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The numerical solution of most problems in theoretical chemistry involve either the use of a basis set expansion
(spectral method) or a numerical grid. For many basis sets, there is an intimate connection between the spectral
form and numerical quadrature. When this connection exists, the distinction between spectral and grid
approaches becomes blurred. In fact, the two approaches can be related by a similarity transformation. By the
exploitation of this idea, calculations can be considerably simplified by removing the need to compute difficult
matrix elements of the Hamiltonian in the original representation. This has been exploited in bound-state,
scattering, and time-dependent problems using the so-called, discrete variable representation (DVR). At the
core of this approach is the mathematical three-term recursion relationship satisfied by the classical orthogonal
functions. This three-term recursion can be used to generate the orthogonal functions as well as to generate
the points and weights of Gauss quadratures on the basis of these functions. For the classical orthogonal
functions, the terms in the three-term recursion are known analytically. For more general weight functions,
this is not the case. However, they may be computed in a stable numerical fashion, via the recursion. In
essence, this is an application of the well-known Lanczos recursion approach. Once the recursion coefficients
are known, it is possible to compute the points and weights of quadratures on the basis of the generalized
weight functions. We review these ideas below and apply then to the generation of the points and weights of
the Rys polynomials which have proven useful in the evaluation of multicenter integrals, using Gaussian
basis sets in quantum chemistry. In contrast to some approaches, the method advocated is general, numerically
stable, and trivial to program.

Mathematical Introduction

All of the classical orthogonal polynomials1,2 satisfy a three-
term recursion relationship on the intervala e x e b of the
form

with the properties

where the coefficientsRn and ân are known analytically.
Associated with these polynomials,φn(x), and weight function,
w(x), is a generalized Gauss quadrature with pointsxi and
weights wi having the property that anyF(x) which is a
polynomial of degree 2N - 1 may be integratedexactlyusing

the quadrature rule,

From the Hermite interpolation formula, one would expect
thatN values of theF(x) andN values ofF′(x) would be needed
to obtain a quadrature rule of this accuracy. By suitably choosing
the points to make the weights of the derivative term vanish,
one gets 2N - 1 accuracy with onlyN values of the function
required. The Christoffel-Darboux identity1 can be used to
prove that the points needed are the zeros of the polynomial,
φN(x). The required weights,wi, may also be derived from the
Christoffel-Darboux identity.

By rewriting eq 1 as

it is simple to see that the condition for the determination of
the points and weights of the Gauss quadrature is the same as
settingφN(x) to zero in the above equations. When this is done,
eq 4 is no more than the tridiagonal representation of the
operatorx in the orthogonal polynomial basis. The tridiagonal
matrix involving the recursion coefficients,Rn andân, may be
diagonalized to obtain a new representation where the operator† Part of the special issue “R. Stephen Berry Festschrift”.

ânφn(x) ) (x - Rn)φn-1(x) - ân-1φn-2(x) (1)

0 e n e N - 1

〈φn|φm〉 ) ∫a

b
w(x)φn(x)φm(x) dx ) δn,m (2)

w(x) ) nonnegative weight function

φ0(x) ) constant

I ) ∫a

b
w(x)F(x) dx ) ∑

i

wi F(xi) (3)

xφn(x) ) Rn+1φn(x) + ânφn-1(x) + ân+1φn+1(x) (4)
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x is diagonal, with eigenvaluesxi. These eigenvalues are identical
to the Gauss points. The Gauss weights are the leading
coefficients of the eigenvectors of the tridiagonal matrix. In
practice, computation of the points and weights of the Gauss
quadrature by diagonalization is much more efficient than the
root finding procedure. Golub and Concus10 have a readily
available computer program to carry out the process for all of
the common weight functions. The eigenvectors of the tri-
diagonal matrix, are the so-called coordinate eigenfunctions,
ui(x).

An alternative representation forui(x), which may be derived
from the above, is

and is the most useful in performing computations. Note that
either eq 5 or eq 6 may be used to calculate the value ofui(x)
at any arbitrary point in the interval. While it would be
mathematically elegant to have

for H(x) being any local operator, when the integral is evaluated
using the quadrature rule, this only holds if the entire integrand
is a polynomial of 2N - 1 degree or less. However, replacing
the matrix element by its quadrature approximation has been
demonstrated to be accurate enough in practice to be very useful
and is the basis of the DVR. In this new representation, matrix
elements of any local function ofx are diagonal and equal to
the value of the operator at the Gauss quadrature point. Other
operators, such as the kinetic energy, which involve differentia-
tion and lower the order of the integrand, may be performed
analytically using the product form or using the known
derivatives of φn(x). These are most easily computed by
differentiating the recursion relation. The product form may also
be differentiated, and the results are particularly simple if the
derivatives are only required at the quadrature points. This is
all that is needed to compute matrix elements of the kinetic
energy operator via the quadrature rule. Since typical many-
body operators involve sums of operators for each separate
particle, and these in turn are sums over separate coordinates,
the entire DVR representation of the Hamiltonian is quite sparse.
This is of tremendous practical importance in further matrix
manipulations such as finding eigenvalues or solving linear
equations.8 We refer the interested reader to the references for
further information.

Nonclassical Weights

Calculating the points and weights of a Gauss quadrature
when the weight functionw(x) is a more general, but still

positive definite function, can be approached in a number of
ways. For example, by computing the moments,

and then requiring that the quadrature be exact for all computed
moments, one gets a set of 2N, nonlinear equations which may
be solved for the unknown points and weights. The problem is
that this approach is numerically unstable. A much better
procedure is to use the recursion relationship once values for
φ0(x) andφ1(x) are available. Using the Dirac notation, we have
the following step:

(1)

(2)

(3) For i ) 2 to i ) N - 1,

The only remaining issue is the computation of theRi and
âi. The approach advocated here is to compute these using some
other Gauss quadrature with a related weight function.13 If no
such weight function can be found, it is often effective to use
Gauss-Legendre, Gauss-Hermite, Gauss-Laguerre, or even
simpler quadrature schemes. So, the required integrals are
written

ui(x) ) ∑
n)0

N-1

cnφn(x)

cn ) 〈φn|ui〉 ) ∫a

b
w(x)φn(x)ui(x) dx ) xwiφn(xi)

ui(x) ) ∑
n)0

N-1

xwi φn(xi)φn(x)

〈ui|x|uj〉 ) δi, jxi (5)

ui(x) )
1

xwi

∏
k)1

N
′

x - xk

xi - xk

(6)

〈ui|H(x)|uj〉 ) δi, j H(xi) (7)

Mj ) ∫a

b
w(x)xj dx (8)

0 e j e N - 1

|Ô0〉 ) 1

â0 ) xÔ0|Ô0

|φ0〉 f
|Ô0〉
â0

(9)

R1 ) 〈φ0|x|φ0〉

|Ô1〉 ) (x - R1)|O0〉

â1 ) x〈Ô1|Ô1〉

|φ1〉 f
|Ô1〉
â1

(10)

Ri ) 〈φi-1|x|φi-1〉

|Ôi〉 ) (x - Ri)|φi-1 - âi-1|φi-2〉

âi ) x〈Ôi|Ôi〉

|φi〉 f
|Ôi〉
âi

(11)

I ) ∫a

b
wc(x)Q(x) dx ) ∑

q

wqQ(xq) (12)

Q(x) )
F(x)w(x)

wc(x)
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whereF(x) is the original integrand andwc(x) the comparison
weight function.

Numerical Example: The Rys Polynomials

When the molecular orbitals of polyatomic molecules are
expanded in a set of nuclear-centered Cartesian Gaussians,
matrix elements of the nuclear attraction and electron-electron
repulsion operators can be reduced to integrals of the form

where Fn(x2) is some general polynomial ofx2. In earlier
molecular integral codes, theFn(x) were expressed as known
power series expansions and theIn(t) related to the functions

These were computed using power series expansions for small
t, asymptotic expansions for larget, or recursion. Starting values

for the recursion were computed from known routines for the
incomplete gamma function. SinceIn(t) involves a polynomal
integrand, it is clear that the integral can be performed exactly,
with the appropriate Gauss quadratures. The underlying or-
thogonal polynomials are known as the Rys polynomials. In a
typical molecular integral code, the highest power ofn may be

TABLE 1: Rys Points for n ) 20: 150 Point
Gauss-Legendre Quadrature

Rys t

0.0 10.0 20.0

0.38772418E-01 0.34516481E-01 0.31101309-E01
0.11608407E+00 0.10345688E+00 0.93278655E-01
0.19269758E+00 0.17211704E+00 0.15537838E+00
0.26815219E+00 0.24030163E+00 0.21734258E+00
0.34199409E+00 0.30780232E+00 0.27910367E+00
0.41377920E+00 0.37439231E+00 0.34057950E+00
0.48307580E+00 0.43982039E+00 0.40166741E+00
0.54946713E+00 0.50380490E+00 0.46223673E+00
0.61255389E+00 0.56602732E+00 0.52211916E+00
0.67195668E+00 0.62612608E+00 0.58109628E+00
0.72731826E+00 0.68369085E+00 0.63888354E+00
0.77830565E+00 0.73825825E+00 0.69510972E+00
0.82461223E+00 0.78931010E+00 0.74929160E+00
0.86595950E+00 0.83627585E+00 0.80080440E+00
0.90209881E+00 0.87854117E+00 0.84885103E+00
0.93281281E+00 0.91546478E+00 0.89243815E+00
0.95791682E+00 0.94640490E+00 0.93037480E+00
0.97725995E+00 0.97075538E+00 0.96131807E+00
0.99072624E+00 0.98798952E+00 0.98389332E+00
0.99823771E+00 0.99770850E+00 0.99690169E+00

Rys t

30.0 40.0

0.28300441E-01 0.25961895E-01
0.84908561E-01 0.77908218E-01
0.14153766E+00 0.12992213E+00
0.19819921E+00 0.18204861E+00
0.25490056E+00 0.23433244E+00
0.31164265E+00 0.28681779E+00
0.36841678E+00 0.33954762E+00
0.42520023E+00 0.39256240E+00
0.48194977E+00 0.44589794E+00
0.53859225E+00 0.49958168E+00
0.59501046E+00 0.55362622E+00
0.65102174E+00 0.60801801E+00
0.70634534E+00 0.66269728E+00
0.76055258E+00 0.71752162E+00
0.81299132E+00 0.77219793E+00
0.86267636E+00 0.82615243E+00
0.90814496E+00 0.87827887E+00
0.94731288E+00 0.92646562E+00
0.97745729E+00 0.96684063E+00
0.99558685E+00 0.99324488E+00
0.97745729E+00 0.96684063E+00
0.99558685E+00 0.99324488E+00

In(t) ) ∫0

1
Fn(x

2)e-tx2
dx (13)

En(t) ) ∫0

1
x2ne-tx2

dx (14)

TABLE 2: Rys Weights for n ) 20: 150 Point
Gauss-Legendre Quadrature

Rys t

0.0 10.0 20.0

0.77505948E-01 0.68200188E-01 0.61006721E-01
0.77039818E-01 0.61845284E-01 0.52221480E-01
0.76110362E-01 0.50904229E-01 0.38281515E-01
0.74723169E-01 0.38102267E-01 0.24055398E-01
0.72886582E01 0.26011465E-01 0.12977677E-01
0.70611647E-01 0.16260925E-01 0.60249481E-02
0.67912046E-01 0.93577803E-02 0.24150737E-02
0.64804013E-01 0.49902018E-02 0.83977042E-03
0.61306242E-01 0.24860176E-02 0.25495249E-03
0.57439769E-01 0.11683333E-02 0.68185437E-04
0.53227847E-01 0.52395851E-03 0.16260078E-04
0.48695808E-01 0.22721939E-03 0.35144861E-05
0.43870908E-01 0.96705638E-04 0.70372021E-06
0.38782168E-01 0.41043106E-04 0.13433620E-06
0.33460195E-01 0.17651525E-04 0.25360132E-07
0.27937007E-01 0.78025612E-05 0.49509088E-08
0.22245849E-01 0.35746004E-05 0.10507396E-08
0.16421058E-01 0.16861745E-05 0.25360767E-09
0.10498285E-01 0.77989906E-06 0.70155029E-10
0.45212771E-02 0.27914439E-06 0.18488035E-10

Rys t

30.0 40.0

0.55258305E-01 0.50546241E-01
0.45604926E-01 0.40769296E-01
0.31056038E-01 0.26503018E-01
0.17443123E-01 0.13865046E-01
0.80763299E-02 0.58241064E-02
0.30808558E-02 0.19584424E-02
0.25038722E-03 0.11183616E-03
0.53381348E-04 0.18813052E-04
0.93981326E-05 0.24866554E-05
0.13722805E-05 0.25686316E-06
0.16751152E-06 0.20639501E-07
0.17330106E-07 0.12868808E-08
0.15544888E-08 0.62412844E-10
0.12540417E-09 0.23841810E-11
0.96350274E-11 0.74115120E-13
0.76810552E-12 0.20148347E-14
0.71429832E-13 0.55394092E-16
0.87745585E-14 0.19956309E-17
0.13698412E-14 0.12391027E-18

TABLE 3: Rys Points for n ) 13, t ) 10.0, and Various
Size Quadratures

size quadrature

20 25 50

0.49843241E-01 0.49849793E-01 0.49849793E-01
0.14934657E+00 0.14936576E+00 0.14936576E+00
0.24828110E+00 0.24831137E+00 0.24831137E+00
0.34620056E+00 0.34623895E+00 0.34623895E+00
0.44254918E+00 0.44259134E+00 0.44259134E+00
0.53659977E+00 0.53664070E+00 0.53664070E+00
0.62737436E+00 0.62740966E+00 0.62740966E+00
0.71354463E+00 0.71357169E+00 0.71357169E+00
0.79331740E+00 0.79333577E+00 0.79333577E+00
0.86433101E+00 0.86434192E+00 0.86434192E+00
0.92363168E+00 0.92363715E+00 0.92363715E+00
0.96785751E+00 0.96785958E+00 0.96785958E+00
0.99377527E+00 0.99377564E+00 0.99377564E+00
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computed knowing the maximum values of the angular momenta
on the molecular centers. Once this is known it becomes a trivial
matter to generate the recursion coefficients for any value oft.
However, the number of values oft are too numerous to generate
the Rys points and weights “on the fly”. A practical scheme
for the interpolation of the recursion coefficients is needed. We
will not consider this further in this paper. Here we content
ourselves with showing the accuracy of the recursion technique
for a few values oft andn. In Tables 1 and 2, we present the
Rys points and weights for a variety of Rys parameters forn )
20 using 150 point Gauss-Legendre quadrature. The results
are accurate to all figures presented and are unchanged for
Gauss-Legendre quadratures above 40. The next Tables 3 and
4 show the Rys points and weights forn ) 13 using 20/25/50
point Gauss-Legendre quadrature. The points and weights are
converged to sufficiently high precision at 25 point quadrature.
In contrast, the moment procedure12 is only accurate to about 4
decimal places.

Conclusion

We have discussed the relationship between orthogonal
polynomials and generalized Gauss quadratures and briefly
mentioned how they may be used to simplify the construction
of matrix representations of the Hamiltonian for typical many-
body problems. A numerical example, derived from quantum
chemistry, has been given showing how the recursion may be
used to numerically construct the points and weights of the Rys
polynomials. Calculations are in progress which use these
polynomial discretizations in the time domain to find accurate
solutions of the time-dependent Schroedinger equation for
general potentials.
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TABLE 4: Rys Weights for n ) 13, t ) 10.0 and Various
Size Quadrature

size quadrature
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0.51230682E-03 0.51205493E-03 0.51205494E-03
0.14016577E-03 0.14010963E-03 0.14010963E-03
0.37415707E-04 0.37404942E-04 0.37404942E-04
0.10324469E-04 0.10322561E-04 0.10322561E-04
0.30388289E-05 0.30384953E-05 0.30384953E-05
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