concave ony and its solution is determined by the
condition of stationarity of the Lagrange function

whereγ is a Lagrange multiplier. This condition determines
the ideal operating linesthe optimal dependencey(y0,γ).

For a binary distillation column with a variable (not neces-
sarily constant) vapor flowV along the column, we obtain

The expression in the left-hand side of eq 55 must be constant
in each column’s section. In particular, for the linear law of
mass transfer,

the condition of eq 55 takes the form

If the distillation process is close to equilibrium and the
equivalent flux is proportional to the driving force,

and the condition of eq 55 can be resolved with respect toy.
Then eq 55 takes the form

Therefore,

For y0(x) given by eq 43, we get

Becausey(x) > x,

After taking into account thatkh ) kH/(y0(xD) - y0(xB)) and
substituting eqs 58 and 59 into eq 52, we obtain the expression
for minimal dissipation caused by mass transfer in a column
that operates not far from equilibrium,

Dependence of Mass Transfer Rate in a Column on the
Parameters of External Fluxes: Thermodynamic Limit of
the Column’s Productivity. If γ is known, then the condition
of eq 55 and the dependencies of eqs 58 and 60 completely
determiney(y0). To find this constant, we need to expressC in
eq 54 in terms of the productivity of the column and the
concentrations of the external fluxes.
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Mass transfer and (intermediate) heat supply/removal change
the flow rates of vapor and liquid along the column. Because
we assume that the condition of constant molar overflow holds
for mass transfer and because all of the liquid that is vaporized
is transferred to vapor, the following condition holds forl * lF:

Therefore, for the stripping and enriching section of the column,

Characteristic dependencies of the vapor and liquid flow rates
on the height of the column without and with intermediate heat
supply are shown in Figure 7.

If L andV depend onl and on any other variable that changes
monotonically along the height of the column{x, y0, y, ...},
then the equalities of eq 65 hold. The vapor flow in any section
of the column (consequently for any value ofx that corresponds
to this section) can be found from material balance on the more
volatile component for the part of the column between the
current section and its upper/lower end. For the enriching
section, we have

If we take into account that for anyx L ) V - gD, we obtain

Similarly, for the stripping section,

Let us estimate the range of the variablex for which the
equalities of eqs 66 and 67 hold. We assumed that all vapor is
condensed in dephlegmator (l ) H). From the material balance
for the dephlegmator,

it follows thaty(H) ) xD. Therefore,x(H) ) xd, wherexd is the
root of the equation

We denote the concentration of the more volatile component
in the liquid, which enters reboiler asxb, x(0) ) xb. From the
material balance,

it follows that

This equation jointly with eq 67 yields the following equation
for xb:

Thus, whenl changes from 0 toH, x changes fromxb to xd.
The flow of the more volatile component from liquid to vapor

consists of the flow of mass transferg(y,y0) and the flow, caused
by vaporization or condensation, that occurs when heat is
supplied/removed. From the condition of constant molar over-
flow, it follows that the latter flow is proportional to the change
of vapor rate. When liquid is vaporized, the flow of more volatile
component, which is added to the vapor, is

The flow of the less volatile component, which is transferred
to the liquid, here is

From eqs 67 and 68, we obtain

Here, γ is the above-defined parameter, which describes the
rate of mass transfer in the dependencey(x,γ).

The overall mass transfer from liquid to vapor in the stripping
section is equal to the difference between the amount of the

Figure 7. Characteristic dependencies of the rates of vapor and liquid along the height of a column (a) without intermediate heat supply/removal
and (b) with it.
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more volatile component that enters with phlegma and with feed
and the amount that is removed with the bottom flux,

L(xF) in the feed section,lF, can be expressed in terms of the
vapor flow V(xF) using eq 65. Then eq 65 can be rewritten as

Similarly, for the enriching section, the flow of the less volatile
component from vapor to liquid is equal to the difference
between the amount of the less volatile component that enters
with the vapor into the sectionlF and the amount that is removed
with the product flow

Thus,

Finally, the combined total flow of mass transfer is

Becausey, xb, xd, andy(xF) depend on the unknown constantγ,
this equation determinesγ as a function of the given productiv-
ity, gD, and the compositions of the input and output flows.

If the ideal operating line has the form of eq 61, then

Example. Consider a column with the following param-
eters: k ) 10 mol/(s M)],xD ) 0.95,xF ) 0.5,xB ) 0.05, and
gD ) 53 mol/s andH ) 10 m; the dependencey0(x) has the
form of eq 43,R ) 4, and the dependencey(y0) has the form of
eq 60. The numerical solution of the eq 73 yieldsγ ) 1.5. Figure
8 shows the ideal operating line for this column.

Note, that eq 73 allows us also to find the thermodynamic
limit for maximal productivity, gD

max, of a column. This is
achieved by finding the functiongD(γ) as a solution of eq 73
and then by maximizing it with respect toγ

The dependence of the productivity of the column on the
parameterγ is shown in Figure 9 for the same column as in the

example above. Two values ofγ correspond to everygD except
gD

max ) 576.8 mol/s. The lowest of these two values corre-
sponds to the minimum of the entropy productionσ and the
highest to its maximum. For example,γ ) 1.5 andγ ) 2.25
correspond togD ) 530 mol/s.

Realization of the Ideal Operating Line. The following
equality holds in each column section

Because dy/dl ) (dy/dx)(dx/dl), the concentration of the more
volatile component in liquid along the column is governed by
the following differential equation

The optimal (from the viewpoint of minimization of dissipation
of the column) location of the feed point,lF, is determined by
the conditionx(lF) ) xF. Equations 66, 67, and 74 allow us to
find the concentration profilesx(l), y(l) ) y(x(l)), and the vapor
and liquid flowsV(l) ) V(x(l)) andL(l), for which the conditions
of eq 65 hold.

The rate of the corresponding heat supply/removal for the
ideal operating line is

∫xb

xF[g(y,y0) + gq
B(y,x)] dx ) L(xF)xF + (gB + gD)xF - gBxB

∫xb
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(72)
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xdfD(x,γ) dx} (73)
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) Rγ
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gD
max ) max

γ
gD(γ)

Figure 8. The ideal operating line for the distillation column in the
example.

Figure 9. The dependence of the productivity of the column on the
parameterγ of the ideal operating line.
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where â is the heat of evaporation. For the enriching and
stripping sections of the column, these rates are

Characteristic optimal profile of heat supply/removal is shown
in Figure 10.

Example. The optimal profile of concentration of the more
volatile component in liquid along the height of the column,

used in example, is shown in Figure 11.xF ) 0.5 corresponds
to the feed locationlF ) 6.76 m.

6. Conclusion

The minimal power required for separation of a gas mixture
is derived in this paper. It is also proven that heat-driven
separation has limited productivity (analogue of the maximal
power of heat engine), and this limit is found. The expressions
for the minimal entropy production and energy consumption in
an irreversible binary distillation column are derived. The ideal
operating line of irreversible binary distillation, for which
dissipative losses are minimal, is found. The ideal regime of
intermediate heat supply/removal, which is determined by this
ideal operating line, is constructed.
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