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Finite-Time Thermodynamics: Limiting Possibilities of Irreversible Separation Processels
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In this paper, new thermodynamic limits on the performance of irreversible separation processes are derived,
including work of separation in finite time (a generalization of Van't Hoff reversible work of separation for
finite rate processes), maximal productivity of heat-driven separation process (an analogue of Novikov
Curzon-Ahlborn maximal power of a heat engine), and the minimal possible dissipation in an irreversible
distillation column, the ideal operating line, for which this dissipation level is achieved, the profile of heat
supply/removal that realizes the ideal operating line, and the distillation column’s maximal productivity.

1. Introduction value, then as the flux becomes higher, the productivity of

Separation processes are among the most energy-consuminéjhem.1a| sep.aratlon.beco.mes Iqwgr. ) . .
and least energy-efficient technological processes. Various types Third, an irreversible binary distillation column is considered.
of separation are widely used in industry, including membrane A new estimate on_m|n|mal possd_)le entropy progjuctlon and
separation, absorptierdesorption cycles, distillation, centrifu- the ideal operating line, at which this minimal possible entropy

gation, evaporation, etc. Their importance as baseline processeQrOducnOn is achieved, are de”V?d' A stronger bound than_ the

explain the everlasting interest in the study of their efficiency one for a genera! thermal §ep§1rat|on is obtained for the maximal

and especially in finding in-principle performance limits productivity of binary distiliation.

imposed on separation by thermodynamics. Classical thermo-

dynamics provide reversible estimates of these limits. However,

these reversible estimates are significantly understated and do Consider the system shown in Figure 1. Here, the flux of

not take into account kinetics of separation, so their usefulnessmixture with the rateyo, compositionxo, temperaturély, and

is limited. pressurd®; is separated in two fluxes with parametgrss, T,
Exergy analysis is often used to determine the thermodynamic andp, (i =1, 2). The flow of heat}+ with the temperatur@

quality of separation processEs. Still, the exergy loss itself is supplied to the system, and the flow of hegt with

does not characterize the degree of thermodynamic perfectiontemperaturd_ is removed from it. The mechanical work with

to this process. In finite-time thermodynamics (FTT), itis shown the powerp is also supplied to the system.

that if the productivity of the system is given and heat and mass  |n a stationary regime, the thermodynamic balance equations

transfer coefficients are finite then some minimal possible for such a system have the following form:

unavoidable dissipative losses (entropy production) in the system

exist. Therefore, the natural way to evaluate the degree of The Mass Balance

thermodynamic perfection of a process with a given productivity

2. Thermodynamic Balances of Separation Processes

is by comparing the actual dissipative losses with this minimal 9% — 0%y — 9% =0, J=1,...K @)
possible dissipation. In this paper, the minimal possible entropy K

production,omin, and its dependence on heat and mass transfer ;=1 i=0,1,2 @)
coefficients is found for a number of irreversible gas and liquid J; !

separation processes. Thermodynamic balances are then used
to obtain the minimal possible energy/work of separation. The Energy Balance

First, gas separation is considered. The lower bound on the _ _ _ —
power of gas separation with given productivity and fixed P+~ A+ Gofo — Gy — g, =0 @)
compositions of the input and output fluxes is derived.

Second, a general heat-driven separation process (we shal\NherQhi
call it thermal separation) is considered. It is shown that the
productivity (rate) of thermal separation is limited. That is, if The Entropy Balance
the heat flux supplied to the system is higher than some given g, O
T_+_T_+9030_9131_9232+‘7=0 (4)

is the molar enthalpy of thgh flux, and
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Figure 1. Computational schema of a separation process.

and entropy incrementAs and Ah, we get

p+a; — d- + g;Ahy; + g,Ah, =0 )
q q-

92A502+91A501+-|-_+_-|—_+0=0 6)
+ —

Here,Ahgi = hg — hj andAsg = 59 — s fori = 1, 2.
After elimination of g- from eq 5 and substitution of the
obtained expression in eq 6, we get

Asj —— |+

2

g T

Therefore, the flux of heat used in thermal separatfpnr-(0)
is

T, 2
q: = [ 6(As;T- — Ahg) + 0T ] (1)
T,—-T_&
Similarly, for mechanical separation( = g- = 0),
2
P= ) G(As;T_ — Ahg) + 0T (8)

The first term in the right-hand side of this equality depends

only on the parameters of the input and output fluxes. It
represents the reversible work of separation per unit of tphe,
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The condition in eq 7 can be rewritten as

1
a4+ = q?— + oT_
Ncarnot

12)

If minimal entropy productions for thermat,;,, and mechan-
ical, o)., separations are found, then the inequalities

1
Qs = q(—)b— + O'-r;inT—
Carnot
0
p=p’+ o T- (13)

determine irreversible estimates of minimal energy consumption
for each type of separation.

3. Mechanical Processes of Gas Separation

Consider a separation system that uses the work with power
p and has no heat supplied or removgd € g~ = 0). Assume
that the input and output fluxes have the same temperatuyre (
= T_ = T) and pressure. After taking into account eq 10 and
the fact that for mechanical separation enthalpy incremehgs
are equal to zero, the equality in eq 8 can be rewritten as

2 k K
P= goRﬂZEiZXﬁ Inx; — Zxoj Inxy] +To=p’+To
o " (14)

The first term in this expression represents the power used for
separation in a reversible process= 0). This power,p°, is
equal to the difference between the reversible power used for
complete separation of the input flux and combined reversible
power of separation of output fluxes. Here

k
al(x) = —RTinj Inx, i=0,1,2 (15)
£

is the reversible work of separation of 1 molitf flux on pure

(reversible power of separation). The second term describes the;omponents, and = gi/go is the mass fraction removed by the

kinetics of the process and dissipation caused by it.

ith flux. For each of the components, we have

For mixtures that are close to ideal gases and ideal solutions,

the molar enthalpies and entropiésands in eqs 3 and 4, can
be written in the following form

k
h(T3Pux) = ) % hy(TiP) )
; i

k
S(T,P.x) = inj[go(Ti,Pi) —RInx], i=0,1,2 (10)
=

Here,Ris the universal gas constant. In this case, the reversible

estimate of heat used in separation is

O:

a-

2k
g Z{ [XoﬁO(To’Po) - Xij%O(TivPi) -
Ncamot=1 =

R(Xg In X = X I x)I -+ % hi(Ti,Py) — Xghi(To,Po)} (11)
NcamotiS the Carnot efficiency of the ideal cycle of a heat engine

T.-T.

Ncamot—
T+

Irreversible Estimates of Minimal Work of Separation for
a Gas Mixture. Problem FormulationConsiderN moles of a
mixture that is close to ideal gas and contaknsomponents
with concentrationsg (j = 1, ..., K). Its separation into pure
substances requires that not less mechanical work is used than
the reversible work

k
A°= —NRTY x In x (16)
TJZ& X

One of the “methods” of separation of a mixture using
mechanical workAY, is by using ideal semipermeable mem-
branes' The schematic structure of such a system is shown in
Figure 2. The central chamber contains the mixture of two gases.
Two semipermeable pistons move toward each other. The left
piston is permeable for the first gas only and the right one for
the second gas only. When the two pistons touch and the
pressures in the left and right chambers become equal, the
mixture will be separated. If the movements of the pistons are
infinitely slow and the fluxeg; andg, are infinitely small, then
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— Here, Au; and Au, are the increments of chemical potentials
P R, R B of the first and second component in the central and side
M Ny chambers. The problem of minimization of the work of
4 Yo £ separation on pure components is reduced to the problem of
; = g minimization of AA subject to constraints that the average rates
23 B 7 through membranes are fixed, that is,

Figure 2. The separation system with two semipermeable membranes. frg (Pl P, dt = NoX (0) frg (P2 P,) dt = N.,(0) (20)
0 91\F o — NoM\Y) o Jq Y2\, p) Ut = Ny

the work spent is equal to the reversible work of separation
It is also necessary to include the conditions
A’°=—NRTx Inx, + (1 —x) In(1—x)] (17)

Vo(t) + Vy(t) + V() = 1 (21)
Here, the temperatur€ remains constant and mass transfer
coefficients of the membranes do not affect the results. In a N(B)x(t) + Ni(t) = Nx(0) (22)
more general case, the input mixture with concentratigris )
separated into two output mixtures with concentratighand which must hold for each < [0, 7], and
xf, correspondingly. That is, there is no complete separation _ RT RT
here. In this case, the reversible estimate of the work of Po(t) = ——=N(®)x(1), Pi(t) =—=N,(1) (23)
separation is equal to the difference between the reversible work Vo(t) Vi(t)

of separation of the input mixture and the combined reversible dN

work of separation of each of the output substances with the % _ o 5 (0) = ) — Ny -

number of molesN; and 1— N; on pure substances: dt G(PoP), N(0)=0, Ni(z) = Npx(0), i 1’(54)

N, k N, & k _ )

A° = NR _ijl In le +l1-= lez In X12 _ ino In on into the problem in eqs 19 and 20.

NE N/E £ In the general case, the problem of eqs-2@ turns out to

(18) be a rather complex optimal control problem. The nonnegative

) ] T control variables here akg(t) andVx(t), of which the sum must

The reversible estimates, eqs 17 and 18, are significantly not exceed one (their combined volumes do not exceed the total

understated; the actual work of separation can be much higher,,ojyme of the system). The important feature of this problem

That is why itis important to make these estimates more realistic js that the criterion of optimality (eq 19) does not depend on

by taking into account the duration of separation and fixed rates e state variablesi(t). Another feature is tha andAu; depend

of the fluxes in the system. on the same variablé®) andP;. This allows us to simplify the

These estimates are derived by choosing a distribution of MasSproblem by expressing one of these functions in terms of
transfer fluxes over time or along the length of the system, where 4, 5ther.

the work of separation is minimal. But in the majority of Conditions of Optimality and Solutions. Consider the case

separation systems, the possibilities to control distribution of it one-to-one dependence between the increments of chemical
fluxes (profile of concentrations) in the system are very limited. potentials and the fluxesAui = @(g) (i € {1, 2). The
As a rule, only boundary conditions and rates of fluxes are . aversible energy losses here take the form ’

controllable. The Van't Hoff schema with two semipermeable
membranes provide more controllable separation. This makes

it an important vehicle for derivation of the work of separation AA= f; [9:91(91) + 905(9)] dt — min (25)
in finite time.
The Minimal Work of Separation of a Binary Mixture in This criterion can be minimized with respectgo> 0 andg,

Finite Time. Consider the system that includes two ideal = O and subject to conditions of eq 20 only. The obtained
semipermeable membranes, Figure 2. The left membrane issolution gives a lower estimate faA. The substitution of the
permeable for the first component of the initial mixture and solution of the problem of eqs 19 and 2fj(t) and gj(t) into
the right one for the second component. The fluxes through the eqs 22 and 24 allows us to check the feasibility of this regime
membranesg;, depend on the partial pressures of the corre- by the constraints of eq 21 and the constrainty/g(t) andV,-
sponding component on both sides of the membrane: (®).
Note that the problem of eqs 19 and 20 can be decomposed
0. = G(Pe.PD), 9, = 0,(P5,P,) in two subproblems of the following form

The partial pressures are determined by the amount of moles ‘go(g)dt—min [gdt=RKN ie{1, 26
in the central K), left (Ny), and right N, = N(O) — Ny Josw (@) 4 Jos 1eth 3 (20)
chambers. The volumes of these chambersvaré;, and V.. . .

During separation over the time intervaln addition to the ~ WhereN; = N(0)xy(0) andN, = N(0)(1 — x,(0)). These problems
reversible work of separation, the addition energyp, has to ~ are called the averaged problems of nonlinear programming
be used. To find a lower estimate of the work of separation, (NP)® Their optimal solutionsgj(t), are the piece-wise con-

AA has to be minimized: stant functions of time, which take not more than two values.
For the optimal ratey to be unique, it is sufficient that the
. .
AA = f; [91(P37PDA#1(P3!P1) + Lagrange function

9:(P5,P) Auo(P5,Py) ] — min (19) L= g%i(9) — 4G,
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A the actual work required to separate uranium isotopes exceeds
4 0 the reversible estimate by the order ofI0rhe condition of
eq 27 holds for the majority of real dependencigég;).
Therefore, the optimal fluxes through membranes are constant.
107 Incomplete Separation.Assume that the initial concentration

of the key component i in all chambers and its final
S concentration in the side chambersisndx,. For definiteness,
0.6- — -~ we assume thay; > X > xo. Assume that initially there ago
- ~ andNpo moles of input mixture with the concentration of key
componentx in left and right chambers. In the end, in the left
/ N chamber there arl;o(1 — x) moles of the second component
027 AN and Noox moles of the first component. The total amount of
N, moles of mixture that is separated here is

02 0.4 0.6 03 1.0

Figure 3. The dependence of the minimal irreversible work of

separation on the concentration of the key component in the initial . .
mixture. From the balances, it follows that the ratio NP moles of

mixture in the central chamber to the total amount of mixture
is strictly concave. If this function is differentiable, then the that is separated is
condition that the optimal flux is constant takes the form

)

|
S

\
)

N=N’+ N, +N, (31)

2 2 b(x X, . X ) = &O = w
% — % % g > 0 (27) T2 N X(l — X)(Xl — X2)
df 99 dg

(32)

Here, x; and x, are the final concentrations of the key
Note that because the first term in eq 27 is positive, it is components in the left and right chamber. For the linear law of
sufficient that the second term is nonnegative for the optimal mass transfer,
flux to be constant. Let us consider solution of this problem

0 0
for some particular cases. L NX%  N(—x)
Assume that the process is close to equilibrium and the fluxes 9% T’ % T
are proportional to the difference of chemical potentials on both
sides of the membrangi(= aiAu;, i = 1, 2). The coefficients Thus, the minimal work of separation for binary mixturenf
o; depend on the permeability of membranes and the temper-m0|eS of gas with the initial compositioninto mixtures with
ature. Then compositionsx; andx; in finite time 7 is equal to the sum of
the reversible work of incomplete separatioﬂ,o, and the
g9 . minimal additional work caused by irreversibility in the system.
Au== i=1,2 (28) y Y y

The latter is determined by the expression in eq 29 (in which it
is taken into account that in incomplete separation the volume
Let us break the conditions of egs 21 and 24 and minimigae  of the mixture that is separated sand notN°).

subject only to the conditions of eq 20, which follow from eq o2

24. The problem of egs 19 and 20 is a nonlinear programming A* = A0+ AA . (N_) = A%+ AA bA(xx. X 33
problem. Its optimal rateg} andg; are Aot Avin| Aot Ao (xx,. %) (33)

. X If we denote the reversible work of separation of 1 mol of
g = N; mixture with concentratiox into pure components as
and the minimal work of separatiorfis a’(x) = —RTxIn x+ (1 = x) In(1 — X))
Iy 2y 2 then the expression in eq 18 for the reversible work of
A= A0+ AA, = AY 1+ N ™ +2 (29) incomplete separation of binary mixture can be rewritten as
n in T 0»1 (12
L . 0_ 0 X=X o XX g N
where AP corresponds to the expression in eq 16 anid the A" =Nla,(x) — X — x an(xy) — X — x a(%)| = Na,(x)
1 2 1 2

initial concentration of the¢h component in initial mixture. The

minimal entropy production is Hereaﬂ(x) is the reversible work of incomplete separation of 1

2 2 Y mol of mixture with compositiorx into streams with composi-
M = A _ [N} 1% u (30) tions x; and x,.
mheTT 7| Tloy o, Power Estimate.The minimal powerp, that has to be spent

for separation of a binary mixture is

Characteristic dependence of the minimal irreversible work
of separation on the concentration of one of the components in A 0 2 2
the initial mixture is shown in Figure 3. At(0) = 0 andx,(0) P=77= ga,(X) + g d()b (XX, X5) (34)
= 1, the irreversible estimate of the work of separation has a
discontinuity. This explains why the work of separation of poor whereg = N/t is the rate of input mixture ang, x;, andx;
mixtures (in which the concentration of one of the components are the concentrations of the key component in the input and
is low) is much higher than the reversible estimate. For example, output fluxes,
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Y
d(x)zﬁ_}_u

Qy o

b(x,x1,%2) is determined by the equality of eq 32. It describes
the completeness of separatiom;= 1 corresponds to the
complete separation (on the pure components), lard O
corresponds to no separation at all. The dependence of the
minimal power used in the separation of a binary gas mixture
on its composition and ratgfor fixed mass transfer coefficients
and the degree of separation is shown in Figure 4. It is assumed
here that there the following relation exists between the degree
of separatiorb and compositions of output fluxes

X =X b(1 = ), X = X(1-b) Figure 4. The dependence of the power used in separation on its rate

. - .. and the composition of the input flux.
From eq 30, it follows that the minimal entropy production in P P

gas _separation driven b_y_ mecha_nical work depends on the rateHere, camoris the Carnot efficiency ang(p) is the maximal
of mixture and compositions of input and output fluxes as efficiency of a heat engine with given powgand given finite
heat transfer coefficients, obtained in ref 9,

1
Omin = T(gdxvxlyxz))zd(xlalvaz) (35) Zék
n(p) = (39)
Note that if the initial temperatures of the mixture and output Ok+1—4/(1—K(@1—ko?

products are the same and the components are close to ideal

gases then these estimate are also valid for a separation proceddere,o = (T, = VTOT, + {T), andk = plpmax. Forp

in which temperature is not constant. — Pmax the efficiencys(p) tends to the NovikovCurzon-
Ahlborn limit®

4. Heat Energy Consumption and Limiting Productivity

of Thermal Gas Separation

. - ) =1—,/=—
Many separation processes utilize heat energy instead of Inca T,

mechanical energy. They receive heat from the reservoir with

the high temperaturd,;, and reject it into the low-temperature  If p— 0 (the process is close to reversible), thgp) tends to
reservoir with the temperatur&,-. The derived estimates for  the Carnot efficiencyycamo: This can be easily shown using
irreversible work of separation also allows us to estimate the I'Hopital’s rule.

amount of heat that has to be used in thermal separation. Limiting Productivity of Binary Mixture Separation. The
Assume that the heat transfer coefficiefitsand5— for heat major difference between the mechanical and thermal separation
supply and removal, correspondingly, are known. Novikand processes is that the productivity of the latter is limited and the

later independently Curzon and Ahlbdftglerived the expres-  productivity of the former is not. Indeed, becaysg pmaxand
sion for maximal power that can be obtained from a heat engine g is a monotonic function of (which follows from eq 34), the

with two reservoirs in irreversible cycle as following inequality holds
o) = L( /T — /T )2 — 18( /T _ /T )2 |]pe[o,oo] g(p,x,xl,xz) = g(pmaxaxlxlyxz)
max 2 + — + _
WB+ +VB-) (36) This inequality holds for any compositions of the input and

output fluxesx, x;, andx,. pmax depends on the temperatures of
The irreversible process with the productivity and fixed the hot and cold reservoir$, andT-, and on the heat transfer
compositions of input and output fluxes can be realized in heat- coefficients on the “hot and cold engB,- and3— in accordance
driven separation schema only if the povpercalculated from with eq 36.
eq 34, is lower thamay If this condition holds, then the heat We will find the limiting productivity of thermal gas
consumption can be estimated using eq 12, after substitutionseparation by solving eq 34 with respectdoand then by
into it of the minimal entropy productiony,,. In turn, this ~ substitutingp with pma(T+,T-3+-). Ford > 0, we get
minimal entropy production depends on the poweaused in

separation. If the input and output gas fluxes have temperatures . aﬁ(x)
that are close td_, then the estimate for power is given by eq Imax = — 2d(x)b2(x X;,%,)
34. The minimal entropy production as a function of power was T2
derived in ref 9 and has the form °(x) 2
an + pmax (40)
T o (Mcamot 2d()b* (XX, %) d()D(X,Xg, %)
o =1\ oy~ - (37)

- If mass transfer coefficients; and o, are very highd — 0),

According to eq 12, we get then
_ Prnad T+ T-B1.B-)
q, = 3— P(1camot— 7(P)) (38) O = m

77Carno?7(p) aﬂ(x,xl,xz)
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Figure 5. The dependence of the maximal productivity on the Figure 6. The schema of the distillation column.

concentration of the key component in the initial mixture and on the of this substance in the liquid
degree of separation.

The dependence ajfnax ON the concentratiow in the input P, =P (42)
mixture and the degree of separatibris shown in Figure 5.

.. . 0 :
In many cases, the productivity of the system as a function Here P’ depends on the temperature. If the temperature is
of the flux g; and concentration; of the key component is  fixed, then itis lower for less volatile components than for more

given. From the balances, it follows that the fluixg@sind g; volatile components.

depend on each other as For known dependencidgo('lj, egs 41 and 42 allow us to
find the equilibrium Iine,yio(xi),

X~ %
9= Oy — X, 5 PI(T)X, _
yi(xi)=k— i=1, ..,k
Substitution of this equality into eq 34 gives the dependence of 0
the power used in separation and the flux JZPJ (T)Xi

_ 0 2
P = Gy[an(X Xy, %) + 93d(X,06,05), " (XXy)] For a binary mixture, we denote the fraction of the more volatile
. . component in the liquid as. Then we obtain the equilibrium
Herea(x) andd(x,0u,0) are determined by the same as in €q |ine for the molar fraction of the more volatile component in
34, and vapor

X;—X

_ 1
Pi0) =5 = V()

X)

P, P

PP+ (PS — P)x
The maximal productivity with respect to the key fl@max
can be calculated using formula 40, whérés replaced with The coefficient of relative volatility between two components
b1. Whenx; changes fronx to 1, the value of this coefficient  is defined as
changes from 0 to &/

_PIm

=
General Approach. Thermodynamic balances of the distil- A7)

lation column link the amount of heat used for separation with and the equilibrium line can be rewritten as
the compositions of the input and output flows and the entropy
production in the system. This amount is the sum of the )/0( )=L (43)
reversible and irreversible terms. Assume that the productivity 1+ (oo — 1)x
with respect to the key component (for definiteness, the flow . - .
from the condenser) and the compositions of the output and The relative V0|a'[I|.Ityt1 > 1, becausg denotes the concentration
input flows are known. Therefore, the reversible term is fixed. ©f the more volatile component.

We will derive a lower bound for the irreversible term by _ Thermodynamic Balances in Distillation: Reversible
calculating the form of operating line that corresponds to the EStimate of the Amount of Heat Used for SeparationUnlike
minimal dissipation in a column. ref 14, we consider a packed distillation column. The rationale

Distillation is based on the conditions of equilibrium between here is that our aim is to obtain a bound on dissipation. But
boiling liquid and generated vapor. If the liquid can be described dissipation in a tray column is always higher than dissipation
as an ideal solution and vapor as an ideal gas, then the partiai® @ Packed column because of extra dissipation caused by the

pressure of thith component in the vapor is equal to the product hydrodynamics of the tray. Our model of distillation is based
of its concentration on the total pressure: on mass transfer and not on heat transfer as in ref 14. We assume

that the temperature varies from section to section in a column
P, =Py = inPV (41) in accordance with the variations of the corresponding equilib-
v

5. Limiting Possibilities of Irreversible Binary Distillation a(T)

rium composition.
The distillation column is shown schematically in Figure 6.
On the other hand, in equilibrium, the partial pressure of the The feed with the ratgr and vector of concentrationg is
ith component in vapor is equal to the pressure of a saturatedsupplied into the column. The heat fluy is supplied to the
vapor of pure substanc@‘-o, multiplied on the molar fraction bottom liquid in the reboiler, which partially vaporizes it. The
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resulting flow of vapow flows upward along the column. This Nonisothermal character of the separation yields an additional
creates contact between this vapor and the liduiiowing term,
downward. During this contact, more volatile components are
transferred from the liquid into the vapor and less volatile
components from the vapor into the liquid. The rest of the A :_Z[(l - 6)XJEsz ( ) Cy(T) dT —
bottom liquid is removed via the flugg.
The overhead vapor, saturated with more volatile components,
enters the condenser where the heat §uxs removed from it éxlDf ( ) PJ(T) dTf (47)
by the cooling liquid and it is condensed to obtain distillate.
The fraction of distillatego = €gr, is removed from the column  |f we assume that the heat capacity does not depend on the
as overhead product, and the rest otit= V — gp, is refluxed temperature and denote the constant heat capacities over the
into the column. The fraction that is removeg,is one of the intervals T, T¢) and (T, T+) asc, and Cp., correspondingly,
controls.T- denotes the temperature in the condenser. Ifidex then this additional reversible work can be rewritten
corresponds to thgh component of the mixturéda, hp, andhg
denote molar enthalpies of the corresponding flusess, and T,
s are their entropiess denotes the entropy production. APP=—Y - e)xJ-Bc; T, —Te—T_In—|—
From thermodynamic balances, it follows that (similar to eq = Te

7) the amount of heat used in distillation depends on the entropy T:
production in it: €XpCo| Te = T-—T_1In T
+

qy = ﬁ[gp(sﬂ_— —hg) = gp(spT- — hp) — The reversible estimate for the heat consumption in distillation

* - can be rewritten in the following form

T —h )]+0L= 0 +0L (44)
gB(SB - B T+ -T a+ -|-+ -T o pO + Apo
Q=" (48)

. 0 . . . T camot
The first term, g, in this expression represents the heat

consumed in a reversible process. It depends only on theThe removed fractiore in formulas 45-47 depends on the
parameters of the input and output flows. The second term is compositions of the input and output flows via the conditions
nonnegative and corresponds to the dissipative energy lossesof mass balance

Assume that the mixtures can be described as ideal solutions;

then the expressions of eqs 9 and 10 for entropy and enthalpy _ X X

hold. The increments of the molar enthalpy and molar entropy €= Xp — Xg

when the temperature is changed are expressed via the heat

capacity,c(T), as Only if the composition of distillatexy is fixed, then such
. removed fractiore should be chosen that minimizg$ one. e

Ahy = h(T,,P) — h(T,P) = ﬁ chj('D dr here uniquely determines the composition of bottom fiaw

! Minimal Entropy Production in Distillation. From eq 44,
Tz pl(T) it follows that the energy consumption in the distillation column

consists of the reversible termf. and an irreversible term
proportional to the entropy production in a colunanWe will

We consider the flow of distillate, removed from condenser, as NOW consider the problem of minimal entropy production in
the objective flow. It represents fraction of the feed. Then binary distillation. We assume that this is a packed column:

the reversible estimate for the heat consumption in distillation the mass transfer between the flows of vapor and liquid is
can be rewritten in the following form equimolar (that is, the condition of constant molar overflow

holds); the mixtures are close to ideal; the temperature in each

AS’ = (T,P) — S(T,P) =

RT Op K section of the columhis constant and the same for both liquid
Z Xip In Xp +1- e)x].B In Xig — and vapor; the heat of mixture is zero and there are no heat
nCamog, leaks into the environment; the compositions of the vapor and

Xp T liquid are the same in both overhead condenser and bottom
e In X — _fTTF 1—— ij('D daT + reboiler. We also assume that the fegcdenters in the section
T of the column where the temperature is the same as its
temperature and the composition of the liquid is the same as its
(11— e)Xg T - . .
—fT+ (T) dT| (45) composition and that there is no excess entropy production due
RT Te Pl to the mixing of the flows. We do not take into account the

entropy production caused by heat exchange in reboiler and

The value condenser because the heat transfer coefficients there are very
high.
9 The concentrations of the more volatile component in vapor
p° Z—RT Z[GX,D In Xp + (1 — €)X IN X5 — Xz IN X and liquid are denoted agl) andx(l), correspondingly. The
(46) distribution of the driving force of the mass transfer process is

determined by the form of the equilibrium line and the form of
represents the reversible isothermal work of separation of thethe operating line. We will derive the ideal (the least dissipative)
flow gr with the concentrations into two flows with concentra- concentration profile (distribution of concentrations) in the
tions xg andxp at the temperaturé_. column and the corresponding value @fi,. This profile can
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be then approximated by supplying/removing heat along the

J. Phys. Chem. A, Vol. 106, No. 45, 2000933

For the majority of laws of mass transfer, the problem of eqs

column. The ideal profile of concentrations allows us to evaluate 52 and 54 is concave gnand its solution is determined by the

various new designs of distillation columh?2

Because in the binary distillation the concentrations of the
less volatile component in the liquid and vapor flows are-(1
X) and (1—y), correspondingly, and the driving force of the
process is determined by the difference betwgeand the
equilibrium concentratiog®(x), the entropy production can be

condition of stationarity of the Lagrange function

L= g(yy")(lny((l__%; y)

wherey is a Lagrange multiplier. This condition determines

expressed in terms of the flows and the chemical potentials asthe ideal operating linethe optimal dependenggy?,y).

o) = o) — m(Ty) +
1=y, 1Y) (T, 1Y) — 1T, 1Y)} (49)

Because each chemical potential has the form

wi(T,Pz) =uo(P,T) + RTInz, i=1,2 (50)
we get
ﬂl(TayO) —u(Ty) = RTmyVO
AT A=y) = (T, 1) = RTIn 11_—yy0

After taking into account the condition of constant molar
overflow

G (Y%) = g(1-y,1-Y%) = g(y.y))

expression 49 takes the form

y(L-

y(1 - °)
Functionsy andy® depend orx, buto does not explicitly depend
onx. BecausgP is a unique and monotone functionxfaindx
changes fromxg to xp in the column, the entropy production
here can be written as

a(¥) = Rgy,y") In ——=~ (51)

yo(1 -
y(1 -0

The mass flow of more volatile component from liquid to
vapor g depends on the concentratig(x), equilibrium con-
centrationy?(x), and mass transfer coefficient per unit of column
lengthk. If the independent variableis replaced with another
variable that monotonically depends brthen the new mass
transfer coefficienk should be used by multiplyingon H and
dividing it on the range of the new independent variable. For
example, ifx replaced,

- kH

“=XH) - X0 3)

YO(xp)

7= R [ )

ayy) In———=" d (52)

H is the height of the column. f is used, then the denominator
here isy°(H) — y°(0).

Let us calculate now the operating line, which minimizes
subject to the given equivalent mass transfer load

Laayy) = C

(54)

For a binary distillation column with a variable (not neces-
sarily constant) vapor flow along the column, we obtain

Y-y gyy)
y(L—y") 999yl —y)y
The expression in the left-hand side of eq 55 must be constant

in each column’s section. In particular, for the linear law of
mass transfer,

In =y (55)

gyy) =k —v) (56)
the condition of eq 55 takes the form
Y-y, Y-y
In + = (57)
y1—y) yd-y 7

If the distillation process is close to equilibrium and the
equivalent flux is proportional to the driving force,

oYL -y)
V) =kin>—2
9(v.y) vy

and the condition of eq 55 can be resolved with respegt to
Then eq 55 takes the form

y(1-y)

(58)

=y = const (59)
y(L—y)
Therefore,
y’
YY) =—"—— (60)
y— =1y
For yO(x) given by eq 43, we get
ox
X) = 61
Y0 = (61)
Becausey(x) > X,
l<y<a (62)
After taking into account thak = kH/(y°(xp) — Y°(xs)) and

substituting egs 58 and 59 into eq 52, we obtain the expression
for minimal dissipation caused by mass transfer in a column
that operates not far from equilibrium,

= RkH(n y)?

Dependence of Mass Transfer Rate in a Column on the
Parameters of External Fluxes: Thermodynamic Limit of
the Column’s Productivity. If y is known, then the condition
of eq 55 and the dependencies of eqs 58 and 60 completely
determiney(y°). To find this constant, we need to expré&sm

(63)

m|n

The constan€ characterizes the rate of mass transfer. It dependseq 54 in terms of the productivity of the column and the

on the concentrations of the input and output fluxes.

concentrations of the external fluxes.
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Figure 7. Characteristic dependencies of the rates of vapor and liquid along the height of a column (a) without intermediate heat supply/removal
and (b) with it.

Mass transfer and (intermediate) heat supply/removal changeWe denote the concentration of the more volatile component
the flow rates of vapor and liquid along the column. Because in the liquid, which enters reboiler ag, x(0) = xp. From the
we assume that the condition of constant molar overflow holds material balance,
for mass transfer and because all of the liquid that is vaporized

is transferred to vapor, the following condition holds fet I L(0) — V(0) — gg =0, L(0)X, — UgXs — V(O)yO(O) =0
av_ it follows that
L 1 (64)
95X + V()Y (%)
Therefore, for the stripping and enriching section of the column, == %)Y (%
g5 + V(%)
Lg=Vg+0s, Lp=Vp— 65 . _ . . .
8= Ve "% o= Vo™ (65) This equation jointly with eq 67 yields the following equation
f :
Characteristic dependencies of the vapor and liquid flow rates or%
on the height of the column without and with intermediate heat
z y0%) = Yxg) (69)

supply are shown in Figure 7.

If L andV depend orh and on any other variable that changes
monotonically along the height of the colurjm, \°, y, ..},
then the equalities of eq 65 hold. The vapor flow in any section
of the column (consequently for any valuexdthat corresponds
to this section) can be found from material balance on the more
volatile component for the part of the column between the
current section and its upper/lower end. For the enriching
section, we have

Thus, when changes from 0 tdéd, x changes fromx, to Xg.

The flow of the more volatile component from liquid to vapor
consists of the flow of mass transfgy,y°) and the flow, caused
by vaporization or condensation, that occurs when heat is
supplied/removed. From the condition of constant molar over-
flow, it follows that the latter flow is proportional to the change
of vapor rate. When liquid is vaporized, the flow of more volatile
component, which is added to the vapor, is

Vo0¥(¥) — gpXp — XLp(3) = 0 Y
9y =Y 4«
If we take into account that for amnyL = V — gp, we obtain
The flow of the less volatile component, which is transferred
Xp — X to the liquid, here is

Vo) = G5 (66)

_ av
. _— . gq(yvx) - _(1 - X) d_
Similarly, for the stripping section, X

From eqgs 67 and 68, we obtain

(L- a0 %) 1 ]:
X

Let us estimate the range of the variablefor which the =%’ y
equalities of egs 66 and 67 hold. We assumed that all vapor is Oofo(Xy), X =Xx= x4 (70)
condensed in dephlegmatdr=t H). From the material balance
Xo = X[(1 - dyld)(x —xg) 1 ] B
X

X — Xg
Y9 — X

Ve(¥) =g (67)

95 (Y% = —gp(1 = )

for the dephlegmator, B
!X = f
V(H) — L(H =0, V(H)yH L(H) + =0 Ho gDyXF_XB" =%’ 2
(H) = L(H) — g5 =0, V(H)Y(H) — (L(H) + gp)xp = Gofa(ky), % < X = % (71)
it follows thaty(H) = xp. Thereforex(H) = xs, wherexq is the Here, y is the above-defined parameter, which describes the
root of the equation ;
q rate of mass transfer in the dependegitgy).
The overall mass transfer from liquid to vapor in the stripping
Y(Xd) =% (68) section is equal to the difference between the amount of the
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more volatile component that enters with phlegma and with feed
and the amount that is removed with the bottom flux,

S T90ry") + 03] dx = LOG%: + (95 + o)X — IoXe

L(xg) in the feed sectionlg, can be expressed in terms of the
vapor flow V(xg) using eq 65. Then eq 65 can be rewritten as

L790y) dx= gg = Xg) + VORX: — [, "Gy ozx |
72

Similarly, for the enriching section, the flow of the less volatile
component from vapor to liquid is equal to the difference

between the amount of the less volatile component that enters

with the vapor into the sectida and the amount that is removed
with the product flow

L9y + gyl dx = VO = y06e)) — oL — %)
Thus,
[ oY) dx=

VOR(L = Y06) — oL = Xo) = f;“03(y9) cx
Finally, the combined total flow of mass transfer is

S oY) dx= gD[

Xo T X
V(%) — Xe

S faOuy) o= [ () dX] (73)

—(1—=%)—

Becaussy, x, X4, andy(xg) depend on the unknown constant

this equation determingsas a function of the given productiv-

ity, oo, and the compositions of the input and output flows.
If the ideal operating line has the form of eq 61, then

N B
X4 X + o1 — Xp)
_ VyO(XB)
VyO(XB) +a(l— yO(XB))
dy _ oy

dX [ax+ p(1 — X))2

Example. Consider a column with the following param-
eters: k = 10 mol/(s M)],xpo = 0.95,x = 0.5,xg = 0.05, and
go = 53 mol/s andH = 10 m; the dependenco(x) has the
form of eq 43,a. = 4, and the dependengg®) has the form of
eq 60. The numerical solution of the eq 73 yields 1.5. Figure
8 shows the ideal operating line for this column.

Note, that eq 73 allows us also to find the thermodynamic
limit for maximal productivity, g5, of a column. This is
achieved by finding the functiogp(y) as a solution of eq 73
and then by maximizing it with respect o

max

9 = myax ()

The dependence of the productivity of the column on the
parametey is shown in Figure 9 for the same column as in the

. Phys. Chem. A, Vol. 106, No. 45, 20020935
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Figure 8. The ideal operating line for the distillation column in the
example.
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Figure 9. The dependence of the productivity of the column on the
parametety of the ideal operating line.

example above. Two values pfcorrespond to evergp except
oo™ = 576.8 mol/s. The lowest of these two values corre-
sponds to the minimum of the entropy productierand the
highest to its maximum. For examplg,= 1.5 andy = 2.25
correspond t@p = 530 mol/s.

Realization of the Ideal Operating Line. The following
equality holds in each column section

Vo) Y = gyy)

Because @dl = (dy/dx)(dx/dl), the concentration of the more
volatile component in liquid along the column is governed by
the following differential equation

DI oy, =k (70
dy
V(X) &

The optimal (from the viewpoint of minimization of dissipation
of the column) location of the feed poirt, is determined by
the conditionx(lg) = x¢. Equations 66, 67, and 74 allow us to
find the concentration profileg(l), y(I) = y(x(l)), and the vapor
and liquid flowsV(l) = V(x(l)) andL(l), for which the conditions
of eq 65 hold.

The rate of the corresponding heat supply/removal for the
ideal operating line is

a() = &
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Figure 10. Characteristic optimal profile of heat supply/removal.
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Figure 11. The optimal concentration profile of the more volatile
component in liquid along the height of the column.

where 3 is the heat of evaporation. For the enriching and
stripping sections of the column, these rates are

q =
R L
d
VB(X)(l B d_;/) %] gyy)
as(l) =B ' (75)
O

Characteristic optimal profile of heat supply/removal is shown
in Figure 10.

Example. The optimal profile of concentration of the more
volatile component in liquid along the height of the column,

Tsirlin et al.

used in example, is shown in Figure Xt.= 0.5 corresponds
to the feed locatiohs = 6.76 m.

6. Conclusion

The minimal power required for separation of a gas mixture
is derived in this paper. It is also proven that heat-driven
separation has limited productivity (analogue of the maximal
power of heat engine), and this limit is found. The expressions
for the minimal entropy production and energy consumption in
an irreversible binary distillation column are derived. The ideal
operating line of irreversible binary distillation, for which
dissipative losses are minimal, is found. The ideal regime of
intermediate heat supply/removal, which is determined by this
ideal operating line, is constructed.
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