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A new dynamical propensity rule for transitions of a system crossing the barrier from one potential minimum
to one another is derived from dynamical system theory. The rule is based on the existence of a no-return
dividing hypersurface in the system’s phase space in the vicinity of saddles of the multidimensional potential
surface of a strongly coupled, chaotic system. We present numerical evidence of the rule’s validity by applying
it to the rearrangements of a cluster of six argon atoms.

I. Introduction demonstrated, as predicted by Wiggins just previotfshpat

the occurrence of homoclinic tangency inherent to highéwf)

. . : .Y dimensional systems hampers the construction of the hypersur-
and Wignet in the 1930s, have had great success in elucidating face dividing the bound complex reactant region from unbound

absolute reaction rates of not only chemical reactions but alsotrajectories. Tod¥ noticed that the homoclinic tangency leads
of the evolution of other systems that pass from one stable state,

to another, e.g., the rearrangement of cluététsind the folding to a bifurcation of the phase space reaction path with a transition
of proteins!?13 All of the various forms of TST postulate the between two topologically distinct chaos. Thus, the Da@say

existence of a dividing hypersurface, that is, the transition state sepa_lratrlx tr_ansmon state (_jepen_ds crucially on the Poincare
) LY l ’ section having only two dimensions. No genered-return
(TS; generally, in principle a surface in phase sgpti@ough . . . .
. ; . - dividing hypersurface exists yet for systems of higher dimen-
which a reacting species should pass only once during the COUrS&ionality. In other words, it is still an unresolved open problem
of a reaction. However, few theories have clarified the physical £ th Y- h, hah ‘ hp | proble it
conditions for the existence of such a no-return dividing ofthe circumstances that such a hypersurface s ould persist, |
hypersurface in either phase space or configurational space ofe.X'StS’ or fall to ruin in the chaotic thermal bath of multi-
a strongly coupled, multidimensional system. This is one of the dlme_n5|onal systems. ) o o
most elusive aspects in justifying the application of TST to a  With a focus on regularity of orbits in the vicinity of the
multitude of reacting systems. In practice, one has often definedunstable saddle points on potential energy surfaces, reactions
the TS in configurational space with an ad hoc “correction in a-few-dof systems can be interpreted as occurring through
factor”, called the transmission coefficientto take into account ~ cylindrical manifolds apart from the sadd®s?* Their ap-
that the system of interest actually makes more than one crossing®foaches depend crucially on the existencepofe unstable
of the surface presumed to be the desired dividing surface. It periodic orbits in the nonreactive degrees of freedom in the
appears as if the system may return to the TS even several timegegion of the saddles; these unstable periodic orbits become
along its reactive trajectory, contrary to the basic postulate of Spoiled whenever resonance exists among the nonreactive
TST. modes. Several theoretical and experimental developments have
In the development4-19 of classical unimolecular reaction ~ Shed light on mechanics of passage through the region of a
rate theories’ there has been a great improvement Of Ourpoten“al Saddle fOI‘ hlghel‘ dlmenSIOI’laJ SyStemS |nd|cat|ve
understanding for the definability of such a general, no-return Symptoms of local regularity near the saddles appeared in
dividing hypersurface from the viewpoint of the geometrical theoretical studies of small atomic clusters by Berry éfa?
structure of the phase space in chemical reactions. Davis andthat compared local Liapunov functions and Kolmogorov
Grayfirst showed in the late 1980s that in Hamiltonian systems €ntropies in saddle regions with those in other regions of
with two degrees of freedom (dof), the Tewaysfree from potential surfaces. Evidence appeared also in experiments by
recrossings can be defined as the separatrix in the Péincard-ovejoy et al?*3° on decomposition of vibrationally excited
section formed by taking the union of segments of the stable ketene that showed rates with quantized steps; Marcus suggested
and unstable manifolds, and the transport across the TS isthat this could be a signature of existence of approximate
interpreted as mediated through the turnstile lobes bounded byinvariants of motion in the TSt
two homoclinic intersection points. Gillilan and EZfanalyzed Recently, we showeti,!! using classical isomerization of a
the predissociation of the van der Waals complex-Hewith six-atom Lennard-Jones cluster, that a strongly coupled Hamil-
three dof, i.e., the four-dimensional Poincasection. They  tonian system with several dof may exhibit at least three
distinguishable energy regimes of dynamical behavior, so-called
T Part of the special issue “R. Stephen Berry Festschrift”. quasiregular semichaoticandfully developed chaoticegimes,
*To whom correspondence should be addressed. E-mail address:in the region of a saddle. These are distinguished by the extent
tamiki@kobe-u.ac.jp. E-mail address: berry@uchicago.edu. . . . . .
*Kobe University. of the regularity of their dynamics. Up to energies high enough
8 The University of Chicago. to make the system manifestly chaotic, approximate invariants
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of motion associated with a reaction coordinate in the phasetotal linear and angular momenta of zero, so that the kinetic
space imply a multidimensional dividing hypersurface that is and potential energies are purely vibratiohal.

free (or very nearly free) of recrossings in that regime, even in
a sea of chaos. Our technique relies on the application of Lie n
canonical perturbation thed&?3 (with algebraic quantizatiot; 3¢ H=H,+ ) eH, 1)
if necessary), a classical analogue of Van Vleck perturbation "=

theory?” to the region of potential energy saddles. This method where

constructs a hyperbolic coordinate system with a dividing

hypersurface in phase space that minimizes recrossings and 1

apparent modemode mixing in the region. Hence, this provides Hy= —Z(p]-2 + wl-ijz =H,J) (2)
us with the natural reformulatiés® of the conventional TST 24

based on that hypersurface in multidimensional phase space and_

improves the predicted classical reaction rates of multidimen- n

_ 2 _
sional systems. We presented a practical algorithm to visualize nZlé H,= GJ;Cjqujqkql te j;mcjklmqjqkqlqm t..=

00

the dividing hypersurface in the multidimensional phase space -
of a given syster® and illuminate&1° a new type of phase ¢"H (3, ©) (3)
space bottleneck that emerges as the total energy increases, nZl e

which keeps a reacting system increasingly trapped in the region

of a saddle. Here,q; andp; are theith normal coordinate and its conjugate
The earlier work of Wiggin®38provides a firm mathematical ~momentum, respectivelyy; and Cy, Cium, ... are respectively

framework forN(>2)-dimensional phase space transport, based the frequency of thgth mode and the coupling coefficient

on the notion of a normally hyperbolic invariant manifold amongg;, gk, andg and that amongj, o, 0, andgm and so

(NHIM) and its stable and unstable manifolds as the appropriate forth. We denote hereinafter a reactive degree of freedom, “1”,

generalization of the concepts of “saddle” and “separatrix” on whose fundamental frequeney: is pure imaginary, whereas

a multidimensional phase space. However, a major technicalthe frequenciegog of the other “bath” modes B are real.

obstacle preventing its implementation has been the lack of an  An early insight by Hernandez and Milféiin their semiclas-

algorithm for searching arbitrary NHIMs in realistic multidi-  sical theory based on Van Vleck perturbation theory and our

mensional systems. The algorithm we have developed from Lien recent numerical eviden€e of a burial of local invariant of

canonical perturbation theory provides a way to compute a (classical) action associated with the phase-space reaction

NHIM in the vicinity of arbitrary saddles. Very recently, coordinate even in a strongly coupled, chaotic system implies

Wiggins et af® presented a mathematical condition for the that one can generally find a nonlinear, canonical transforma-

robust persistence of the invariant of motion along the phase- tions of the coordinates to transform nonintegrable Hamiltonian

space reaction coordinate in each order of perturbation. Uzer etH(p,q) into a new form:

al4% provided a fuller description of the (local) geometric _ o o

structure of chemical reactions in multidimensional phase space H(p,0) = HyJ) + €'H,(J;, &) (4)

and applied the Lie transformation to the vicinity of an unstable n=

fixed point for a hydrogen in crossed electric and magnetic fields .

containing significant Coriolis interactions (a 3-dof system), n the_vic"inity offthe sgddle@.bll-le_re_@,dq) is a r;]ev_v set of
which are neither fully kinetic nor fully potential, to compute ~canonically transformed variables), @) denotes their action-

its NHIM and the stable and unstable manifolds. angle yariableg, 6.‘“5‘3 represents those of bath modé@((:)g), .
The purpose of this article is to establish a strong propensity collectively. This is dge to the fact that an arblt'rz'iry cqmblnatlon
rule for transitions of chemical reactions, based on the existenceOf modes cannot satisfy the resonance conditions if ane mode

of & novetum g Iypersutace n pase Space.and 10" 7L ITANA Ly, ek e corbrater,

demonstrate the rule’s validity by applying it to the rearrange- mode “1” yobe s the e uat?on of motion of the oridinal

ments of a cluster of six argon atoms. This criterion should HamiltonianH: y q 9

enable us to predict a priori whether the system climbs through ’

the saddle to the product, or returns to its original state, and &

should reveal the physical foundation of why and how the d,(p, @) — _—1q1(p, q) + @,%0,(p, ) =0 (5)

system traverses the saddles from reactant to product states in 2

multidimensional, strongly coupled, Hamiltonian systems.

w

I Theory PP @) = 7 (P, 0 (6)
Robust Persistence of a No-Return Phase Space Dividing where

Hypersurface in the Region of SaddlesSuppose that the

HamiltonianH(p, q) is expressed in a region around a saddle o E
mitor ec o o HGL &)

point of interest as an expansion in a small paramgtso that D, = dy(p, Q) = 0,3y, Eg) = ————

the zero-order HamiltoniarHy is regular in that region; 0J;

specifically, it is written as a sum of harmonic-oscillator

Hamiltonians. Such a zero-order system is a function of action Here, x and X represent the first and second derivativesxof

variablesJ of Ho only and does not depend on the conjugate with respect to timé. The @1(31, ;&B) depends on time only

angle variable®. The higher-order terms of the Hamiltonian through bath mode5s(t) becausel; is independent of by eq

are expressed as sums of cubic, quartic, etc. terms in the norma#l. The&g-contributions tan; emerge at?(e?) in the vicinity of

coordinates of the system, at its sadtlieFor the sake of the saddles and, furthermore, are suppressed because of the

simplicity, we focus on a (8-6)-dof Hamiltonian system with ~ nondivergent denominators involving one imaginary frequency

()
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1.1 Our recent numerical analysis using a bundle of trajec- [/ To Product
tories® showed that, even at a moderately high energy where 5 (CTBP)
almost all of thel do not preserve their invariance except that
Ji, @2™{(p, q) tends to exhibit near-constant with a much
smaller fluctuation than any abg2"{p, q).

A Dynamical Propensity Rule for Transitions. Equation 5
corresponds to a one-dimensional pendulum whose length
slowly changes, a well-used example to present the robust
persistence of invariance of action under a sufficiently slow,
small perturbation; this persistence is usually called “adiabatic To Reactant _
invariance” (e.g., see the standard t&%t§. One thus can find octy P
an approximate analytical expression al@ap, q) even in the
region of a saddle where the system is strongly chdétic;

Figure 1. Schematic portrait of the stable and unstable invariant
manifolds and the phase space flows Gi(, ), p«(p, 9)).

specifically
_ oot | Bo—iant coefficientsa. andf att = 0. To obtain the functional forms of
Gu(P(D)., a) = 5™ + e (8) qu(p, q) and pu(p, o), we applied Lie canonical perturbation
theory to the original HamiltoniaH(p, g) to generate a nonlinear
_ Pi(to) _ Pi(to) canonical transformation fronpy(q) to a new setg, g) in which
a = Gy(ty) + Tl B =0ty — To, 9) the individual dof are as regular as possible, up to second order.
1 1

(In practice, we used the power of algebraic quantizaifo?f,

Here, constant coefficients. and # can be estimated from  quite efficient for the extension to higher order, as first
01(p(to), q(to)), andpa(p(to), q(to)) at any arbitrary timey in the developed by Fried and Ez#.We applied this to isomerization
region of the saddle. reactions in a simple cluster of six argon atoms bounded by
These relations imply that, even though almost all dof are Pairwise Lennard-Jones (LJ) potentials, with total linear and
chaotic, the final state (and initial state) may be determined a @ngular momenta of zefdThis cluster has two kinds of potential
priori. For example, if the trajectories have crossed a configu- €nergy minima, the octahedral (OCT) global minima with energy
rational dividing surfaceS(q, = 0) at timeto with & > 0, the ~ E = —12.712¢ and the other, higher-energy capped trigonal
final state has already been determined at “the timnehen the bipyramid (CTBP) minima with energf = —12.303e¢. There
system has just left th§(q, = 0)” to be a stable state directed ~aré two distinct kinds of first-rank saddles. Saddle |, for we
by o; > 0. Similarly, from only the phase space information at Present the analysis in this article, joins the OCT and the CTBP
t = to (the sign off3), one can infer whether the system on Minima at energfe = —12.079. In this report, we show the
S(q1 = 0) at timety has climbed from either stable state, i.e., « analysis over the saddle at three total enerdtes;, 0.1, 0.5,
reactant or product. The dynamical rule for (forward) transitions @nd 1.0¢ above the saddle point energy.
is thus derived as “if For analyses of the infrequent saddle crossings, we employed
the Keck-Anderson methad4¢to generate a microcanonical
Pu(to) Pi(to) ensemble oi¥(q; = 0). We generated 10 000 trajectories, which
|(U_1| | were found to be enough to yield statistical convergence in
calculatingk. For the trajectory calculations, we used a fourth-
the system will go through to the product (return to the order Runge-Kutta method with adaptive step-size control; the
reactant)”. total energies in the MD calculations were conserved within
Transmission Coefficient k. To elucidate how the “no- +1 x 1076 ¢ (all results are given in the universal reduced units
return” assumption for a given dividing surface, e.g., of the LJ potential; energies, distance, momentum, and mass
Sq1 = 0), would be spoiled, one has to estimate the transmissionare in units ofe, m*2s, m2s ps~1, and argon atomic mass).

fll(to) =z = (ql(to) <= (10)

coefficientx4344 Phase Space Portrait in the Region of Saddlesigure 1
t = (oLt shows a schematic portrait of the phase space flows (denoted
= lim [t = O)h(cu (D)L (11) by arrows) in the@(p, q), p(p, 9)) plane. Equation 10 tells us
ttong L (t=0)F that, if one divides the phase space into four domains using the

stable and unstable invariant manifolds to and from the unstable

in terms of microcanonical molecular dynamics (MD) simula- fixed pointd, = p1 = 0, all of the system trajectories classified
tions under an initial condition that the system distributes at any time, e.g.t = 0, into the domainsl and 2 should

microcanonically at tim¢ = 0 on the surface. Herit = 0)  eventually go into the product state and those classified into
andj-(t = 0) respectively denote the initial total and initial  the domains3 and4 go into the reactant state. Although the
positive fluxes crossing the surfacggq, = 0); h(x) is the former and latter domains could be regarded respectively as

Heaviside function ok, and[lg is the microcanonical ensemble  “reactive” and “nonreactive” in elucidating the fate of reactions
at energyE. Often the value of the transmission coefficiant  after the system leavin§q; = 0), all of the system trajectories
has been taken as the value at a plateau that emerges after somgassified in domaing or 4 do not cross through the phase-
interval long compared with the transit time. So falaborate space dividing hypersurfacg@(p, q) = 0), i.e., simply not
MD simulations have been used to identify the final destination that of the reaction.
state of the system, eithefi(tiong > O Or Gu(tiong) < O after a Table 1 classifies 10 000 system trajectories initiated on
long time tiong. S(q: = 0) into these four domains on the first, and second-
order phase space plangs"(p, d), ar'(p, 0)) atE = 0.1, 0.5,
and 1.Ce. In the table is shown that, if the incident momentum
Now let us use eq 10 to elucidate the fate of each trajectory p; is positive (negative), i.e., going from OCT(CTBP) to
that starts on the surfac&q: = 0), for which we estimated =~ CTBP(OCT) minima along the normal coordinatethe system

Ill. Results and Discussions
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TABLE 1: Classifications of 10 000 Trajectories Initiated on
a Configurational Dividing Surface S(q, = 0) into the Four

Domains 1-4, Depending on the Signs of the Incident

Momenta p;, on the Phase-Space PIane;‘afC, qilth) of the
First and Second Orders at Three Distinct Energies 0.1, 0.5,
and 1.0€?

domain

0.1¢

0.5¢

1.0€

first

second

first

second

first

second

A WN P

ArWN P

4890(3)
8(0)
0(0)

24(3)

1(0)
157(15)

pl(tz 0) >0

4897(0) 4729(15) 4734(3)

4(0)
0(0)
27(0)

0(0)
166(4)

50(2)

1(1)
55(12)
pi(t=0) <0
0(0)
333(73)

47(1)
2(0)
67(11)

3(0)
337(49)

4553(18)

179(14)
8(0)
66(18)

4(1)
357(153)

4888(10) 4900(2) 4699(21) 4725(14) 4576(30)

1(0)

0(0)

9(0)

7(0)

22(1)

4580(19)

141(4)
8(4)
75(25)

3(3)
368(129)
4591(21)
29(0)

0.050

Komatsuzaki and Berry

0.025 1\

P, (p,q)
o

- 1st

-0.025 |,

-0.050

-0.156

-0.10 -0.05 0

— 1st

q, (p,a)

a2 The numbers in the parentheses denote the number of trajectories
for which the propensity rule at the specified order fails to predict the |
final states; for example, 4729 trajectories are classified into the
“reactive” domainl on (®1°(p, q), G:°(p, 0)) plane, but 15 of the 4729 \
eventually went not to the product but to the reactant state. First and 0.025 |\
second indicate the order of the Lie perturbation method we performed. '

0.050

tends to be classified mainly into the domai(B) at all orders.
The more the total energy increases, the more the system leaks
into the other domaing and/or4. One can see the asymmetric
character, depending on the direction of the reaction, of the !
classifications into the four phase space domains: when the -0.025 |/ L
incident p; is negative, the system leaks more into the other d b)2 ;
domain, i.e.2, from the domair8, than into the domain® and
4 from 1 whenp, is positive. This is due to the fact that the
density of states in the real reaction bottleneck; that is, the phase-
space dividing hypersurfac&oi(p, g) = 0) about saddle | is
greater on the minus side than on the plus side alongythe
axis’

Now let us see how our dynamical propensity rule for the
transitions can predict the fate of the reactions. Here, the

numbers_, in the pa(entheses in the_table indipate the nu_mber Ofcorrecﬂy and falsely by eq 10, respectively; for example, black
trajectories for which the propensity rule fails to predict the ircjes classified in domair8 are the trajectories crossing

correct final state at that order. At all of the three energies, the S = 0) from CTBP to OCT at = 0 and are predicted to go
higher the order of the perturbation calculation, the better the jn, the reactant state, but their actual final states were product
rule predicts the reactions. At very high energies, caclthe  giates The recrossing trajectories that stai§on = 0) mostly

rule evaluated at second order rather fails to predict the final ¢5| into domain2 at each order. because of the asymmetric
state of the reactions. Note that the accuracies of the predictions.aracter of the reaction bottlen’eS(ql(p g) = 0) along the
depend on the direction of the reactions; that is, the numbers q ayis7 Note that the fates of most recrossing trajectories can
of the failure are significantly larger for the reaction from CTBP | predicted more accurately by eq 10 as the order of
to OCT (p, < 0) than those from OCT to CTBR{ > 0). This perturbation calculation increases, except just in the vicinity of
is also because of the distribution of the reaction bottleneck i stable manifolds. In other words except in a region very
states, heavier on the OCT side alongdexis. at the Crossing  ¢jose to the approximate stable invariant manifolds, one may
S(q = 0) from CTBP to OCT, the system would be more likely  5pticipate that the dynamical transition rule can well predict

to face the reaction bottlene&u(p, g) = 0) than at the same 4 tate of trajectories, even at energies so high that most modes
crossing from the other direction. In the latter casey;at O, are strongly coupled and strongly chaotic.

the system has passed the greater part of the distribution = rpg jeads us to introduce a small “sensitive band” along the
constituting the real(@.(p, g) = 0) and, hence, rarely retums 555 oximate stable invariant manifolds, as depicted in Figure

to S(q; = 0).” This implies that the fate of the reactions from .t the system's trajectory lies in a small sensitive band defined
CTBP to OCT depends more crucially on the accurate location by

of the S(@i(p, g) = 0) than that from OCT to CTBP.

Figure 2 shows how eq 10 can predict the fate of trajectories
that arerecrossingover the configurational surfacgaq, = 0)
on the phasespace planesp{"(p, q), a\"(p, g)). This figure
corresponds tdE = 0.5 ¢, where most modes are strongly
chaotic exceptdp, q).6 In the figures, the circle and triangle  where A} (=Ay/2sin(tam}|w1|), the final state of the reaction
symbols denote the system trajectories having negative anddepends crucially on the accuracy of the approximate stable
positive incident momenturp,(t = 0) on theS(q; = 0), and invariant manifolds, and one might have to determine the fate
the open and filled, those whose final states were predicted of such reactions using MD simulations.

(p,9)

1

—2nd

-0.050
-0.15

0.05

0.00
= 2nd

g, (pa)

Figure 2. Distributions of the recrossing trajectories 0\&g; = 0)
at timet = 0 on @"(p, q), §"(p, @)) atE = 0.5¢. (a) First and (b)
second orders.

-0.10 -0.05 0.10 0.15

_ Pa(to)
|wg

pu(to)

lwy

— A, <ty < + A, (12)
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1.000 . y . that dividing hypersurfac&@qu(p, g) = 0), one can reveal what
- 0.9989 kinds of initial conditions yield fast transitions from reactant to
w \ o product.
E E=0.1¢ 0.9988 /7=~ _------=~ The construction and accuracy of our propensity rule relies
§ 0.995 F / ] on the use of the perturbation calculation and the choice of the
g 'f/'?\ point about which to _do the expansion of the pptent|al. For a
° E=0.5¢ 0997 1 > 3 wide class of reactions regarded as occurring through a
-% “potential barrier” as its reaction bottleneck (in a rough sense),
2 1990 | 1 the saddle point is the most reasonable choice. The great
s E=1.0¢ advantage of classical canonical perturbation calculation in the
E ' region of a saddle is to provide us with interestitagal
- v 1st ond information about the original system at a finite low order up
to which the perturbation series of the transformation is expected
0.985 0 2'0 4'0 6'0 80 to be unaffected by the ultimate divergence arising from the
the ratio of trajectory estimation [%] characteristics of the whole phase space; the series presumably
Figure 3. Transmission coefficients across the conventional dividing Q|verge_f0r most reallstlc_: systems when the IUII’ g,!obal set of
surfaceS(q, = 0), k, atE = 0.1, 0.5, and 1.@. interactions are taken into account. This “local” approach

enabled us to present, for example, a first numerical evidénce

Figure 3 shows the transmission coefficiertsicross the of the robust persistence in the transition region of the invariants
configurational dividing surfac&q; = 0) atE = 0.1, 0.5, and of motion associated with t_he rea(_:tive dof in the phase space,
1.0 €, in which the fates of the reactions were estimated both €VEN while the other invariants with the nonreactive dofs are
by eq 10 and by direct MD simulations: if the system falls €Ver more quickly broken up as the total energy and the order
outside/inside a sensitive band, we estimated the final state byf the perturbative calculation increase. This also gave us a first
use of eq 10/direct MD simulations. In the figure, the sensitive ©X@Mplé to visualize the phase space bottleneck of a multidi-
band is set for each order by changifg from 0 to a number mensional system whose degrees of frgedom is much larger than
so large that the estimatads converge to those evaluated by 2 OF 3 Very recently, the same algorithm was apgfiddr a
thefull MD estimation. Here, the abscissa gives the ratio of the (hrée-mode system to compute a NHIM with its stable and
number of those whose fates were estimated correctly by MD P”Stab'e invariant manifolds. The NHlM (denoted here by
calculations to the total number of trajectories; that is, 0% IS (_axpressed n ter_ms of our_notation by an_seg of_pllq)
implies that the fates of all of the reactions were estimated solely satisfying bottty = p1 = 0 andHo(Js) + Fn=1¢"Hn(Je, O8) =
by eq 10 with A, being zero. The ratios of the trajectory E at a given total energf, i.e.
calculations in evaluating to yield the convergence to the exact o o _ _
values are 2.4%(1) and 0.6%(2) at @;112.1%(1) and 7.1%- /= {(@ P1 ***, O PW)IG(P, @) = Pa(P, @) = 0, Ho(Jg) +
(2) at 0.5¢; and 69.2%(1) and 37.5%(2) at 0(The numbers E"Hn(jB, (:)B) =E} (13)
in the parentheses are the orders of the perturbative calculations =
we performed.) At 0.k, slightly above the saddle, the first-
and second-order transition rules estimate be 0.99876 and  The fundamental theorem on NHIMs ensdfé8that NHIMs,
0.99878, i.e., 99.995(7)% accuracy of that estimated byulhe if they exist, survive under arbitrary perturbation with holding
MD estimation. Even at a moderately high energy, ca.€).5 a property such that the stretching and contraction rates under
these order’s rules provide us wiihto 99.9% accuracy. At  the linearized dynamics transverse tédominate those tangent
much higher energies, ca. le@r more, where the invariant of  to ./ In practice, we could compute thé only approximately
motion along theiu(p, q) is ruined in fully developed chaos, at a finite order perturbative calculation. Therefore, the robust-
one might anticipate that the transition rule at any order would ness of the NHIM against perturbation (referred asttocturally
fail to yield « to “good” accuracy. In other terms, even if one stablé®39 may provide us with one of the most appropriate
might find theexactinvariant manifold locally at infinite order ~ descriptions of a “phase space bottleneck” of reactions, if such
(e%), the recrossings should take place globally beyond the an approximation of the// due to a finiteness of the order of
region where “local” recrossings can be eliminated by such the perturbative calculation can be regarded as a “perturbation”.

canonical perturbation calculations. Davis and Gralf first showed in a two-mode system the
existence of dynamical bottlenecks to intramolecular energy
IV. Conclusions and Outlook transfer, that is, cantori buried in the reactant basin, which form

partial barriers between irregular regions of phase space. This
In this article, we derived a strong dynamical propensity rule intramolecular bottleneck brought about multiply exponential
to predict the fate of a reaction. Our results strongly support decay on a wide range of time scales of the reaction, although
the use of the concept of a single, nearly separable reactivethe short-time decay is governed by an intermolecular bottleneck
degree of freedom in the systenpbase spagea dof thatis as  that divides the reactant region from scattering trajectories.
free as possible from coupling to all of the rest of the dof in the Gillilan and Ezrd” also observed a similar multiply exponential
region of the (first-rank) saddle even in a “sea” of high- decay in a three-mode system, which makes us infer the exis-
dimensional chaos. This implies that most observed deviationstence of intramolecular bottlenecks. So far, there exists no
from unity of thecorwentionaltransmission coefficient may general algorithm for locating arbitrary NHIMs, whereas the
be due to the choice of the reaction coordinate whenever the stable and unstable manifolds of some of them may represent
< 1 arises from the recrossings, and most transitions in chemicalthe multidimensional generalization of the partial barrier as-
reactions must not take place filly-stochastic fashion butin  sociated with a periodic orbit approximant to a cantorus. An
some predictable, dynamical fashion. If one carries out the analysis of pairwise local frequency ratios would be useful to
backward calculations initiated with large momepiép, g) on search the intramolecular bottlenecks, at least, for 3-mode
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