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We analyze time series of potential energy fluctuations and principal components at several temperatures for
two kinds of off-lattice 46-bead models that have two distinctive energy landscapes. The less-frustrated “funnel”
energy landscape brings about stronger nonstationary behavior of the potential energy fluctuations at the
folding temperature than the other, rather frustrated energy landscape at the collapse temperature with a
significant 1/f R(R ≈ 1.5) noise structure and a significant deviation of the Allan variance from the law of
large numbers. The principal components are analyzed by an embedding nonlinear time-series analysis. The
fast fluctuations with small amplitudes of∼70-80% of the principal components cause the time series to
become almost “random” in only 100 simulation steps. However, the stochastic feature of the principal
components tends to be suppressed through a wide range of degrees of freedom at the transition temperature.

I. Introduction

The questions What kinds of mechanisms carry a protein into
a unique native state? and What is the best reaction coordinate
to describe the dynamics of protein folding? have been one of
the most intriguing subjects over the past decades.1,2 Protein
folding may be well interpreted as a normal Brownian process
of a few collective coordinates on a thermodynamic potential
such as the “funnel” landscape.3-5 The diffusive nature may,
however, depend on the choice of the viewpoint from which
one might see the dynamical events. The fraction of native
contactsQ is often taken as a reaction coordinate or global order
parameter. However, it is not self-evident, as discussed by
Karplus,2 thatQ is always appropriate to represent the progress
of folding, and many different sets of contacts may yield the
same value. There exists the nontrivial question, Are motions
along this coordinateQ actually slow enough to average out
any dynamical contribution of all the other degrees of freedom,
resulting in an effective single, dominant free-energy barrier of
folding? Garcı´a and Hummer6 showed how non-Brownian,
strange kinetics7 emerge in multibasin dynamics trajectories
generated by all-atom molecular dynamics (MD) simulations
of cytochrome c in aqueous solution at 300-550 K for at least
1.5 ns. They analyzed the mean square displacement (MSD)
autocorrelation function in terms of molecule optimal dynamic
coordinates (MODC). MODCs are collective coordinates derived
by a linear transformation of the 3N Cartesian coordinates of
the protein system (N ) the number of atoms in the protein)
that best represent the configurational protein fluctuations (in a
least-squares sense). They found that the MSD along some slow
MODCs manifestly exhibits non-Brownian dynamics between
a temperature at which the protein is in the native state and a
temperature above the melting point, where the hydrophobic
effect is large and mostly enthalpic. In this temperature range,

the MSD has a power-law time dependence with an exponent
of nonunity (about 0.5 for times shorter than 100 ps and 1.75
for longer times). This indicates that protein motions are more
suppressed and cover less configurational space than a normal
Brownian process on a short time scale, but they become more
enhanced as a faster, well-concerted motion on a long time scale.
At a temperature where unfolding may occur in nanoseconds,
normal Brownian dynamics seemingly emerges along the
MODCs. Plotkin and Wolynes8 studied, using an overdamped
generalized Langevin formulation withQ as the reaction
coordinate, how non-Markovian configurational diffusion en-
hances the folding rate over the Kramers rate in a certainTf/Tg

(=1.6) regime (whereTf andTg are, respectively, the folding
and glass transition temperatures) and addressed how the
inclusion of the other degrees of freedom into the reaction
coordinate is essential for obtaining the optimal dividing surface
for folding. Takano et al.9 showed in a two-state-like helix-
coil transition of a helical polypeptide that a 1/f noise structure
of the potential energy fluctuations emerges at the transition
temperature whereas away from that temperature the powerR
of 1/f R goes to zero, indicating a transition to a Markovian
process. Nymeyer, Garcı´a, and Onuchic10 investigated, using
an off-lattice 46-bead model that folds into aâ-barrel native
structure, how the energy landscape of the protein affects the
folding kinetics. They found that the folding rate on a minimally
frustrated funnel landscape exhibits single-exponential behavior
at Tf and that nonexponential kinetics does not emerge until
the temperature is much lower thanTf, whereas that on a highly
frustrated landscape starts to deviate from exponential behavior
at just below the collapse temperatureTc, where the kinetics is
controlled by escape rates from different low-lying energy traps.
From such distinctive kinetics, they postulated that good folding
sequences must be associated with such a minimally frustrated
landscape and must have a diffuse transition state in order to
be robust against variations in the protein environment and
against mutations of the sequence.

For two-basin dynamics (i.e., chemical reactions), both
theoretical11-15 and experimental16,17 developments in the past
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decades have shed light on the mechanics of passage through
the saddles in the potential energy surfaces. Berry and co-
workers11-15 have analyzed local Liapunov functions and
Kolmogorov entropies of several atomic clusters with three to
seven atoms and have revealed that near the threshold energies
at which the system can just cross the saddle trajectories passing
through the saddle become collimated and more regularized,
posing approximate local invariants of motion, than trajectories
in the potential well in which the dynamics is fully chaotic.
Recently, Komatsuzaki and Berry18-23 clarified that irrespective
of the system, even at higher energies above the threshold where
mode-mode mixing wipes out most invariants of motion, one
can, nonetheless, extract a ballistic reaction coordinate that
rotates away almost all recrossings to single crossings in the
region of first-rank saddles. Many nonstochastic, dynamical
transitions have also been reported in simulation studies on phase
transitions of small clusters,24 the Lennard-Jones liquid,25 and
liquid water.26 For example, the transitions among the inherent
structures of liquid water occur intermittently not as simple
diffusive motions of individual molecules but as cooperative
dynamical processes with collective molecular motions.

The observed kinetics of protein folding is a consequence of
averaging over an ensemble of many activated barrier crossings
with multiple time scales. The future of the recent remarkable
experimental developments in single-molecule spectroscopy27-29

holds great promise in revealing the complexity of protein
dynamics. One of the stimulating subjects is, for example, If
non-Brownian dynamics that is somehow inherent to the
individual molecule exists, can it assist the robustness of protein
folding8 and/or functions30 in addition to the design of the energy
landscape that the protein might have acquired by mutations?

The purpose of the present article is to scrutinize how time
series of scalar quantities can shed light on the complexity of
protein dynamics by means of several nonlinear time-series
analyses.31-33 The analyses we use here have been originally
developed in the field of nonlinear science to discriminate
chaotic and stochastic dynamics and are, in principle, applicable
to any time series of any observable. As an illustrative vehicle,
we use an off-lattice 46-bead model10,34-38 that folds into a
â-barrel native structure. The topography of the potential energy
landscape for this model has been well surveyed in terms of its
disconnectivity graph.36 We investigate the complex dynamics
involving multibarrier crossings using constant-temperature MD
simulation and analyze the time series of the projections of the
Cartesian coordinates of each bead into the principal com-
ponents39-42 at several temperatures.

The remainder of this article is organized as follows. In
section II, we describe our method and technique. In section
III, we describe the model and the calculations. We present our
results and discussion in section IV. Finally, we give some
concluding remarks in section V.

II. Theory

What can we learn or deduce from an observedscalar time
series about themultiVariate state (or phase) space buried in
the observations? The so-called embedding theorem31 attributed
to Takens45 provides us with a clue to the answer of such a
question. Suppose that we have a nonlinear dynamical system
(i.e., first-orderd-dimensional ordinary differential equations)

wherex(t) andF are thed-dimensional vector representations

of the state space variables (x1(t), x2(t),..., xd(t)) and the one-
to-one map (F1, F2,..., Fd), respectively. It is supposed that all
degrees of freedom more or less influence one another through
explicit or implicit couplings and that thed-dimensional
manifold is compact and smooth in the state spacex. Let there
exist a scalar quantitys(t) with infinitesimal precision, and
suppose thats(t) is derived by a smooth transformationh from
x(t) (i.e., s(t) ) h(x(t)). The embedding theorem states that, in
principle, from the knowledge of the infinite time seriess(t) an
equivalent state spacey(t) can be reconstructed that preserves
the differential properties of the state space of the original
multivariate variablesx(t). A time-delay coordinate system
yd(n),

has been often used to reconstruct the state space, where the
d-dimensional state-space variablesyd(n) are represented in a
discrete form with a time intervalτ without loss of generality.
How can one find the unknown dimensiond from the time series
of s(n)? If there actually exists a dynamical system behind the
observation ofs(t), any orbity should never cross with itself in
the state space because of the uniqueness of the solution.
(Remember that there exists no self-intersection in the phase
space of Hamiltonian systems.) If a smaller dimension to
reconstruct the state space is used, the orbity will have self-
intersections and cannot be “unfolded” because of the insuf-
ficient size of the chosen dimensionality. In other words, if a
minimum dimension to unfold the orbit in the time-delay
coordinate system is reached, this implies that a state spacey
equivalent to the originalx can be reconstructed in such a sense
that it has the same differential properties of the original
manifolds. The embedding theorem holds irrespective of the
choice of the delay timeτ, but, in practice, the observed time
series are always contaminated by noise, computer round-off
errors, or a finite resolution of observations and are sampled
up to a certain finite time. In this regard, the dimension, referred
as the minimum embedding dimensiondL hereafter, reached
for the reconstructed spacey is not necessarily equal to the
dimensiond of the original state space ofx. The choice of delay
time τ and the determination of the minimum embedding
dimensiondL have been the central subjects in applying this
method to any realistic time series. For example, to elucidate
the Liapunov exponent and spectra from an experimental
observation first requires us to reconstruct the state space from
the scalar time series32,33,46.

A. Averaged False Nearest Neighbors.We chose Cao’s
algorithm47,48to determine the minimum embedding dimension
dL for a given (finite) scalar time seriess(t) and a given delay
time τ. This algorithm is based on the concept of “false nearest
neighbors (FNN)”.49 According to Takens’ theorem, if the
correct minimum embedding dimensiondL is chosen, then the
nearest-neighbor point of an arbitrary point along an orbit in
state spacey exists only because of the topological properties
of the underlying manifold. However, if the chosen dimension
is smaller thandL, nearest neighbors in the reconstructed space
are located because of the “false” projections onto a wrong
dimensionality. These false nearest neighbors are eliminated as
the dimension increases. To diagnose the convergence of the
dimensionality needed to eliminate the FNN and find the
minimum embedding dimension, Cao proposed the following
practical scheme: letyd(n(i, d)) be the nearest neighbor of a
point yd(i) in thed-dimensional reconstructed space (here,d is
designated as a tentative dimension) and define the quantity

dx(t)
dt

) F(x(t)) (1)

yd(n) ) (s(n), s(n + τ),‚‚‚, s(n + (d - 1)τ)) (2)
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(i ) 1, 2,...,N - τd) where||‚|| is a measure of the Euclidean
distance (e.g., the maximum norm). In this paper, we employed
the Euclidean norm

a(i, d) describes how theith point along the orbit in the
d-dimensional reconstructed space moves away from its nearest
neighbor when the tentative dimension increases by 1. To
diagnose the convergence of the dimensionality required to
“unfold” the whole orbity(t), one can follow how an indicator
E1 changes asd increases.E1 is defined by the ratio of the
mean value of alla(i, d) values on thed-dimensional and
(d + 1)-dimensional spaces:

where

WhenE1(d) converges to unity ford larger than a certain value
d0, one can choosed0 + 1 as the minimum embedding
dimension dL. Because of finite sampling, theexact self-
intersections in a reconstructed spacey with too small a
dimension would suddenly disappear when the dimension is
increased.E1 can be regarded as a diagnosis to deduce the
minimum embedding dimension from a givenfinite scalar time
series.

All realistic finite time series of interest are contaminated by
noise, round-off errors, and so forth. Moreover, both stochastic
and high-dimensional chaotic time series may result in conver-
gence ofE1(d) at a certain high dimensiond, and it is very
difficult to identify the origin of this convergence, that is,
whether the convergence arises from a high-dimensional chaos
or from a stochastic but finite time series. To discriminate
stochastic time series from high-dimensional chaos, Cao pro-
posed47,48 a supplemental diagnosisE2 defined by

where

E*(d) is relevant to how the nearest neighbors will, on average,
move away from one another in a finite timeτd in the
reconstructed space of a chosen dimensiond. If the time series
s(n) is driven by a stochastic system, the progress in time of
the variable should be almost independent of the previous value,
and one can expectE*(d) to be almost constant irrespective of
the choice ofd. Thus, the indicatorE2 will be approximately
unity, independently ofd. However, if s(n) arises from a
dynamical system,s(n) is expected to give rise to a largeE*(d)
at small values ofd (,dL) because of the existence of false
nearest neighbors, resulting in a significant dependence ofE2

on d for certain low values ofd where FNN still exist. Asd
increases,E*(d) will also increase because of a larger separation
τd, but after reaching the minimum embedding dimension (i.e.,
one that preserves the topological features of its original
manifold),E* is expected to be unaffected by the changed f
d + 1, resulting in the convergence ofE2 to approximately unity.

B. Average Mutual Information. Takens’ theorem implies
that the embedding dimension estimated by using time-delay
coordinates should be independent of the value ofτ. In practice,
it depends on the value ofτ because of unavoidable finite
precision (e.g., computer round-off errors) and the finite length
of the time series. This requires us to choose an appropriate
time delayτ for every observables: if τ is much shorter than
a characteristic time scale inherent to the system in question,
the successive pointsy(n), y(n + τ), y(n + 2τ)... in the delay-
time space will “collapse” onto a diagonal “region”y(n) =
y(n + τ) = y(n + 2τ)..., inside of which it might be impossible
or very hard to distinguish the points from one another because
of the limited, finite resolution ofs(n). That is, too short of aτ
means that the system cannot move about the state space enough
to produce, in practice, new information about the geometric
features of the state space. However, ifτ is too large, then the
successive points may become numerically tantamount to being
“random,” even ifs(n) originally arises from a deterministic
system with a finite dimensionality. That is, because of the
orbital instability inherent to chaotic systems, whenτ f very
large values, one cannot obtain the precision required to extract
the deterministic structure buried in the random time series and
to prevent exponential divergence.

Here, we chose a prescription50 based on the concept of
average mutual information in information theory. The average
mutual informationIAB between measurements A and B is
defined by

wherePAB(a, b) is the joint probability density thata and b
will be observed in measurements A and B, respectively, and
PA(a) and PB(b) are the corresponding individual probability
densities. IAB(a, b) represents the amount learned by the
observation ofa in measurement A aboutb in measurement B
(and vice versa) in bits. If these two observations from
measurements A and B are completely independent (i.e., ifPAB-
(a, b) ) PA(a) PB(b)), IAB(a, b) ) 0. The average mutual
information IAB, an average ofIAB(a, b) over all observations
{a} and{b}, thus implies the degree of mutual correlation of
the two measurements A and B. Fraser and Swinney50 used an
average mutual information,I(t) with the value ofs(n) as the
set of measurement A and the value ofs(n + t) as that of
measurement B,

They proposed to take the timetmin(≡ τ) of the first minimum
of I(t) as a characteristic time scale inherent to the system. It is
known32,33 empirically that this simple prescription usingI(t)
provides a good delay timeτ for practical purposes and works
better than using the linear autocorrelation function〈(s(n) -
sj)(s(n + t) - sj)〉 (sj is the time average ofs).

a(i, d) )
||yd+1(i) - yd+1(n(i, d))||

||yd(i) - yd(n(i, d))|| (3)

||yd(k) - yd(l)|| ) (∑
j)0

d-1

[s(k + jτ) - s(l + jτ)]2)1/2 (4)

E1(d) )
E(d + 1)

E(d)
(5)

E(d) )
1

N - τd
∑
i)1

N - τd

a(i, d) (6)

E2(d) )
E*(d + 1)

E*(d)
(7)

E*(d))
1

N - τd
∑
i)1

N-τd

|s(i + τd) - s(n(i, d) + τd)| (8)

IAB t ∑
a,b

PAB(a, b) IAB(a, b) (9)

) ∑
a,b

PAB(a, b) log2[ PAB(a, b)

PA(a) PB(b)] (10)

I(t) ) ∑ P(s(n), s(n + t)) log2[ P(s(n), s(n + t))

P(s(n)) P(s(n + t))] (11)
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C. Principal Component Analysis. There is no general
answer of what kinds of observable(s), coordinate(s), or projec-
tion(s) is(are) best to reveal the mechanism of complexity of
nonlinear dynamics of multidimensional chaotic systems (e.g.,
proteins and biological systems). We chose in this report the
so-called principal component (PC) analysis39-42 to determine
a set of linear, collective coordinates to best represent the most
fluctuations of the system. Suppose we haven data points
associated withp variables (e.g.,n instantaneous structures of
3N Cartesian coordinates ofN particles along an MD trajectory).
Let D be ann × p matrix whose elementsdim are defined as
the deviation of the (mass-weighted)ith Cartesian coordinate
Xi(tm) at a timetm (1 e m e n) from the time average〈Xi〉:

where

Then, using ap × p variance-covariance matrixR,

(whereDT is the transpose matrix ofD), whose second-moment
elementrij is

we can define a set of principal componentsQ by using the
eigenvectorsU that diagonalizeR:

The eigenvalueri, the ith element of the diagonal matrixr ,
represents the variance of theith collective coordinateQi:

The larger theri, the moreQi represents the configurational
protein fluctuations. Throughout this paper, the principal
componentsQ are sorted in order of decreasing variance,r1 g
r2,..., g rp. Note that a complementary approach, the so-called
principal coordinate analysis,43 that replaces eq 14 by ann × n
matrix, R ) 1/pDTD, has also been studied by Becker and
Karplus44 and Elmaci and Berry35 to visualize the complexity
of the multidimensional energy landscapes of proteins.

III. Model And Calculations

In the present paper, we apply these analyses to time series
over a wide range of temperatures of a coarse-grained, off-
lattice, 3-color, 46-bead protein model.34-36 The rigid bonds of
the original model by Honeycutt and Thirumalai37,38are replaced
with stiff but harmonic spring-like bonds. The model is
composed of hydrophilic (L), hydrophobic (B), and neutral (N)
beads interacting with the following potential:

In this potential, the van der Waals (vdW) interactions are used
to mimic the hydrophilic, hydrophobic, and neutral characters
of the beads:S1 ) S2 ) 1 for BB (attractive) interactions,S1

) 2/3 andS2 ) - 1 for LL and LB (repulsive) interactions, and
S1 ) 1 andS2 ) 0 for the other sets involvingN, expressing
only excluded-volume interactions. For the bond-stretching and
angle-bending force constants, we useKr ) Kθ ) 20ε(rad)-2,
with the equilibrium bond lengthr 0

i ) σ and the equilibrium
bond angleθ0

i ) 1.8326 rad. Throughout this paper, the units
of energy, temperature, bead mass, time, and frequency areε,
ε/kB, M, t* ) σxM/ε, and 1/t*, unless otherwise noted. The
sequence B9N3(LB)4N3B9N3(LB)5L folds into a lowest-energy
â-barrel structure with four strands.37,38 Folding into this
structure is ensured by setting up the dihedral potential so that
there are stiff trans preferences in the four strands, whereas at
the loop regions consisting of neutral beads, the dihedral
potential has a small barrier with no preference for any of the
three rotameric states. In particular,A ) B ) 1.2ε, except for
dihedral angles involving two or more neutral residues where
A ) 0 andB ) 0.2ε. This model, referred to as BLN hereafter,
exhibits highly frustrated potential energy topography10,36rather
than ideal funnel-like topography. We examine both the original
BLN model and a less-frustrated Goj-like BLN model studied
by Nymeyer et al.10 in which only 47 native contact pairs of
hydrophobic beads possess attractive vdW interactions, whereas
the interactions between all the other pairs are repulsive, which
is responsible for the excluded volume. For the constant-
temperature MD simulation, we used Berendsen’s method51 with
a time step of 0.0025t* in which the system is weakly coupled
to an external heat bath with a coupling time of 5t*. This method
does not involve any explicit stochastic variables in the equation
of motion and can control the temperature well with minimal
local disturbance to the system. Here, we focus on analyzing
the internal conformational dynamics of the system and
eliminate the total translational and rotational contributions.52

The trajectory calculations are performed over a wide range of
temperatures ranging from 0.2 to 5.0. The simulation at each
temperature is preceded by a 105-step equilibration starting from
the final conformation of the previous higher temperature. At
each temperature, the trajectory data are collected every 100
steps for up to 107 steps() 25 000t*).

IV. Results and Discussion

In Figures 1 and 2, representative time series of potential
energiesV(t) are shown atT ) 0.2, 0.72, and 2.0 for the BLN
model and atT ) 0.2, 0.6, and 2.0 for the Goj-like model. As
discussed by Nymeyer et al.,10 the Goj-like model manifestly
exhibits a two-state-like transition about the folding temperature,
T ) 0.6, because of its less-frustrated energy landscape. The
potential energy fluctuation of the BLN model is rather diffuse,
whereas one may expect the existence of “long-lived” memory
in the time series about the collapse temperature,T ) 0.72,
when compared with that of the other temperatures.53 Figures
3 and 4 show the so-called Allan variance54-56 of the time series

dim ) Xi(tm) - 〈Xi〉 (12)

〈Xi〉 )
1

n
∑
m)1

n

Xi(tm) (13)

R ) 1
n
DDT (14)

rij )
1

n
∑

m ) 1

n

(Xi(tm) - 〈Xi〉)(Xj(tm) - 〈Xj〉) (15)

RU ) Ur (UTU ) I ) (16)

Qi ) ∑
j)1

p

ujiXj (17)

V ) ∑
i

bonds

Kr(ri - r 0
i )2 + ∑

i

angles

Kθ(θi - θ 0
i )2

+ ∑
i

dihedral

[A(1 + cosΦi) + B(1 + cos 3Φi)]

+ ∑
i<(j-3)

nonbonded pairs

4εS1[( σ

Rij
)12

- S2( σ

Rij
)6]
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of the potential energies of these models at several temperatures.
The Allan varianceσA

2(N) is defined by

and measures the degree of nonstationarity of a given time series
s(t). If s(t) is stationary, the following scaling relation

should be satisfied, obeying the law of large numbers, which
guarantees the validity of the Wiener-Khinchin theorem. Ifs(t)
is nonstationary,γ < 0. These Figures demonstrate that, for
both the BLN and Goj-like models, significant nonstationary
features emerge about the collapse and folding temperatures in
V(t) but diminish as the system departs from these transition
temperatures. The emergence of the nonstationary feature is
more pronounced in the Goj-like model than in the BLN model.
In both models at these transition temperatures, the simple
scaling relationσ A

2 (N) ≈N- γ is obeyed for 0e t e 100.2t*()
1.6t*= 103 simulation steps), after which the indexγ changes

Figure 1. Potential energy fluctuations of the original BLN model. (a)T ) 0.2, (b)T ) 0.72, and (c)T ) 2.0.

Figure 2. Potential energy fluctuations of the Goj-like BLN model. (a)T ) 0.2, (b)T ) 0.6, and (c)T ) 2.0.

σ A
2(N) )

1

2〈(1

N
∑
i)1

N

s(i) -
1

N
∑
i)1

N

s(i + N))2〉 (18)

σ A
2(N) ≈ O(N-γ) (γ is a positive constant) (19)
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from positive (stationary regime:γ = -1.1 (BLN), γ = -1.2
(Goj-like)) to negative (nonstationary regime:γ = 0.60 (BLN),
γ = 0.78 (Goj-like)). The nonstationary regime becomes
stationary again near 100t*(∼105 steps) for the BLN model,
whereas it continues for even more than 105 steps for the Goj-
like model (this strong nonstationary behavior for the Goj-like
model was independent of the sampled trajectory, and only a
few trajectories among the randomly sampled 100 trajectories
exhibited the turnover from nonstationary to stationary regions
at ∼100-1000t*, like those of the BLN model).

By using the Allan variance, Seko and Takatsuka55 found in
Ar7 isomerization that a similar nonstationarity (i.e.,γ < 0)
also emerges at the transition temperature from solidlike to
liquidlike phases, whereas the simple scaling relationσ A

2 (N) ≈
N-γ (γ > 0) holds at the other temperatures. However, at the
Ar7 transition temperature, transitions between stationary and
nonstationary regimes, such as those observed in both protein
models, do not exist. This apparent distinction may arise from
the generic feature inherent to the hierarchical energy landscapes
in proteins. For short time scales, proteins move about only
within an individual rugged basin and exhibit local stationary
behavior due to the fast (chaotic) fluctuations. The longer the
time, the more the protein crosses between large basins, bringing
about large, slow fluctuations at the transition temperature. The
longer persistence of the nonstationarity of the Goj-like model
atTf compared with that of the original BLN model may indicate
that a less-frustrated funnel-energy landscape leads to longer
memory persistence of the process at large.

Figure 5 depicts the power spectraS(f) of the potential energy
fluctuations of the original BLN and the Goj-like model at the
collapse and folding temperatures, with

Both models exhibit a 1/f noise-like spectral density that can
be expressed as 1/f R, whereR ) 1.4 for the BLN model and
1.5 for the Goj-like model. It is noteworthy that in the case of
the Goj-like model this behavior persists over 3 decades of
frequency, extending into the low-frequency regions, whereas
for the BLN model, the 1/f-like spectrum extends for only 2
decades, with the crossover to white noise occurring at higher
frequencies. This supports the conclusions from the analysis of
the Allan variance that the nonstationarity of the Goj-like model
is enhanced at the transition temperature. Figure 6 presentsR
for both models as a function of temperature. The Goj-like model
exhibits a much sharper transition to a white-noise spectrum
than the BLN model as the temperature departs from the
transition temperature. This finding also mirrors the results
obtained from the Allan variance, in which the Goj-like model
exhibits a sharp transition to nonstationarity around the transition
temperature, whereas this transition is diffuse in the BLN model.
The appearance of 1/f noise has been linked by many authors
to the existence of multiple-relaxation processes or inter-
mittency.9,26,57-59 Marinari et al. show that 1/f noise also arises
from a random walk on a random self-similar landscape.60

However, Brownian motion on a simple double-well surface
would give 1/f 2 noise. To clarify the origin of the observed
power spectra, we compare the MD simulations with over-
damped Langevin dynamics simulations61 of up to 50 ns using
the same potentials. In this case, the nonstationary behaviors
(i.e., σ A

2(N) ≈ N- γ (γ < 0) andS(f) ≈ 1/fR of the potential
energy fluctuations) are not so pronounced withγ = -0.4
(BLN) ≈ - 0.2 (Goj-like) (γ = 0.2 (BLN) ≈ 0.15 (Goj-like) for
the stationary parts) at the transition temperatures and powers
of R ≈ 0.5-0.7 atT ) 0.2-5.0 for both models.62 This indicates
that the emergence of a 1/f-type spectrum is not due to Brownian
motion but that it has a different origin. One possible interpreta-
tion for the appearance ofR > 1 is the intermittent nature of
the nonstationary dynamics observed in the Allan variance
analysis. Intermittent dynamics yields 1/f 2 spectra when the
jump time is close to zero, but when the jumps have a finite
duration, a smaller exponent ofR < 2 is expected.26,58,59

Let us now examine how the principal components (PCs)
shed light on the multidimensional dynamics of proteins. Figure
7 shows the varianceσ i

2 of the PCQ1, Q2,...,Q12 series relative
to the total variance of the protein fluctuation, which is defined
as

at several temperatures for both models (r i (g0) is the ith
eigenvalue of the variance-covariance matrixR). It was found,
for both models, that 90% of the total configurational fluctua-
tions can be well represented in terms of about 10 principal
components at each temperature. AtT ≈ 0.2-0.4, most of the
system fluctuations are approximately localized on a few PCs
for both models. As the temperature increases, the system
fluctuations become more delocalized, spreading over a wider
range of the PCs. Note, however, that the number of PCs
required to represent the total configurational fluctuation of the
systems is largest about the transition temperatures,T ) 0.72
(BLN) and T ) 0.6 (Goj-like).

Next, how long does memory persist in the principal
componentsQ(t), and what are the characteristic time scales

Figure 3. Allan variance of potential energy fluctuations of the original
BLN model.

Figure 4. Allan variance of potential energy fluctuations of the Goj-
like BLN model.
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inherent to them? The average mutual informationIi(t) of the
individual principal componentQi(t) is one of the versatile
means of measuring the degree of the mutual correlation of
Qi(t0) and Qi(t + t0). Figure 8 depicts, as a representative
example,I10(t) as a (logarithmic) function of time atT ) 0.2-
5.0 for the Goj-like BLN model. The timestmin of the first
minimum of I10(t) are indicated by arrows.I10(t) has a longer
tail in t at T ) 0.6 than at the other temperatures, resulting in
a longertmin. Figure 9 shows the first minimum timetmin of
each PC for both the BLN and Goj-like models atT ) 0.2-5.0.
In general, one can expect that the longertmin, the longer the
memory persistence in the signalQi(t). Except for the PCs with
very small variances, whose indexes are greater than∼100 for
the BLN and∼80 for the Goj-like models,tmin values of almost
all the other PCs exhibit a longer increase at the transition
temperatures,T ) 0.72 (BLN) andT ) 0.6 (Goj-like), than do
those at the other temperatures.

Now, let us try to look deeply into the question of what is
the dimensionality of the state space, which is buried in the
complexity of the time series of the protein dynamics. Here we
apply Cao’s embedding technique to every principal-component
time series for the original BLN model over a wide range of

temperatures. Figure 10 showsE1(d) and E2(d) of several
principal components as a function of the tentative dimension
d. In this Figure, (a), (b), and (c) display the principal
componentsQ1-Q5, (d), (e), and (f) displayQ21-Q25, and (g),
(h), and (i) displayQ31-Q35 at T ) 0.2, 0.72, and 5.0,
respectively. The more the variance (eigenvalue of the matrix
R) of the PC decreases (i.e., the more the index of the PC
increases), the moreE2(d) flattens to unity, resulting in a random
time series with an “infinite” dimensionality. This implies that
even if one reaches a finite dimensionality in terms of theE1-
(d) such dimensionality should artificially arise from the
finiteness of the sampling length. An observation from the
embedding analysis that is perhaps even more striking appears
in the behavior at the collapse temperature. That is, compared
with the other temperatures, the model protein more likely
preserves nonrandom characteristics for a wider range of
principal components (i.e., the flattening ofE2(d) is more
suppressed). Figures 11 and 12 show, respectively, the minimum
of E2(d), E2min, and the minimum embedding dimensiondL of
each principal component at several temperatures. Here,dL is
determined by the convergence ofE1(d) to within 95% of unity.
E2min () min{E2(1), E(2),...,E2(d)}) may indicate the degree
of nonrandomness of the time series; asE2min goes to 1,E2(d)
becomes flatter independently ofd. Figure 11 shows that as
the temperature departs from the collapse temperature theE2min

values of all the PCs approach unity. The smaller the variances
of the PCs (i.e., as the index of the PCs increases), the faster
theE2min values converge. Figure 12 confirms the conclusions
from Figure 11: the larger the variance of the PC, the lower
the dimensionality necessary to reconstruct the state space, and
away from the collapse temperature, the dimensionality of the
state space increases.

What is the implication of the dimensiondL evaluated by a
scalarfinite time series of each principal component of thesame
system? In Takens’ theorem, the embedding dimensiond is a
global dimension equal to the number of (time delay) coordi-

Figure 5. Power spectrum of potential energy fluctuations at transition temperatures. (a) Original BLN model and (b) Goj-like BLN model.

Figure 6. PowerR of 1/f R as a function of temperature for the original
BLN model and the Goj-like BLN model.

Figure 7. Relative varianceσ i
2 of the principal componentsQ1, Q2,..., Q12. (a) Original BLN model and (b) Goj-like BLN model.
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nates necessary to unfold an arbitrary orbityd(t) from self-
intersections arising from a “wrong” projection to a lower-
dimensional space. If one measures several observables or
quantities from the same system to find the embedding
dimensiond, each measurement along with its time lags provides
a different nonlinear mapping of the original state-space
variablesx(t) into a d-dimensional reconstructed space. Each
should, in principle, reach the same global dimension inherent
to the underlying dynamical structure under certain conditions
(e.g., an infinite sampling length and an infinitesimal resolution).
For a finite time evolution, however, each measurement may
see different local topographies of the reconstructed state space
and result in a differentlocal dimensionality (dL e d).

In principle, the time series of the principal components
analyzed in this article should not be random because all the
time series originally arise from the deterministic equation of
motion. In this report, at each temperature for both of the
models, we analyzed the time series collected every 100
simulation steps for up to 107 steps, that is, we could access
the time seriesQ(t) not with an infinitesimal resolution but with
only a finite resolution.

The flattening observed inE2(d) and the decreases oftmin

for some principal components with small variances that are
enhanced when departing from the transition temperature
indicate that the fast chaotic fluctuations of the principal
components cause theQ(t) to “lose” their memory of the process
quickly, resulting in a random stochastic time series. One cannot
extract the geometric information of the underlying dynamical
structure from any observable composed of such “lost” degrees
of freedom.

Note that the corresponding time seriesQ(t) collected at every
step exhibits a strongd-dependency ofE2(d) and yields a finite

dimension at these temperatures. At temperatures much lower
thanT ) 0.2, where the system can move about a single local
minimum only, sayT ) 0.01, the system motion is well
represented by normal modes (i.e., fully regular dynamics), all
the E2(d) exhibit strongd-dependencies, and both theE1(d)
and E2(d) quickly converge to unity at a small dimension,
irrespective of the time period used to record the time series.

Almost all realistic observables of interest are always
contaminated by noise and computer round-off errors with a
finite resolution of observations and are sampled up to a certain
finite time. It is not useful to inquire into the absolute value of
the embedding dimensiondL from a given finite time series,
especially for high-dimensional systems. However, an analysis
of the dependence ofdL on, say, temperature, the choice of
coordinates, projections, or observables can shed light on the
dynamical structure of multidimensional complex systems. For
high-dimensional systems of more than a few tens degrees of
freedom, it might be impossible to attain sufficient sampling to
find the nearest neighbors to a pointyd(n) besides the adjacent
yd(n + 1) or yd(n - 1) points whend becomes very large,
resulting in an apparent convergence at a certain high dimen-
sionality, but still smaller than the desired high dimension. One
plausible prescription might be to replace the searching of the
nearest neighbors at every (recorded) step by searching at every
10 or more (recorded) steps.63 Similarly, such a sampling
problem arising from an insufficient search for the nearest
neighbors that should converge to an adjacent point may also
make it difficult to interpret the difference ofdL of several
measurements from the same system. That is, different delay
times τ of different measurements from the same system
effectively yield different sampling lengths, which may result
in an apparent difference ofdL arising not from the different
local dimensionality of the dynamical structure but rather from
the difference of sampling insufficiency. We examined the
minimum embedding dimensiondL of each principal component
with a delay timeτ at each temperature whose sampling length
Nsamp was rescaled so as to be approximately equal to the
minimum sampling length ofQ1(t) at the transition temperature
Tc with the maximum delay timeτmax:

The results using the rescaled sampling length are qualitatively
similar to the original ones, that is, the larger the variance of
the PC, the lower the dimensionality, and away from the collapse
temperature, the dimensionality of the PC increases. Here, the
average numbers of nearest neighbors (besides adjacent points)
of each principal component measurement are likely to be equal

Figure 8. Average mutual information of the principal componentQ10-
(t), I10(t), for the Goj-like BLN model atT ) 0.2-5.0. The horizontal
axis represents the logt, along which each arrow indicates the time of
the first minimum ofI10(t) at each temperature.

Figure 9. First minimum timeτ of the average mutual information of all principal components. (a) Original BLN model and (b) Goj-like BLN
model.

Nsamp=
τ

τmax
× 105 (22)
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to one other at all temperatures, except that atTc they are
relatively lower than at the other temperatures. This indicates
that the observed distinctions indL at different temperatures
may reflect differences in the local dimensionality of the state
space structures and differences in some nonstationary features
of the finite time series (i.e., the nonstationarity at the collapse
transition temperature might require a longer time in comparison
with the other temperatures to obtain reliable sampling of the
nearest neighbors). Additional analysis is needed to inquire
further into the problem.

V. Concluding Remarks

The law of kinetics describes the average behavior of
populations of a state. The direct observation27-29 of dynamical
behavior of a single molecule, buried deeply in an ensemble
average, should provide us with a new magnifying glass that
enables us to “see” the dynamical structure of complex
systems.64 The nonlinear time-series analysis is one of the means
to address this problem. In this article, we analyzed time series
of potential energy fluctuations and principal components at
several temperatures for two kinds of 46-bead models having
two distinctive energy landscapes. The less-frustrated funnel-
energy landscape (Goj-like BLN model) brings about stronger
nonstationary behavior with the significant emergence of 1/f
noise structure at the folding temperature than the other, rather
frustrated energy landscape (original BLN model) at the collapse
temperature. We also employed Cao’s embedding analysis using
the principal components of the original BLN model. The fast
fluctuations with small amplitudes make the time series of∼70-
80% of the principal components almost random in only 100
simulation steps. It was found that the closer the temperature is
to the collapse temperature, the more the stochastic feature of
the principal components is suppressed through a wider range
of degrees of freedom.

Principal component analysis (PCA) is one of the versatile
means used to address the question of which coordinate(s) or
projection(s) is(are) best to trace the underlying mechanism of
dynamics in multidimensional complex systems. To what extent
can the PCA actually mimic the dynamical behaviors of a set
of original variables in terms of a reduced set of the new
variables? The answer may depend on the degree of closeness
of the distribution of the original data set to a Gaussian
distribution. If the protein moves about only within a single
basin, PCA is expected to work quite well41,42 in describing
multidimensional dynamical behaviors by using a reduced small
set of the PCs (e.g., atT ) 0.2 in Figure 7a and b). As the
temperature increases above the transition temperature, the
protein may find one or more reaction paths from one large
basin to another and the transitions may take place through the
curved or winding path(s). It is difficult for the standard PCA

Figure 10. E1(d) andE2(d) of several principal components as a function of the tentative dimensiond at T ) 0.2, 0.72, and 5.0 for the original
BLN model. (a) Q1-Q5 at T ) 0.2, (b)Q1-Q5 at T ) 0.72, (c) Q1-Q5 at T ) 5.0, (d) Q21-Q25 at T ) 0.2; (e) Q21-Q25 at T ) 0.72, (f) Q21-Q25

at T ) 5.0, (g) Q31-Q35 at T ) 0.2, (h) Q31-Q35 at T ) 0.72, and (i) Q31-Q35 at T ) 5.0.

Figure 11. Minimum embedding dimensiondL estimated by the
principal components atT ) 0.2, 0.72, and 5.0 for the original BLN
model.

Figure 12. Minimum value ofE2(d) of the principal components atT
) 0.2, 0.72, and 5.0 for the original BLN model.

10906 J. Phys. Chem. A, Vol. 106, No. 45, 2002 Matsunaga et al.



algorithm to represent a curved or winding distribution in a
reduced small set of the PCs, even while the PCA could still
draw a rough sketch of the basin-to-basin transitions.

In this article, we scrutinized the dimensionality of the state
space by using univariate time series (e.g., principal components)
of the original BLN model. However, the development of time
series analysis to multivariate observables31,65(e.g., embedding
analysis using input-output data48,63) is desired in order to
extract a good projection, thus revealing the dynamical structure
from a limited set of observables. It is known66,67 that the
application of embedding analysis to time series involving
intermittency, like those of the Goj-like model, is not straight-
forward and involves many problems that need to be overcome.
The embedding analysis reconstructs the phase space in terms
of the delay-time coordinate system, a complicated, abstract
object of which one may not have a direct interpretation in terms
of the phase-space variables. The Lie transform,23 which
transforms phase-space variables at any timet + τ, X(t + τ),
into functions ofX(t) at timet, can shed light on the implications
of this abstract object, in principle, if the time evolution ofX(t)
arises from a Hamiltonian system. These are some of the
subjects to be addressed in the future.
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