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A new dynamical propensity rule for transitions of a system crossing the barrier from one potential minimum
to one another is derived from dynamical system theory. The rule is based on the existence of a no-return
dividing hypersurface in the system’s phase space in the vicinity of saddles of the multidimensional potential
surface of a strongly coupled, chaotic system. We present numerical evidence of the rule’s validity by applying
it to the rearrangements of a cluster of six argon atoms.

I. Introduction

Transition state theories (TST),1 first developed by Eyring2

and Wigner3 in the 1930s, have had great success in elucidating
absolute reaction rates of not only chemical reactions but also
of the evolution of other systems that pass from one stable state
to another, e.g., the rearrangement of clusters4-11 and the folding
of proteins.12,13 All of the various forms of TST postulate the
existence of a dividing hypersurface, that is, the transition state
(TS; generally, in principle a surface in phase space3) through
which a reacting species should pass only once during the course
of a reaction. However, few theories have clarified the physical
conditions for the existence of such a no-return dividing
hypersurface in either phase space or configurational space of
a strongly coupled, multidimensional system. This is one of the
most elusive aspects in justifying the application of TST to a
multitude of reacting systems. In practice, one has often defined
the TS in configurational space with an ad hoc “correction
factor”, called the transmission coefficientκ, to take into account
that the system of interest actually makes more than one crossing
of the surface presumed to be the desired dividing surface. It
appears as if the system may return to the TS even several times
along its reactive trajectory, contrary to the basic postulate of
TST.

In the developments14-19 of classical unimolecular reaction
rate theories, there has been a great improvement of our
understanding for the definability of such a general, no-return
dividing hypersurface from the viewpoint of the geometrical
structure of the phase space in chemical reactions. Davis and
Gray14 first showed in the late 1980s that in Hamiltonian systems
with two degrees of freedom (dof), the TSalways free from
recrossings can be defined as the separatrix in the Poincare´
section formed by taking the union of segments of the stable
and unstable manifolds, and the transport across the TS is
interpreted as mediated through the turnstile lobes bounded by
two homoclinic intersection points. Gillilan and Ezra17 analyzed
the predissociation of the van der Waals complex He-I2 with
three dof, i.e., the four-dimensional Poincare´ section. They

demonstrated, as predicted by Wiggins just previously,18 that
the occurrence of homoclinic tangency inherent to higher (>two)
dimensional systems hampers the construction of the hypersur-
face dividing the bound complex reactant region from unbound
trajectories. Toda19 noticed that the homoclinic tangency leads
to a bifurcation of the phase space reaction path with a transition
between two topologically distinct chaos. Thus, the Davis-Gray
separatrix transition state depends crucially on the Poincare´
section having only two dimensions. No generalno-return
dividing hypersurface exists yet for systems of higher dimen-
sionality. In other words, it is still an unresolved open problem
of the circumstances that such a hypersurface should persist, if
exists, or fall to ruin in the chaotic thermal bath of multi-
dimensional systems.

With a focus on regularity of orbits in the vicinity of the
unstable saddle points on potential energy surfaces, reactions
in a-few-dof systems can be interpreted as occurring through
cylindrical manifolds apart from the saddles.20-22 Their ap-
proaches depend crucially on the existence ofpure unstable
periodic orbits in the nonreactive degrees of freedom in the
region of the saddles; these unstable periodic orbits become
spoiled whenever resonance exists among the nonreactive
modes. Several theoretical and experimental developments have
shed light on mechanics of passage through the region of a
potential saddle for higher dimensional systems. Indicative
symptoms of local regularity near the saddles appeared in
theoretical studies of small atomic clusters by Berry et al.23-28

that compared local Liapunov functions and Kolmogorov
entropies in saddle regions with those in other regions of
potential surfaces. Evidence appeared also in experiments by
Lovejoy et al.29,30 on decomposition of vibrationally excited
ketene that showed rates with quantized steps; Marcus suggested
that this could be a signature of existence of approximate
invariants of motion in the TS.31

Recently, we showed,6-11 using classical isomerization of a
six-atom Lennard-Jones cluster, that a strongly coupled Hamil-
tonian system with several dof may exhibit at least three
distinguishable energy regimes of dynamical behavior, so-called
quasiregular, semichaotic, andfully deVeloped chaoticregimes,
in the region of a saddle. These are distinguished by the extent
of the regularity of their dynamics. Up to energies high enough
to make the system manifestly chaotic, approximate invariants
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of motion associated with a reaction coordinate in the phase
space imply a multidimensional dividing hypersurface that is
free (or very nearly free) of recrossings in that regime, even in
a sea of chaos. Our technique relies on the application of Lie
canonical perturbation theory32,33(with algebraic quantization,34-36

if necessary), a classical analogue of Van Vleck perturbation
theory,37 to the region of potential energy saddles. This method
constructs a hyperbolic coordinate system with a dividing
hypersurface in phase space that minimizes recrossings and
apparent mode-mode mixing in the region. Hence, this provides
us with the natural reformulation6,35 of the conventional TST
based on that hypersurface in multidimensional phase space and
improves the predicted classical reaction rates of multidimen-
sional systems. We presented a practical algorithm to visualize
the dividing hypersurface in the multidimensional phase space
of a given system7,8 and illuminated9,10 a new type of phase
space bottleneck that emerges as the total energy increases,
which keeps a reacting system increasingly trapped in the region
of a saddle.

The earlier work of Wiggins18,38provides a firm mathematical
framework forN(>2)-dimensional phase space transport, based
on the notion of a normally hyperbolic invariant manifold
(NHIM) and its stable and unstable manifolds as the appropriate
generalization of the concepts of “saddle” and “separatrix” on
a multidimensional phase space. However, a major technical
obstacle preventing its implementation has been the lack of an
algorithm for searching arbitrary NHIMs in realistic multidi-
mensional systems. The algorithm we have developed from Lien
canonical perturbation theory provides a way to compute a
NHIM in the vicinity of arbitrary saddles. Very recently,
Wiggins et al.39 presented a mathematical condition for the
robust persistence of the invariant of motion along the phase-
space reaction coordinate in each order of perturbation. Uzer et
al.40 provided a fuller description of the (local) geometric
structure of chemical reactions in multidimensional phase space
and applied the Lie transformation to the vicinity of an unstable
fixed point for a hydrogen in crossed electric and magnetic fields
containing significant Coriolis interactions (a 3-dof system),
which are neither fully kinetic nor fully potential, to compute
its NHIM and the stable and unstable manifolds.

The purpose of this article is to establish a strong propensity
rule for transitions of chemical reactions, based on the existence
of a no-return dividing hypersurface in phase space, and to
demonstrate the rule’s validity by applying it to the rearrange-
ments of a cluster of six argon atoms. This criterion should
enable us to predict a priori whether the system climbs through
the saddle to the product, or returns to its original state, and
should reveal the physical foundation of why and how the
system traverses the saddles from reactant to product states in
multidimensional, strongly coupled, Hamiltonian systems.

II. Theory

Robust Persistence of a No-Return Phase Space Dividing
Hypersurface in the Region of Saddles.Suppose that the
HamiltonianH(p, q) is expressed in a region around a saddle
point of interest as an expansion in a small parameterε, so that
the zero-order HamiltonianH0 is regular in that region;
specifically, it is written as a sum of harmonic-oscillator
Hamiltonians. Such a zero-order system is a function of action
variablesJ of H0 only and does not depend on the conjugate
angle variablesΘ. The higher-order terms of the Hamiltonian
are expressed as sums of cubic, quartic, etc. terms in the normal
coordinates of the system, at its saddle.41 For the sake of
simplicity, we focus on a (3N-6)-dof Hamiltonian system with

total linear and angular momenta of zero, so that the kinetic
and potential energies are purely vibrational.6

where

Here,qj andpj are thejth normal coordinate and its conjugate
momentum, respectively;ωj andCjkl, Cjklm, ... are respectively
the frequency of thejth mode and the coupling coefficient
amongqj, qk, andql and that amongqj, qk, ql, andqm and so
forth. We denote hereinafter a reactive degree of freedom, “1”,
whose fundamental frequencyω1 is pure imaginary, whereas
the frequenciesωB of the other “bath” modes B are real.

An early insight by Hernandez and Miller37 in their semiclas-
sical theory based on Van Vleck perturbation theory and our
recent numerical evidence6-11 of a burial of local invariant of
(classical) action associated with the phase-space reaction
coordinate even in a strongly coupled, chaotic system implies
that one can generally find a nonlinear, canonical transforma-
tions of the coordinates to transform nonintegrable Hamiltonian
H(p,q) into a new form:

in the vicinity of the saddles.39 Here (pj, qj) is a new set of
canonically transformed variables, (Jh, Θh ) denotes their action-
angle variables, andêhB represents those of bath modes (JhB, Θh B),
collectively. This is due to the fact that an arbitrary combination
of modes cannot satisfy the resonance conditions if one mode
has an imaginary frequency, included in the combination.

It is easily shown11 that the equation of motion of the reactive
mode “1” obeys the equation of motion of the original
HamiltonianH:

where

Here, x̆ and ẍ represent the first and second derivatives ofx
with respect to timet. The ωj 1(Jh1, êhB) depends on timet only
through bath modesêhB(t) becauseJh1 is independent oft by eq
4. TheêhB-contributions toωj 1 emerge atO(ε2) in the vicinity of
the saddles and, furthermore, are suppressed because of the
nondivergent denominators involving one imaginary frequency
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ω1.11 Our recent numerical analysis using a bundle of trajec-
tories10 showed that, even at a moderately high energy where
almost all of theJh do not preserve their invariance except that
Jh1, ωj 1

2nd(p, q) tends to exhibit near-constant with a much
smaller fluctuation than any ofωj B

2nd(p, q).
A Dynamical Propensity Rule for Transitions. Equation 5

corresponds to a one-dimensional pendulum whose length
slowly changes, a well-used example to present the robust
persistence of invariance of action under a sufficiently slow,
small perturbation; this persistence is usually called “adiabatic
invariance” (e.g., see the standard texts33,42). One thus can find
an approximate analytical expression alongqj1(p, q) even in the
region of a saddle where the system is strongly chaotic;11

specifically

Here, constant coefficientsR and â can be estimated from
qj1(p(t0), q(t0)), andpj1(p(t0), q(t0)) at any arbitrary timet0 in the
region of the saddle.

These relations imply that, even though almost all dof are
chaotic, the final state (and initial state) may be determined a
priori. For example, if the trajectories have crossed a configu-
rational dividing surfaceS(q1 ) 0) at timet0 with R > 0, the
final state has already been determined at “the timet0 when the
system has just left theS(q1 ) 0)” to be a stable state directed
by qj1 > 0. Similarly, from only the phase space information at
t ) t0 (the sign ofâ), one can infer whether the system on
S(q1 ) 0) at timet0 has climbed from either stable state, i.e.,
reactant or product. The dynamical rule for (forward) transitions
is thus derived as “if

the system will go through to the product (return to the
reactant)”.

Transmission Coefficient K. To elucidate how the “no-
return” assumption for a given dividing surface, e.g.,
S(q1 ) 0), would be spoiled, one has to estimate the transmission
coefficientκ43,44

in terms of microcanonical molecular dynamics (MD) simula-
tions under an initial condition that the system distributes
microcanonically at timet ) 0 on the surface. Herej(t ) 0)
and j+(t ) 0) respectively denote the initial total and initial
positive fluxes crossing the surfaceS(q1 ) 0); h(x) is the
Heaviside function ofx, and〈〉E is the microcanonical ensemble
at energyE. Often the value of the transmission coefficientκ

has been taken as the value at a plateau that emerges after some
interval long compared with the transit time. So far,elaborate
MD simulations have been used to identify the final destination
state of the system, eitherq1(tlong) > 0 or q1(tlong) < 0 after a
long time tlong.

III. Results and Discussions

Now let us use eq 10 to elucidate the fate of each trajectory
that starts on the surfaceS(q1 ) 0), for which we estimated

coefficientsR andâ at t ) 0. To obtain the functional forms of
qj1(p, q) and pj1(p, q), we applied Lie canonical perturbation
theory to the original HamiltonianH(p, q) to generate a nonlinear
canonical transformation from (p, q) to a new set (pj, qj) in which
the individual dof are as regular as possible, up to second order.
(In practice, we used the power of algebraic quantization,34-36

quite efficient for the extension to higher order, as first
developed by Fried and Ezra.34) We applied this to isomerization
reactions in a simple cluster of six argon atoms bounded by
pairwise Lennard-Jones (LJ) potentials, with total linear and
angular momenta of zero.6 This cluster has two kinds of potential
energy minima, the octahedral (OCT) global minima with energy
E ) -12.712ε and the other, higher-energy capped trigonal
bipyramid (CTBP) minima with energyE ) -12.303ε. There
are two distinct kinds of first-rank saddles. Saddle I, for we
present the analysis in this article, joins the OCT and the CTBP
minima at energyE ) -12.079ε. In this report, we show the
κ analysis over the saddle at three total energies,E ) 0.1, 0.5,
and 1.0ε above the saddle point energy.

For analyses of the infrequent saddle crossings, we employed
the Keck-Anderson method45,46 to generate a microcanonical
ensemble onS(q1 ) 0). We generated 10 000 trajectories, which
were found to be enough to yield statistical convergence in
calculatingκ. For the trajectory calculations, we used a fourth-
order Runge-Kutta method with adaptive step-size control; the
total energies in the MD calculations were conserved within
(1 × 10-6 ε (all results are given in the universal reduced units
of the LJ potential; energies, distance, momentum, and massm
are in units ofε, m1/2σ, m1/2σ ps-1, and argon atomic mass).

Phase Space Portrait in the Region of Saddles.Figure 1
shows a schematic portrait of the phase space flows (denoted
by arrows) in the (qj1(p, q), pj1(p, q)) plane. Equation 10 tells us
that, if one divides the phase space into four domains using the
stable and unstable invariant manifolds to and from the unstable
fixed pointqj1 ) pj1 ) 0, all of the system trajectories classified
at any time, e.g.,t ) 0, into the domains1 and 2 should
eventually go into the product state and those classified into
the domains3 and 4 go into the reactant state. Although the
former and latter domains could be regarded respectively as
“reactive” and “nonreactive” in elucidating the fate of reactions
after the system leavingS(q1 ) 0), all of the system trajectories
classified in domains2 or 4 do not cross through the phase-
space dividing hypersurfaceS(qj1(p, q) ) 0), i.e., simply not
that of the reaction.

Table 1 classifies 10 000 system trajectories initiated on
S(q1 ) 0) into these four domains on the first, and second-
order phase space planes (pj1

ith(p, q), qj1
ith(p, q)) at E ) 0.1, 0.5,

and 1.0ε. In the table is shown that, if the incident momentum
p1 is positive (negative), i.e., going from OCT(CTBP) to
CTBP(OCT) minima along the normal coordinateq1, the system

qj1(p(t), q(t)) =
R
2

e|ωj 1|t + â
2
e-|ωj 1|t (8)

R ) qj1(t0) +
pj1(t0)

|ω1|
, â ) qj1(t0) -

pj1(t0)

|ω1|
(9)

qj1(t0) > -
pj1(t0)

|ω1| (qj1(t0) < -
pj1(t0)

|ω1| ) (10)

κ ≡ lim
tftlong

〈j(t ) 0)h(q1(t))〉E

〈j+(t ) 0)〉E

(11)

Figure 1. Schematic portrait of the stable and unstable invariant
manifolds and the phase space flows on (qj1(p, q), pj1(p, q)).
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tends to be classified mainly into the domain1 (3) at all orders.
The more the total energy increases, the more the system leaks
into the other domains2 and/or4. One can see the asymmetric
character, depending on the direction of the reaction, of the
classifications into the four phase space domains: when the
incident p1 is negative, the system leaks more into the other
domain, i.e.,2, from the domain3, than into the domains2 and
4 from 1 when p1 is positive. This is due to the fact that the
density of states in the real reaction bottleneck; that is, the phase-
space dividing hypersurfaceS(qj1(p, q) ) 0) about saddle I is
greater on the minus side than on the plus side along theq1

axis.7

Now let us see how our dynamical propensity rule for the
transitions can predict the fate of the reactions. Here, the
numbers in the parentheses in the table indicate the number of
trajectories for which the propensity rule fails to predict the
correct final state at that order. At all of the three energies, the
higher the order of the perturbation calculation, the better the
rule predicts the reactions. At very high energies, ca. 1.0ε, the
rule evaluated at second order rather fails to predict the final
state of the reactions. Note that the accuracies of the predictions
depend on the direction of the reactions; that is, the numbers
of the failure are significantly larger for the reaction from CTBP
to OCT (p1 < 0) than those from OCT to CTBP (p1 > 0). This
is also because of the distribution of the reaction bottleneck
states, heavier on the OCT side along theq1 axis: at the crossing
S(q1 ) 0) from CTBP to OCT, the system would be more likely
to face the reaction bottleneckS(qj1(p, q) ) 0) than at the same
crossing from the other direction. In the latter case, atq1 ) 0,
the system has passed the greater part of the distribution
constituting the realS(qj1(p, q) ) 0) and, hence, rarely returns
to S(q1 ) 0).7 This implies that the fate of the reactions from
CTBP to OCT depends more crucially on the accurate location
of the S(qj1(p, q) ) 0) than that from OCT to CTBP.

Figure 2 shows how eq 10 can predict the fate of trajectories
that arerecrossingover the configurational surfaceS(q1 ) 0)
on the phase-space planes (pj1

ith(p, q), qj1
ith(p, q)). This figure

corresponds toE ) 0.5 ε, where most modes are strongly
chaotic except qj1(p, q).6 In the figures, the circle and triangle
symbols denote the system trajectories having negative and
positive incident momentump1(t ) 0) on theS(q1 ) 0), and
the open and filled, those whose final states were predicted

correctly and falsely by eq 10, respectively; for example, black
circles classified in domain3 are the trajectories crossing
S(q1 ) 0) from CTBP to OCT att ) 0 and are predicted to go
into the reactant state, but their actual final states were product
states. The recrossing trajectories that start onS(q1 ) 0) mostly
fall into domain2 at each order, because of the asymmetric
character of the reaction bottleneckS(qj1(p, q) ) 0) along the
q1 axis.7 Note that the fates of most recrossing trajectories can
be predicted more accurately by eq 10 as the order of
perturbation calculation increases, except just in the vicinity of
the stable manifolds. In other words, except in a region very
close to the approximate stable invariant manifolds, one may
anticipate that the dynamical transition rule can well predict
the fate of trajectories, even at energies so high that most modes
are strongly coupled and strongly chaotic.

This leads us to introduce a small “sensitive band” along the
approximate stable invariant manifolds, as depicted in Figure
1: if the system’s trajectory lies in a small sensitive band defined
by

where∆′w()∆w/2sin(tan-1|ω1|), the final state of the reaction
depends crucially on the accuracy of the approximate stable
invariant manifolds, and one might have to determine the fate
of such reactions using MD simulations.

TABLE 1: Classifications of 10 000 Trajectories Initiated on
a Configurational Dividing Surface S(q1 ) 0) into the Four
Domains 1-4, Depending on the Signs of the Incident
Momenta p1, on the Phase-Space Planes (pj1

ith, qj1
ith) of the

First and Second Orders at Three Distinct Energies 0.1, 0.5,
and 1.0 Ea

0.1ε 0.5ε 1.0ε

domain firsta second first second first second

p1(t ) 0) > 0
1 4890(3) 4897(0) 4729(15) 4734(3) 4553(18) 4580(19)
2 8(0) 4(0) 50(2) 47(1) 179(14) 141(4)
3 0(0) 0(0) 1(1) 2(0) 8(0) 8(4)
4 24(3) 27(0) 55(12) 67(11) 66(18) 75(25)

p1(t ) 0) < 0
1 1(0) 0(0) 0(0) 3(0) 4(1) 3(3)
2 157(15) 166(4) 333(73) 337(49) 357(153) 368(129)
3 4888(10) 4900(2) 4699(21) 4725(14) 4576(30) 4591(21)
4 1(0) 0(0) 9(0) 7(0) 22(1) 29(0)

a The numbers in the parentheses denote the number of trajectories
for which the propensity rule at the specified order fails to predict the
final states; for example, 4729 trajectories are classified into the
“reactive” domain1 on (pj1

1st(p, q), qj1
1st(p, q)) plane, but 15 of the 4729

eventually went not to the product but to the reactant state. First and
second indicate the order of the Lie perturbation method we performed.

Figure 2. Distributions of the recrossing trajectories overS(q1 ) 0)
at time t ) 0 on (pj1

ith(p, q), qj1
ith(p, q)) at E ) 0.5 ε. (a) First and (b)

second orders.

-
pj1(t0)

|ω1|
- ∆′w < qj1(t0) < -

pj1(t0)

|ω1|
+ ∆′w (12)
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Figure 3 shows the transmission coefficientsκ across the
configurational dividing surfaceS(q1 ) 0) atE ) 0.1, 0.5, and
1.0 ε, in which the fates of the reactions were estimated both
by eq 10 and by direct MD simulations: if the system falls
outside/inside a sensitive band, we estimated the final state by
use of eq 10/direct MD simulations. In the figure, the sensitive
band is set for each order by changing∆w from 0 to a number
so large that the estimatedκ’s converge to those evaluated by
the full MD estimation. Here, the abscissa gives the ratio of the
number of those whose fates were estimated correctly by MD
calculations to the total number of trajectories; that is, 0%
implies that the fates of all of the reactions were estimated solely
by eq 10 with ∆w being zero. The ratios of the trajectory
calculations in evaluatingκ to yield the convergence to the exact
values are 2.4%(1) and 0.6%(2) at 0.1ε; 12.1%(1) and 7.1%-
(2) at 0.5ε; and 69.2%(1) and 37.5%(2) at 1.0ε. (The numbers
in the parentheses are the orders of the perturbative calculations
we performed.) At 0.1ε, slightly above the saddle, the first-
and second-order transition rules estimateκ to be 0.99876 and
0.99878, i.e., 99.995(7)% accuracy of that estimated by thefull
MD estimation. Even at a moderately high energy, ca. 0.5ε,
these order’s rules provide us withκ to 99.9% accuracy. At
much higher energies, ca. 1.0ε or more, where the invariant of
motion along theqj1(p, q) is ruined in fully developed chaos,
one might anticipate that the transition rule at any order would
fail to yield κ to “good” accuracy. In other terms, even if one
might find theexactinvariant manifold locally at infinite order
O(ε∞), the recrossings should take place globally beyond the
region where “local” recrossings can be eliminated by such
canonical perturbation calculations.

IV. Conclusions and Outlook

In this article, we derived a strong dynamical propensity rule
to predict the fate of a reaction. Our results strongly support
the use of the concept of a single, nearly separable reactive
degree of freedom in the system’sphase space, a dof that is as
free as possible from coupling to all of the rest of the dof in the
region of the (first-rank) saddle even in a “sea” of high-
dimensional chaos. This implies that most observed deviations
from unity of theconVentionaltransmission coefficientκ may
be due to the choice of the reaction coordinate whenever theκ

< 1 arises from the recrossings, and most transitions in chemical
reactions must not take place infully-stochastic fashion but in
some predictable, dynamical fashion. If one carries out the
backward calculations initiated with large momentapj1(p, q) on

that dividing hypersurfaceS(qj1(p, q) ) 0), one can reveal what
kinds of initial conditions yield fast transitions from reactant to
product.

The construction and accuracy of our propensity rule relies
on the use of the perturbation calculation and the choice of the
point about which to do the expansion of the potential. For a
wide class of reactions regarded as occurring through a
“potential barrier” as its reaction bottleneck (in a rough sense),
the saddle point is the most reasonable choice. The great
advantage of classical canonical perturbation calculation in the
region of a saddle is to provide us with interestinglocal
information about the original system at a finite low order up
to which the perturbation series of the transformation is expected
to be unaffected by the ultimate divergence arising from the
characteristics of the whole phase space; the series presumably
diverge for most realistic systems when the full, global set of
interactions are taken into account. This “local” approach
enabled us to present, for example, a first numerical evidence6,9

of the robust persistence in the transition region of the invariants
of motion associated with the reactive dof in the phase space,
even while the other invariants with the nonreactive dofs are
ever more quickly broken up as the total energy and the order
of the perturbative calculation increase. This also gave us a first
example7 to visualize the phase space bottleneck of a multidi-
mensional system whose degrees of freedom is much larger than
2 or 3. Very recently, the same algorithm was applied40 for a
three-mode system to compute a NHIM with its stable and
unstable invariant manifolds. The NHIM (denoted here byM)
is expressed in terms of our notation by a set of all (p, q)
satisfying bothqj1 ) pj1 ) 0 andHh 0(JhB) + ∑n)1ε

nHh n(JhB, Θh B) )
E at a given total energyE, i.e.

The fundamental theorem on NHIMs ensures18,38 that NHIMs,
if they exist, survive under arbitrary perturbation with holding
a property such that the stretching and contraction rates under
the linearized dynamics transverse toM dominate those tangent
to M. In practice, we could compute theM only approximately
at a finite order perturbative calculation. Therefore, the robust-
ness of the NHIM against perturbation (referred as tostructurally
stable18,38) may provide us with one of the most appropriate
descriptions of a “phase space bottleneck” of reactions, if such
an approximation of theM due to a finiteness of the order of
the perturbative calculation can be regarded as a “perturbation”.

Davis and Gray14 first showed in a two-mode system the
existence of dynamical bottlenecks to intramolecular energy
transfer, that is, cantori buried in the reactant basin, which form
partial barriers between irregular regions of phase space. This
intramolecular bottleneck brought about multiply exponential
decay on a wide range of time scales of the reaction, although
the short-time decay is governed by an intermolecular bottleneck
that divides the reactant region from scattering trajectories.
Gillilan and Ezra17 also observed a similar multiply exponential
decay in a three-mode system, which makes us infer the exis-
tence of intramolecular bottlenecks. So far, there exists no
general algorithm for locating arbitrary NHIMs, whereas the
stable and unstable manifolds of some of them may represent
the multidimensional generalization of the partial barrier as-
sociated with a periodic orbit approximant to a cantorus. An
analysis of pairwise local frequency ratios would be useful to
search the intramolecular bottlenecks, at least, for 3-mode

Figure 3. Transmission coefficients across the conventional dividing
surfaceS(q1 ) 0), κ, at E ) 0.1, 0.5, and 1.0ε.

M ) {(qj1, pj1, ‚‚‚, qjN, pjN)|qj1(p, q) ) pj1(p, q) ) 0, Hh 0(JhB) +

∑
n)1

ε
nHh n(JhB, Θh B) ) E} (13)
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systems.47-49 However, it would be a very difficult task to deal
with higher-dimensional systems.

The limitation of our present algorithm that applies a
perturbative calculation to the region of saddles is that the
resultant information is onlylocal for the neighborhood of the
saddle and there is no guarantee of whether all of the relevant
recrossings of the reaction event are confined to such a locality.
The higher the total energy of the system, the more the system
may frequently recross a configurational dividing surface
S(q1 ) 0) and the longer the maximum excursion distances
attained are in the coordinateq1 away from theS(q1 ) 0) before
returning to it (prior to capture in reactant or product state).
The local region in which the invariants of motion persist along
the reactive dof should cover the excursion regime to predict
the termini of the trajectories. That is, the more the total energy
increases, the more the broadening of the excursion regime
competes with the shrinkage of the region of local invariance
of the action, evaluated by the perturbative method, in which
all the apparent recrossings in theq1 are rotated away to single
crossings or noncrossings in theqj1(p, q). (There is also a hidden
perplexity of what time scale one should use to classify a
trajectory as a “recrossing” versus a trajectory that contributes
to establishing chemical equilibrium.) The outcome of this
competition to determine whether or when a dividing hyper-
surfaceS(qj1(p, q) ) 0) free from the recrossing problem can
still be found in semi-chaoticregion. However, as the total
energy becomes much higher, such a regime of persistence of
the local invariance calculated by any perturbative method
should become extremely small, and most recrossing events
should take place outside the local region of the saddle, in a
fully deVeloped chaoticregion.10 One might, nevertheless,
anticipate that the stable and unstable invariant manifolds we
extracted in the region of the saddle can be continued numeri-
cally through the rest of phase space.50 This provides us with
an essential clue to generalize separatrix theories to arbitrary
multidimensional systems, which may shed light on how “local
equilibrium” is established or spoiled in multidimensional
reacting systems.

The development of the computer visualization of the higher
dimensional structures of phase space is also highly demanding.
The recent visualization40 of a NHIM and the stable and unstable
invariant manifolds was brought about by the projections of
those onto the original space at a certain energy value where
the system can be classified into thequasiregularregion,11 in
which all actions persist approximately as the local invariants.
Hence, the inverse of all of the transformed new coordinates
and momenta into the original ones are straightforward.
However, as the total energy increases, most actions become
ruined; the exception is that of the reactive dof in thesemichaotic
region, and ultimately toward thefully deVeloped chaoticregion,
where even it is spoiled. Here, the inverse of (pj, qj) into the
original (p, q) should become rather problematic because of the
divergence of most terms in the generating functions.
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