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The multimode Brownian oscillator (MBO) model has been at the forefront in interpreting the subsystem-
bath interaction manifestations in optical spectroscopy for probing homogeneous structure of chromophores
in crystals and amorphous solids. The spectroscopic consequences of employing the underdamped MBO
model with Ohmic dissipation in linear absorption, photon-echo, and hole-burning data of chromophores in
solid hosts at low temperatures are investigated. The zero-phonon line (ZPL) in homogeneous linear absorption
spectrum, the slow-decay component (due to ZPL) in photon-echo signal, and the zero-phonon hole (ZPH)
in hole-burned spectra in host molecular solids at low temperatures are usually resolved from the multiphonon-
transitions structure. In the MBO model, the harmonic vibrations (Brownian oscillators) are linearly coupled
to bath modes. This coupling, with Ohmic dissipation, results in a maximum contribution of the bath modes
to the ZPL region. This contribution affects the width of the ZPL profile, which should only be determined
by pure electronic dephasing as dictated by experiments. It is therefore important to study how the MBO
model bath modes contribute to the ZPL, ZPH, and slow-decay component profiles. Analytical expressions
for the linear absorption spectrum and width and Franck-Condon factor of the ZPL are derived. Homogeneous
linear absorption spectra, two-pulse photon-echo, and hole-burning calculations are carried out with model
systems of which the parameter values are typical for real systems. The MBO model ZPL, ZPH, and slow-
decay component were not seen in linear absorption, hole-burning, and two-pulse photon-echo profiles,
respectively. The hole-burned spectrum is produced by blending the line broadening function,g(t;T), of the
MBO model and Small hole-burning formula. This full (inclusion of Matsubara series) form ofg(t;T) has not
been exploited before in any spectroscopic calculation. It is concluded that the MBO model ZPL and ZPH
widths and the electronic exponential decay are better exhibited in the corresponding profiles when using
non-Ohmic spectral density.

I. Introduction

The recent advances in ultrafast spectroscopy performed with
femtosecond laser pulses have made it possible to directly probe
the electronic dephasing of solute chromophores in various hosts
as a function of temperature.1-7 This dephasing is caused by
intermolecular vibrations (phonons) being coupled to the
electronic transition of the chromophores. This coupling gives
rise to the zero-phonon line (ZPL) and the phonon sideband
(PSB) in the homogeneous line shape function. Hole-burning
and photon-echo techniques have been used to study pure
electronic dephasing of chromophores in glasses and polymers
at low temperatures. Above about 15 K, the pure electronic
dephasing is dominated by quadratic electron-phonon coupling,
which gives rise to exchange coupling, for chromophores in
host crystals. Linear optical experiments cannot extract the
structural and dynamical information about molecular systems
in condensed phases because they are usually hidden underneath
a broad inhomogeneous distribution due to a variation in
transition frequencies for different molecules as a result of
different local environments. This is a typical linear spectrum
in solutions, liquids, glasses, proteins, polymers, and molecular
crystals. However, nonlinear optical techniques such as hole-
burning, fluorescence line-narrowing, photon-echo, and pump-
probe absorption can extract this information by eliminating the
inhomogeneous broadening. Those techniques require going to
higher-order optical response functions, that is, nonlinear
response functions.8

The structural and dynamical information obtained from time
domain measurements can be, equivalently, obtained from
frequency domain experiments. For example, linear absorption
and hole-burning line shapes in frequency domain and photon
echo in time domain are due to the same electron-phonon
coupling (which causes the same pure electronic dephasing),
and therefore, they are related to each other: Fourier transform
(FT) of a stimulated photon echo gives a hole-burning spectrum
and Fourier cosine transform of accumulated photon echo yields
a persistent hole-burning spectrum. Two-pulse photon echo (PE)
is a powerful technique for measuring electronic dephasing,
assuming no spectral diffusion, because FT of its decay gives
the homogeneous optical line shape of the transition under study.
In fact, PE decay measurements are linear absorption measure-
ment hidden underneath a broad inhomogeneous distribution.7,9-11

We recently derived a two-point dipole moment correlation
function, J(t;T), which enabled us to demonstrate that each
component of the absorption line shape is related to the temporal
behavior of the echo decay function over the relevant time
scales.7 For example, FT of the slow exponential decay in PE
on the pico- and nanosecond time scales (slow-decay compo-
nent) corresponds to the ZPL, while FT of nonexponential decay
on the femtosecond time scales (ultrafast-decay component)
corresponds to the PSB in the frequency domain. Finally,
oscillations in time domain (quantum beats) correspond to
Franck-Condon progressions in the frequency domain. Two-
component photon-echo decays have been observed before by
Saikan10 and other workers,5,10 for which the fast decay reflects
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the PSB contribution and the slow one is due to the ZPL. It
was shown that PE profile is a mirror image of linear absorption
and hole-burning spectra.7,10

The multimode Brownian oscillator (MBO) model has gained
a sound popularity in probing homogeneous structure of
chromophores in liquids, molecular crystals, glasses, and
polymers. It has been extremely important to the conceptual
grasp of optical liquid dynamics8,13-15 and ultrafast solvation
dynamics.8,13,16-19 In this model, the linearly coupled modes
are the primary Brownian oscillators (BOs). The BOs and the
bath modes (oscillators) are assumed to be harmonic with the
coupling between the former and latter taken to be linear in the
BO displacement, which results from excitation of the BO via
the electronic transition. The coupling gives rise to an effective
damping,γj(ω), for each BO,j (frequency,ωj). In applications
of the MBO model, the frequency dependence ofγj has often
been neglected, which amounts to a white spectrum for the bath
(known as Ohmic dissipation). In the case of an underdamed
Brownian oscillator,γj < 2ωj, this results in a ZPL width that
depends onSj, γj, andωj, whereSj is the Hung-Rhys factor
and ωj is the BO frequency. The spectroscopic consequences
that arise upon applying the MBO model linear and nonlinear
dipole moment correlation functions with Ohmic dissipation to
low-temperature spectroscopy of chromophores imbedded in
solids are that the contributions from decay of the excited state
and pure electronic dephasing are neglected and that the ZPL
width depends onSj, γj, andωj.6,20,21

Another problem that arises in applying the model is that at
sufficiently low temperatures the ZPL profile calculated by the
MBO model with Ohmic dissipation was found to beasym-
metric.20,21Single-molecule spectroscopy22 and experiments of
mixed organic crystals23 and molecular chromophores in glasses
and polymers9,24-26 have shown that, for systems exhibiting
weak electron-phonon coupling (S < 1), the ZPL profile is
symmetric and that the width is determined by pure electronic
dephasing (assuming no spectral diffusion).1,2,20,21Toutounji and
Small21 have examined in considerable detail the applicability
of the Ohmic MBO model to linear optical spectroscopy of
chromophores in host solids at low temperatures. They have
formally proven, as we will see in section II, that the ZPL width
vanishes atT ) 0 K. The vanishing of the ZPL is clear evidence
that the bath modes do not contribute to the ZPL line shape
and that other dephasing mechanisms should be considered at
low temperatures. As one raises the temperature, the ZPL starts
acquiring finite width due to thermal activation of the bath
modes. Knox et al.20 have introduced non-Ohmic dissipation
into the spectral density by using an empirical expression,
whereby they were able to show that the inclusion of non-Ohmic
dissipation,γj(ω), can lead to sharpening of the ZPL and a
reduction in its asymmetry, depending on the magnitude of
γj(ω). This is because non-Ohmic dissipation reduces the
contribution from the bath modes to the ZPL profile, as should
be the case.

Although the MBO model has been applied extensively to
various spectroscopic techniques, solvation dynamics, electron
transfer,27 and energy transfer,28 it has not yet been utilized in
hole-burning spectroscopy. The only hole-burning theories that
we are aware of are those of Personov,9 Small and co-workers,29

and Mukamel.8 Here, we intend to blend the use of the line-
broadening function,g(t;T), which will include Matsubara
frequencies, of the MBO model with the hole-burning formula
of Small and co-workers.29 Although the hole-burning theory
of Small and co-workers has been designed to be implemented
in frequency domain, in section IIB, we show that one can start

from time domain through the use ofg(t;T) of the MBO model.
In the case of Mukamel’s formalism, a key quantity that enters
into the MBO expressions for the linear and nonlinear response
functions is the broadening function,g(t;T), which depends on
Sj, ωj, andγj of the BOs. It was pointed out6 in our previous
work thatg(t;T) of the strongly underdamped MBO model leads
to a ZPL width of 2Sj(2njj + 1)γj, where njj is the thermal
oscillator of BOj and only when the frequency dependence of
γj (non-Ohmic dissipation) is properly taken into account does
γj(ω) vanish asω f 0 so that bath modes do not contribute to
the width of the ZPL. Inclusion of non-Markovian bath should
rid the absorption in the ZPL region of the bath modes
contribution. Thus, other dephasing mechanisms can dominate.
Work in this direction is in progress.

In this paper, we intend to show the inadequacy of the Ohmic
damping assumption when employing the MBO model to
calculate linear/nonlinear spectra. The primary goal of carrying
out photon-echo and hole-burning experiments is to study pure
electronic dephasing. In section IIB, we show that the ZPL width
dependence onSj, ωj, andγj of the BO could lead to erroneous
conclusions about electronic dephasing data obtained from hole-
burning and photon echo. A physicalg(t;T) that accounts for
pure electronic dephasing has been proposed by Toutounji et
al.6,7 While this g(t;T) is valid at any temperature, it is only
good in the underdamped regime. There has been a considerable
activity in applying the MBO model analysis to time-resolved
spectroscopic techniques.8,13-19,30-37 The difference between this
paper and the alluded work is that this paper usesg(t;T), which
includes Matsubara series at finite temperatures in the under-
damped regime, while the other groups had often used the
overdamped MBO modelg(t;T) in the high-temperature
limit.12-14,16,17,19,30-37

II. The Multimode Brownian Oscillator Model

In the MBO model, the quantum subsystem is taken to be a
two electronic-level system with a ground state|g〉 and excited
state| f 〉 with some primary vibrational coordinatesqj (nuclear
modes with angular frequencyωj as part of the quantum
subsystem) linearly coupled to the electronic system:

where the nuclear HamiltoniansHg andHf are given by

and

The primary vibrational degrees of freedom are in turn linearly
coupled to a harmonic bath made up of a set of oscillators with
massesmn, frequenciesωn, coordinatesQn (bath modes), and
momenta pn. The primary vibrational degrees of freedom
(Brownian oscillators (BOs)) are coupled to thenth harmonic
oscillator through the coupling strengthcnj. dj is the linear
displacement of the excited BO, which takes place upon optical

H ) Hg|g〉 〈g| + Hf | f 〉〈 f | + H′ (2.1)

Hg ) ∑
j

[ pj
2

2mj

+
1

2
mjωj

2qj
2] (2.1a)

Hf ) ∑
j

[ pj
2

2mj

+
1

2
mjωj

2(qj + dj)
2] (2.1b)

H′ ) ∑
n [ pn

2

2mn

+
1

2
mnωn

2(Qn - ∑
j

cnjqj

mnωn
2)2] (2.1c)
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electronic transition.H′ represents the bath oscillators and their
coupling to the primary oscillators (phonons in solids) with a
coupling strengthcnj.

A. Linear Spectroscopy. With the use of the Brownian
oscillator model spectral density,8 the linear dipole moment time
correlation function,JMBO(t;T), reads

with g(t;T) ) ∑j)1
N gj(t;T) for a multimode (N Brownian

oscillators (BOs)) system, andΩv is the vertical transition
frequency. The line broadening functiongj(t;T) for the jth BO
is given by23

In the above, we have introduced the positive bosonic Matsubara
frequencies,νn ) 2πn/(âp), the Huang-Rhys factor,Sj, uj )
ωj

3/2dhj/p1/2 wheredhj is the dimensionless linear displacement,
â ) (kT)-1 andT is the temperature, and$j ) (ωj

2 - γj
2)1/2

with γj and ωj being the vibrational damping constant and
fundamental angular frequency of the BOj (nuclear mode),
respectively. The linear absorption spectrum can be obtained
by taking the Fourier transform (FT) ofJMBO(t;T)

The result is derived in the Appendix A. The homogeneous
width (fwhm) of the ZPL

This width depends onSj, $j, and γj. Equation 2.5 is an
unphysical result; experimental studies and single-molecule

spectroscopy show that the homogeneous ZPL width is due to
pure electronic dephasing/spectral diffusion, see Introduction.
Figure 1 shows homogeneous absorption spectra (ωj ) 30 cm-1,
γj ) 20 cm-1, andSj ) 1.8 atT ) 15 K) calculated using four
values of the vibrational damping constantγj: 5, 10, 15, and
20 cm-1. One can evidently see that the ZPL broadens
significantly asγj increases yielding the following calculated,
and measured, widths (eq 2.5): 12.5, 25, 37.6, and 50 cm-1.
Figure 1 was calculated by using eq 2.2 into eq 2.4. The bottom
right frame corresponds to one of the modes of the special pair
of bacterial reaction center.38 The ZPL width in the absorption
spectrum in the bottom right frame is in complete disagreement
with that reported by experiment,38 as well as with the theories
of Small and co-workers29,38 and Toutounji et al.6,7 The
experiment and the aforementioned theories distinctly show that
the ZPL for the above parameters is Franck-Condon-allowed
(the ZPL is resolved from the phonon-sideband structure),
whereas Figure 1 shows otherwise. Figure 2 shows that the ZPL
width depends onSj. Changing fromSj ) 1.8 used in Figure 1
(upper left frame) toSj ) 4, and keeping everything else fixed,
yields Figure 2 with a ZPL width of 27.8 cm-1. For a small
magnitude ofγj, Ohmic dissipation leads to a ZPL width that
is too large, that is, unphysical. Equation 2.5 was used to
accurately reproduce the results given in Figure 2 of ref 20.

Note that eq 2.5 reduces to zero atT ) 0, vide infra. The
homogeneous widths of the multiphonon bands are given by6,21

k is an integer that signifies the number of phonons created/
annihilated with each vibronic transition. ThatγZPL,j adds
to the widths of the multiphonon transition has a physical
basis.39 The linear dependence onk (folding) is valid for any
phonon relaxation mechanism that is linear in the coordinate

JMBO(t;T) ) exp[-g(t;T) - iΩvt] (2.2)

gj(t;T) ) F +

Sj[-4i$jγj(e
-iâ pγj/2 - cosh(âp$j)) + (4$j

2 - γj
2) sinh(âp$j)]

4$jωj[cos(âpγj/2)- cosh(âp$j)]e
γjt/2

×

cos($jt) +

Sj[i(4$j
2 - γj

2)(e-iâ pγj/2 - cosh(âp$j)) + 4$jγj sinh(âp$j)]

4$jωj[cos(âpγj/2)- cosh(âp$j)]e
γjt/2

×

sin($jt) -
2γj uj

2

â ∑
n)1

t - νn
-1(1- e-νn t )

(ωj
2 + νn

2)2 - (γjνn)
2

(2.3)

F ≡ iSjγj/ωj + b1 + b2t (2.3a)

b1 ≡ Sj[4$jγj sin(âpγj/2) + (γj
2 - 4$j

2) sinh(âp$j)]

4$jωj[cos(âpγj/2) - cosh(âp$j)]
(2.3b)

b2 ≡ Sjωj

2

2 sin(âpγj) + (γj/$j) sinh(âp$j)

cosh(âp$j) - cos(âpγj/2)
(2.3c)

σj(ω;T) ) Re
π ∫0

∞
dt J(t;T) exp(iωt) (2.4)

γZPL,j(T) ) Sjωj

2 sin(âpγj) + (γj/$j) sinh(âp$j)

cosh(âp$j) - cos(âpγj/2)
-

∑
n)1

∞ 4γj uj
2/â

(ωj
2 + νn

2)2 - (γjνn)
2

(2.5)

Figure 1. Homogeneous linear absorption spectra calculated with
numerical Fourier transform ofJMBO(t;T) for a model system at various
vibrational dampingsγj: ωj ) 30 cm-1, Sj ) 1.8, andT ) 15 K. It is
clearly shown how the ZPL width and intensity change as a function
of γj. This is an artifact of the MBO model. The bottom right frame
with γj ) 20 cm-1 represents the 30 cm-1 mode for the special pair
absorption band of the bacterial reaction center.

(fwhm)k ) γZPL,j + |k|γj (2.6)
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of the phonon. Such folding has been observed for chromo-
phores in host crystals.39,40 The FC factor for the ZPL is (see
Appendix A)

where

Equation 2.8 recovers the well-known form, FCZPL,j )
exp[-Sj coth(âpωj/2)] asγj f 0.

The linear dipole moment correlation functionJMBO(t), for
BO j at T ) 0 K is given by (see Appendix B)

where

and

See ref 21 for the mathematical behavior ofDj. The absorp-
tion line shape my be obtained by using eq 2.9 in eq 2.4 to
give21

wherefj(ω) is the Fourier transform of exp(Dj) and “/” denotes
convolution.

Note that the time-dependent part of exp(Dj) or the frequency
dependence of its Fourier transformfj(ω) contribute only to the
vibrational (phonons) part of the absorption spectrum. Thus,
the frequency-independent term infj(ω) would contribute only
to the FC factor of the ZPL. Because we are in the low-
temperature limit, the quantum number of the initial state for
the absorption transition is zero.m is the final-state quantum
number. Equation 2.10 shows, in part, that MBO model yields
a ZPL (m ) 0) homogeneous width of zero. The homogeneous
widths (fwhm) of the multiphonon bands (mg 1) aremγj. Note,
however, that this gives folding to the widths of the multiphonon
transitions, which will often be the desired result. Equation 2.10
shows that the ZPL blows up21 at T ) 0. The presence of zero
width of the ZPL, that is, delta-function line shape, in eq 2.10
has a great spectroscopic advantage in the sense that one can
feed in the correct pure electronic dephasing function, as was
done in refs 6 and 21, because the MBO model neglects it. It
further indicates that the bath modes do not contribute to the
ZPL line shape atT ) 0 K. It is interesting to note that in
reference to eq 2.10 one obtains the familiar Poisson distribution
exp(-Sj)∑m(Sj

m/m!) for FC factors in the limitγj f 0 with
$j f ωj.

B. Nonlinear Spectroscopy.Consider the impulsive stimu-
lated photon echo in which the three applied pulses are infinitely
short. The integrated intensity of the echo signal,SSPE, is8

whereτ′ is the delay between the first and second pulses andτ
is the delay between the second and third pulses. Here,R(t3,t2,t1)
is the echo response function defined as8

whereR2(t3,t2,t1) and R3(t3,t2,t1) can be found in ref 8. While
R(t3,t2,t1) governs the homogeneous (dynamical) contribution
to the dephasing,ø(t3 - t1) governs the static inhomogeneous
contribution. The form of the inhomogeneous broadening term
ø, vide infra, results in the maximum of the echo appearing at
time t ) τ′ after the interaction with the third pulse, which we
can now consider to have occurred att ) 0. For t > τ′, the
echo decays because of dephasing. If in the frequency domain
the inhomogeneous broadening is far greater than the homo-
geneous broadening,ø(t - τ′) in eq 2.11 can be approximated
by a delta function, which results in

In the calculations that follow a Gaussian profile is used for
the inhomogeneous functionø:

where the parameterw is related to the fwhm of the inhomo-
geneous profile in the frequency domain by fwhm) 2.35w.

The impulsive two-pulse echo (IPE) can be calculated by
setting τ ) 0 in eq 2.11. Using the echo response function,
R(τ′,0,τ′), in eq 2.11 yields the integrated impulsive two-pulse
echo signal,SIPE(τ′;T):

Figure 2. Homogeneous linear absorption spectrum calculated with
numerical Fourier transform ofJMBO(t;T) for a model system:ωj ) 30
cm-1; γj ) 5 cm-1; Sj ) 4, andT ) 15 K. This figure shows how
changingSj from 1.8 in Figure 1 to 4 affects the entire spectral profile
starting with that of the ZPL.

FCZPL,j )

exp{-iSjγj/ωj - Σj - ∑
n)1

∞ 2γj uj
2/(âνn)

(ωj
2 + νn

2)2 - (γjνn)
2} (2.7)

Σj ≡
Sj[4$jγj sin(âpγj/2) + (γj

2 - 4$j
2) sinh(âp$j)]

4$jωj[cos(âpγj/2) - cosh(âp$j)]
(2.8)

JMBO(t) ) exp{-Yj(1 - exp(-γjt/2 - i$jt)) + Dj} (2.9)

Yj ≡ Sj(ωj
2 -

γj
2

2
+ iγj$j)/$jωj (2.9a)

Dj ≡ -
ωj

3dj
2γj

π ∫0

∞ dx x-1(1 - e-xt)

(ωj
2 + x2)2 - (γjx)2

(2.9b)

σMBOj(ω) )

Re

π {exp(-Yj)∑
m)0

∞ Yj
m

m! [ (mγj/2) + i(ω - m$j)

(ω - m$j)
2 + (mγj/2)2]} / fj(ω)

(2.10)

SSPE(τ′,τ) ) ∫0

∞
dt |R(t,τ,τ′)|2|ø(t - τ′)|2 (2.11)

R(t3,t2,t1) ≡ R2(t3,t2,t1) + R3(t3,t2,t1) (2.12)

SSPE(τ′,τ) ) |R (τ′,τ,τ′)|2 (2.13)

ø(t3 - t1) ) exp[- 1
2
w2(t3 - t1)

2] (2.14)

SIPE(τ′;T) ) ∫0

∞
dt exp[-w2(t - τ′)2] exp{-2 Re[2g(t;T) +

2g(τ′;T) - g(t + τ′;T)]} (2.15)
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The time-resolved two-pulse echo is

Figure 3 is a direct application of eq 2.16 for the same
parameters used in Figure 1 withγj ) 20 cm-1 and w ) 64
cm-1. The 3-D graph shows the behavior of the echo along the
t ) τ′ diagonal. Following the initial fast nonexponential (free-
induction) decay of the intense PSB features associated with
the overall profile of the multiphonon transitions, one would
expect to observe a fundamental quantum beat at 1.1 ps and its
overtone at 2.2 ps, as was observed in ref 7. Although the ZPL7

is expected to be present (Franck-Condon allowed), the slow-
decay component is not observed in Figure 3. This disparity is
attributed to the contribution from the bath modes to the slow-
decay component (dependence of the ZPL width onSj, γj, and
ωj), which makes the ZPL Franck-Condon-forbidden and thus
not reflected in the PE profile. PE features in Figure 3 are in
disagreement with the PE results of ref 7 (PE results of ref 7
are in good agreement with experiment, as well as with Small
theory). Clearly, the structurelessness (lack of beats and the ZPL)
of the homogeneous absorption spectrum in Figure 1 is
noticeably manifested in Figure 3. Equation 2.15 is effectively
the projection of the echo surface, produced by eq 2.16, along
the time-delay axis. The integrated intensity calculation was
performed, and the results (not shown) confirmed the findings
of Figure 3.

We now useJMBO(t;T) in the hole-burning theory of Small
and co-workers29 to calculate the hole-burned spectrum for one
mode of the special pair absorption band of the bacterial reaction
center. The absorption spectrum following a burn for timeη is
given by38-40

whereΩ is the frequency of the ZPL of a single absorber and
ωB is the burn frequency.ø(Ω - νm) is a Gaussian function
with variancew2 centered atνm, which governs the distribution
of ZPL frequencies due to structural heterogeneity.F is the
product of three terms: the absorption cross-section, the laser
burn flux,and thequantumyield forhole-burning.JMBO(ω - Ω;T)
is the absorption spectrum of a single site of which the ZPL
frequency isΩ. Note that forη ) 0, eq 2.17 is the inhomo-
geneously broadened absorption spectrum. The hole-burned
spectrum is defined here asση(ω;T) - σ0(ω;T). The value for
the standard deviation ofø(Ω - νm) used was 64 cm-1 38

(νm was set equal to zero withωB set equal toνm). Fη was set

at 0.004. Using the MBO modelg(t) at T ) 0 K poses a
numerical problem, because the ZPL line shape becomes a delta
function, according to eq 2.10, but that one can be avoided by
introducing pure electronic dephasing.6,21The 15 K hole-burned
spectrum of Figure 4 disagrees with the experimental spectrum32

(although the experiment was conducted on a two-mode system,
the ZPL result should be the same because the ZPL profile is
insensitive to vibrational structure), as well as the spectrum
calculated using the frequency domain theory of Small and co-
workers6 (not shown). Note the very weak intensity of the zero-
phonon hole (ZPH) atωB, which carries a width of 2γZPL )
100 cm-1 (this width is orders of magnitude larger than that
experimentally observed one. The weakness of the ZPH can be
understood from its unphysically large width). The Franck-
Condon progressions are also lost because the ZPH width
extends to the vibrational structure. The underdamped mode is
acting as if it were an overdamped mode. This, again, is due to
the maximal contribution from the bath modes to the ZPH
profile.

Another example that illustrates the inadequacy of the Ohmic
assumption when using the MBO model is the model system
with Sj ) 0.3, γj ) 10 cm-1, andωj ) 25 cm-1 at T ) 15,
25, and 100 K. (This system, which quite closely mimics
Al-phthalocyanine tetrasulfonate in glassy ethanol,2 exhibits
weak electron-phonon coupling (S < 1), in contrast to the
earlier example, which showed strong electron-phonon cou-
pling.) The MBO ZPH widths at the alluded temperatures,
respectively, are 10, 16.7, and 66 cm-1, whereas the corre-
sponding reported widths7 are 0.14, 1.0, and 15.2 cm-1. The
phonon-sideband hole widths will in turn be significantly larger
than those reported in refs 2 and 7.

The problem of unphysically large ZPH width in hole-burning
extends to the widths of the vibrational progressions because
they build on the ZPL width. Similarly, the problem of the too
fast electronic exponential decay in photon echo merges with
the femtosecond time scale of the quantum beats (nonexponen-
tial decay) and thus leads to significant errors on interpreting
the experimental data.

III. Conclusions

This paper is the result of calculations that were carried out
in applying the MBO model to understanding the relationship
and differences between optical coherence loss of a chromophore
in a glass and in the liquid phase of the glass-forming solvent.
We offered first-time work in which the exact line broadening

Figure 3. The 3-D graph is the IPE signal as a function oft andτ′
calculated with eq 2.16 employing the same parameters used in the
bottom right frame of Figure 1. The fast nonexponential decay signifies
the PSB. The slow-decay component (ZPL) is not present; see text for
details.

SIPE(t,τ′;T) ) exp[-w2(t - τ′)2] exp{-2 Re[2g(t;T) +
2g(τ′;T) - g(t + τ′;T)]} (2.16)

ση(ω;T) )

∫-∞

+∞
dΩ ø(Ω - νm)JMBO(ω - Ω;T) exp[-FJMBO(ωB - Ω;T)η]

(2.17)

Figure 4. Hole-burned spectrum for the 30 cm-1 mode of the special
pair absorption band of the bacterial reaction center calculated with eq
2.17 using the same parameters given in the Figure 3 caption. The
ZPH is missing; see text for details.
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function g(t;T) (eq 2.3) is used in nonlinear spectroscopy. As
extensive numerical calculations were being performed to obtain
linear and nonlinear spectra, the MBO model ZPL measurements
showed noticeable disagreement with those of the experimental
results and with well-established theories as well, especially
when these theories agree with experiment. We believe that this
disagreement is attributed to using Ohmic spectral density in
the MBO model. Using Ohmic dissipation gave rise to difficul-
ties, namely, asymmetric ZPL and its width dependence on the
vibrational parameters such asSj, γj, and ωj. Experimental
studies show that homogeneous ZPL width is due to electronic
dephasing in which vibrational parameters have no role. While
the multiphonon transitions widths should build on the ZPL
width, the Ohmic MBO model indicates the converse.

The primary goal of carrying out photon-echo and hole-
burning experiments is to study pure electronic dephasing
through analyzing and quantifying the slow exponential decay
and ZPH width. The ZPL, ZPH, and slow electronic exponential
decay in homogeneous linear absorption, hole-burning, and two-
pulse photon-echo profiles were missing when applying the
Ohmic MBO model to the special pair of the bacterial reaction
center. The absence of theses three profiles was ascribed to the
dependence of the electronic transition onSj, γj and ωj. This
dependence is caused by the bath modes contributing to the
ZPL region. This contribution is attributed to using Ohmic
spectral density in formulating the MBO model. Thus, the use
of the Ohmic MBO model to interpret data on relaxation
dynamics of active BOs can lead to incorrect conclusions. The
MBO model problem may be solved by introducing non-Ohmic
dissipation, which will in turn lead to a dipole moment
correlation function with a ZPL width of zero. One can then
add in an electronic correlation function that accounts correctly
for pure electronic dephasing, as was done in refs 6 and 21.

It should be pointed out that our remarks in this article do
not constitute the failure or deficiency of the MBO model. They
are, however, to propose to the MBO model user to practice
care when applying the MBO model with Ohmic dissipation.
Redfield theory and the MBO model are perhaps the most
widely used relaxation models. Recently, there have been some
theoretical studies in electron-transfer dynamics favoring the
semigroup analysis over Redfield theory41 because of the
positive dynamics that the semigroup approach42-45 can ensure
and that Redfield theory fails to warrant. The reason that the
Redfield approach does not warrant positive dynamics, as
pointed out by the Silbey group,46 is that the Markovian
assumption would not hold unless nonlocal memory effects take
place in a very short time scale. It is only after this transient
time that the subsystem dynamics are properly described by
the Markovian regime, which is equivalent to Ohmic dissipation.
Just because the Redfield theory does not warrant positivity,
this does not constitute its failure. It does however signal that
the Markovian approximation in some cases may produce
nonpositive dynamics. Similarly, the asymmetry of the MBO
model and its ZPL width dependence on the model vibrational
parameters do not constitute its failure. It does nonetheless
suggest introducing non-Ohmic dissipation into the spectral
density of the phonons. Non-Ohmic damping (non-Markovian
relaxation) implies noninstantaneous dissipation, which allows
transient correlations between the subsystem and the bath to
arise during the time and the subsystem being correlated. Ohmic
damping does not offer this feature. However, it was found that
the Ohmic MBO model can prove reasonably valid in the
strongly underdamped regime, that is,γj , 2ωj.
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Appendix A

Here, we provide a derivation of the linear absorption
spectrum line shape function,σMBO,j(ω;T) at a finite temperature
from which the FC factor and the ZPL homogeneous width can
be obtained. The line broadening functiongj(t;T) is given by8

where uj ) ωj
3/2dhj/p1/2and dhj is the dimensionless linear

displacement.C′j(t) andC′′j (t) are the real and imaginary parts
of the two-time position correlation functionCj(t;T) for under-
damped (γj < 2ωj) BO j. They are given by

whereφj ) γj/2 + i$j andφ′j ) γj/2 - i$j. Carrying out the
double integral in eq A1 yields

where

and

with

whereR ≡ 4$jωj(cosh(âp$j) - cos(âpγj/2)) and

gj(t;T) ) uj
2∫0

t
dτ1∫0

τ1 dτ2 C′j(τ2) + iuj
2∫0

t
dτ1∫0

τ1 dτ2 C′′j (τ2)

(A1)

C ′j(t) )
p

4$j

[coth(iφ′j pâ/2) e-φ ′j t - coth(iφj pâ/2) e-φj t] -

2γj

â
∑
n)1

∞ νn e-νnt

(ωj
2 + νn

2)2 - (γjνn)
2

(A2)

C ′′j (t) ) - p
2$j

sin($jt) e-γj t/2 (A3)

-gj(t;T) ) F + (a1 cos($jt) + a2 sin($jt)) e-γj t/2 +

2γj uj
2

â
∑
n)1

t - νn
-1(1 - e-νn t)

(ωj
2 + νn

2)2 - (γjνn)
2

(A4)

F ≡ -iSjγj/ωj - b1 - b2t (A5)

a1 ≡
Sj[-4i$jγj(e

-iâ pγj/2 - cosh(âp$j)) + (4$j
2 - γj

2) sinh(âp$j)]

R
(A6)

a2 ≡

-
Sj[i(4$j

2 - γj
2)(e-iâ pγj/2 - cosh(âp$j)) + 4$jγj sinh(âp$j)]

R
(A7)

b1≡ -
Sj[4$jγj sin(âpγj/2)+ (γj

2 - 4$j
2) sinh(âp$j)]

R
(A8)

b2 ≡ Sjωj

2

2 sin(âpγj) + (γj/$j) sinh(âp$j)

cosh(âp$j) - cos(âpγj/2)
(A9)

9014 J. Phys. Chem. A, Vol. 106, No. 39, 2002 Toutounji



One may rewriteJMBO,j(t;T) as (Ω ) 0)

where Z1 ) xa1
2 + a2

2 and Θj ) arctan(a2/a1). The linear
absorptionσMBO,j(ω;T) is given by

Applying eq A11 to eq A10 leads directly to

where

andb4 ) b3/νn. Γ is the gamma function. Equation 2.7 and the
homogeneous width of the ZPL in eq 2.5 can easily be obtained
by settingk ) l ) m) 0, whereas the widths of the multiphonon
transitions are given by eq 2.6.

Appendix B

In this appendix, we sketch the derivation of the MBO model
linear dipole moment correlation function atT ) 0 K. In the
low-temperature limit,C′j(t) andC′′j (t) (from Appendix A) read

As the temperature is lowered, quantum effects start to appear
and the Matsubara frequenciesνn get closer to each other, and
at zero temperature, all of them contribute. One may then replace
the Matsubara sum in eq B1 by an integral

One can evaluate theJMBO(t;T) by substituting eq B3 in the
real term of eq A1 and then exponentiating it as in eq 2.2. As
a result,C′j(t) assumes this form

When eq B1 is used,gj(t) reads, atT ) 0 K,

where

whereSj ) dhj
2/2 is the Huang-Rhys factor withdhj being the

dimesionless linear displacement andγj is the damping constant
(fwhm) of the jth BO. When eq 2.2 is utilized,JMBO(t) reads,
for a single-mode system (Ω ) 0),

Equation B7 may be simplified through the fact that the first
term in the integral multiplied byωj

3dhj
2γj/π is equal to

Sjωjγj/(2$j). JMBO(t) in turn becomes

where
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