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We analyze time series of potential energy fluctuations and principal components at several temperatures for
two kinds of off-lattice 46-bead models that have two distinctive energy landscapes. The less-frustrated “funnel”
energy landscape brings about stronger nonstationary behavior of the potential energy fluctuations at the
folding temperature than the other, rather frustrated energy landscape at the collapse temperature with a
significant 1f %(oc ~ 1.5) noise structure and a significant deviation of the Allan variance from the law of
large numbers. The principal components are analyzed by an embedding nonlinear time-series analysis. The
fast fluctuations with small amplitudes ef70—80% of the principal components cause the time series to
become almost “random” in only 100 simulation steps. However, the stochastic feature of the principal
components tends to be suppressed through a wide range of degrees of freedom at the transition temperature.

I. Introduction the MSD has a power-law time dependence with an exponent

Th " What kinds of hani tein int of nonunity (about 0.5 for times shorter than 100 ps and 1.75
€ questions Yvhat kinds of mechanisms carry a protein into ¢, longer times). This indicates that protein motions are more

a unique native state? and What is the best reaction coordinate . :
. . ; X r n ver | nfigurational han a normal
to describe the dynamics of protein folding? have been one of Suppressed and cover less configurational space than a norma

S : . Brownian process on a short time scale, but they become more
the most intriguing subjects over the past decaddeRrotein . .
. ) - enhanced as a faster, well-concerted motion on a long time scale.
folding may be well interpreted as a normal Brownian process . .
. - . At a temperature where unfolding may occur in nanoseconds,
of a few collective coordinates on a thermodynamic potential

“ " e | Brownian dynamics seemingly emerges along the
such as the “funnel” landscage® The diffusive nature may, norma . . .
however, depend on the choice of the viewpoint from which MODCs. Plotkin and Wolynésstudied, using an overdamped

one might see the dynamical events. The fraction of native genergllzed Langevin formglatlon VYIUQ as the. reaction
contact9Q is often taken as a reaction coordinate or global order coordinate, hovy non-Markovian conflguratlongl diffusion en-
parameter. However, it is not self-evident, as discussed by hances the_ folding rate over the Kramers rate in aceMTrg,
Karplus? thatQ is always appropriate to represent the progress (~1.6) regime (vyheré} andTg are, respectively, the folding

of folding, and many different sets of contacts may vyield the _and glass transition temperatures) and ad_dressed how_ the
same value. There exists the nontrivial question, Are motions |nclus_|on O_f the other degree_s_of freedom |ntq _th_e reaction
along this coordinat€ actually slow enough to average out coordlngte is essential for obtammg the optimal d|y|d|ng sgrface
any dynamical contribution of all the other degrees of freedom, fOr folding. Takano et af. showed in a two-state-like hefix
resulting in an effective single, dominant free-energy barrier of Il transition of a helical polypeptide that & hbise structure
folding? Garéa and Hummér showed how non-Brownian, of the potential energy fluctuations emerges at the transition
strange kineticsemerge in multibasin dynamics trajectories t€Mperature whereas away from that temperature the pawer
generated by all-atom molecular dynamics (MD) simulations Of 1/f goes to zero, indicating a transition to a Markovian
of cytochrome ¢ in aqueous solution at 36850 K for at least ~ Process. Nymeyer, Géegiand Onuchi€® investigated, using

1.5 ns. They analyzed the mean square displacement (MSD)an off-lattice 46-bead model that folds |ntoﬂabarrgl native
autocorrelation function in terms of molecule optimal dynamic Structure, how the energy landscape of the protein affects the
coordinates (MODC). MODCs are collective coordinates derived folding kinetics. They found that the folding rate on a minimally
by a linear transformation of theNBCartesian coordinates of frustrated funnel landscape exhibits single-exponential behavior
the protein systemN = the number of atoms in the protein) ~at Tt and that nonexponential kinetics does not emerge until
that best represent the configurational protein fluctuations (in a the temperature is much lower th@ whereas that on a highly
least-squares sense). They found that the MSD along some slowfrustrated landscape starts to deviate from exponential behavior
MODCs manifestly exhibits non-Brownian dynamics between at just below the collapse temperatdig where the kinetics is

a temperature at which the protein is in the native state and acontrolled by escape rates from different low-lying energy traps.
temperature above the melting point, where the hydrophobic From such distinctive kinetics, they postulated that good folding
effect is large and mostly enthalpic. In this temperature range, sequences must be associated with such a minimally frustrated
landscape and must have a diffuse transition state in order to
T Part of the special issue “R. Stephen Berry Festschrift”. be robust against variations in the protein environment and
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decades have shed light on the mechanics of passage througbf the state space variables(f), x2(t),..., X4(t)) and the one-
the saddles in the potential energy surfaces. Berry and co-to-one map ki, F»,..., F4), respectively. It is supposed that all
workersg~15 have analyzed local Liapunov functions and degrees of freedom more or less influence one another through
Kolmogorov entropies of several atomic clusters with three to explicit or implicit couplings and that thel-dimensional
seven atoms and have revealed that near the threshold energiasanifold is compact and smooth in the state spadest there

at which the system can just cross the saddle trajectories passingxist a scalar quantitg(t) with infinitesimal precision, and
through the saddle become collimated and more regularized,suppose thad(t) is derived by a smooth transformatirfrom
posing approximate local invariants of motion, than trajectories x(t) (i.e., s(t) = h(x(t)). The embedding theorem states that, in
in the potential well in which the dynamics is fully chaotic. principle, from the knowledge of the infinite time seri&f an
Recently, Komatsuzaki and Betfy?3 clarified that irrespective  equivalent state spaggt) can be reconstructed that preserves
of the system, even at higher energies above the threshold wherehe differential properties of the state space of the original
mode-mode mixing wipes out most invariants of motion, one multivariate variables(t). A time-delay coordinate system
can, nonetheless, extract a ballistic reaction coordinate thatyy(n),

rotates away almost all recrossings to single crossings in the

region of first-rank saddles. Many nonstochastic, dynamical y4(n) = (), s(n + 7),>+, s(n + (d — 1)) 2)
transitions have also been reported in simulation studies on phase

transitions of small clustes,the Lennard-Jones liqui},and
liquid water?® For example, the transitions among the inherent
structures of liquid water occur intermittently not as simple
diffusive motions of individual molecules but as cooperative
dynamical processes with collective molecular motions.

The observed kinetics of protein folding is a consequence of
averaging over an ensemble of many activated barrier crossing
with multiple time scales. The future of the recent remarkable
experimental developments in single-molecule spectroéoidy
holds great promise in revealing the complexity of protein
dynamics. One of the stimulating subjects is, for example, If
non-Brownian dynamics that is somehow inherent to the
individual molecule exists, can it assist the robustness of protein
folding® and/or function® in addition to the design of the energy
landscape that the protein might have acquired by mutations?

The purpose of the present article is to scrutinize how time
series of scalar quantities can shed light on the complexity of
protein dynamics by means of several nonlinear time-series
analyses! 32 The analyses we use here have been originally
developed in the field of nonlinear science to discriminate
chaotic and stochastic dynamics and are, in principle, applicable
to any time series of any observable. As an illustrative vehicle,
we use an off-lattice 46-bead mode}* 38 that folds into a
p-barrel native structure. The topography of the potential energy
landscape for this model has been well surveyed in terms of its
disconnectivity grapRé We investigate the complex dynamics
involving multibarrier crossings using constant-temperature MD
simulation and analyze the time series of the projections of the
Cartesian coordinates of each bead into the principal com- S .
ponentd-42 at several temperatures. observatloq first requlggiﬁus to reconstruct the state space from

The remainder of this article is organized as follows. In the scalar time serié&?34 ]
section 11, we describe our method and technique. In section A. Averaged False Nearest NeighborsWe chose Cao’s
Ill, we describe the model and the calculations. We present our algorithnt’#%to determine the minimum embedding dimension
results and discussion in section IV. Finally, we give some d. for a given (finite) scalar time seriest) and a given delay

has been often used to reconstruct the state space, where the
d-dimensional state-space variablggn) are represented in a
discrete form with a time interval without loss of generality.
How can one find the unknown dimensidfrom the time series

of s(n)? If there actually exists a dynamical system behind the
observation o§(t), any orbity should never cross with itself in
She state space because of the unigqueness of the solution.
(Remember that there exists no self-intersection in the phase
space of Hamiltonian systems.) If a smaller dimension to
reconstruct the state space is used, the grhiill have self-
intersections and cannot be “unfolded” because of the insuf-
ficient size of the chosen dimensionality. In other words, if a
minimum dimension to unfold the orbit in the time-delay
coordinate system is reached, this implies that a state gpace
equivalent to the originat can be reconstructed in such a sense
that it has the same differential properties of the original
manifolds. The embedding theorem holds irrespective of the
choice of the delay time, but, in practice, the observed time
series are always contaminated by noise, computer round-off
errors, or a finite resolution of observations and are sampled
up to a certain finite time. In this regard, the dimension, referred
as the minimum embedding dimensidn hereafter, reached
for the reconstructed spageis not necessarily equal to the
dimensiond of the original state space &f The choice of delay
time 7 and the determination of the minimum embedding
dimensiond. have been the central subjects in applying this
method to any realistic time series. For example, to elucidate
the Liapunov exponent and spectra from an experimental

concluding remarks in section V. time r. This algorithm is based on the concept of “false nearest
neighbors (FNN)™® According to Takens' theorem, if the
Il. Theory correct minimum embedding dimensidn is chosen, then the

nearest-neighbor point of an arbitrary point along an orbit in
state spacg exists only because of the topological properties

e . Hrathi of the underlying manifold. However, if the chosen dimension
the observations? The so-called embedding thedratmibuted g smaler tharu,, nearest neighbors in the reconstructed space

to Taken$® provides us with a clue to the answer of such a are located because of the “false” projections onto a wrong

question. Suppose that we have a nonlinear dynamical systemyjmensionality. These false nearest neighbors are eliminated as
(i.e., first-orderd-dimensional ordinary differential equations) e gimension increases. To diagnose the convergence of the
dimensionality needed to eliminate the FNN and find the
m = F(x(t)) 1) minimum embedding dimension, Cao proposed the following
dt practical scheme: legy(n(i, d)) be the nearest neighbor of a
point y4(i) in the d-dimensional reconstructed space (herés
wherex(t) andF are thed-dimensional vector representations designated as a tentative dimension) and define the quantity

What can we learn or deduce from an obsersealartime
series about thenultivariate state (or phase) space buried in
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ai. d) = Yaa2()) = Yaea(nCi, )
' Yq(i) — ya(n(i, d)II

(i=1,2,..,N— zd) where||-|| is a measure of the Euclidean

©)

distance (e.g., the maximum norm). In this paper, we employed

the Euclidean norm

d-1

1Yo(K) = (DIl = (Z[qk +in) = sl +j0)" (@)
£

a(i, d) describes how theth point along the orbit in the
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on d for certain low values ofl where FNN still exist. A
increasest"(d) will also increase because of a larger separation
7d, but after reaching the minimum embedding dimension (i.e.,
one that preserves the topological features of its original
manifold), E" is expected to be unaffected by the chadge

d+ 1, resulting in the convergencelg2 to approximately unity.

B. Average Mutual Information. Takens’ theorem implies
that the embedding dimension estimated by using time-delay
coordinates should be independent of the value bf practice,
it depends on the value af because of unavoidable finite
precision (e.g., computer round-off errors) and the finite length
of the time series. This requires us to choose an appropriate

d-dimensional reconstructed space moves away from its nearest; delayz for every observable if 7 is much shorter than

neighbor when the tentative dimension increases by 1. To
diagnose the convergence of the dimensionality required to

“unfold” the whole orbity(t), one can follow how an indicator
E1l changes as increaseskEl is defined by the ratio of the
mean value of alla(i, d) values on thed-dimensional and
(d + 1)-dimensional spaces:

Ed+ 1
ﬂ@zia%z (5)
where
1 N —zd .
am_N_Td;a@m (6)

WhenEL(d) converges to unity fod larger than a certain value
do, one can choosal, + 1 as the minimum embedding
dimensiond,. Because of finite sampling, thexact self-

intersections in a reconstructed spagewith too small a

a characteristic time scale inherent to the system in question,
the successive pointgn), y(n + 1), y(n + 27)... in the delay-
time space will “collapse” onto a diagonal “region(n) =
y(n + 7) = y(n + 27)..., inside of which it might be impossible
or very hard to distinguish the points from one another because
of the limited, finite resolution o§(n). That is, too short of a&
means that the system cannot move about the state space enough
to produce, in practice, new information about the geometric
features of the state space. However; i$ too large, then the
successive points may become numerically tantamount to being
“random,” even ifs(n) originally arises from a deterministic
system with a finite dimensionality. That is, because of the
orbital instability inherent to chaotic systems, whenr> very
large values, one cannot obtain the precision required to extract
the deterministic structure buried in the random time series and
to prevent exponential divergence.

Here, we chose a prescriptfdnbased on the concept of
average mutual information in information theory. The average
mutual informationlag between measurements A and B is

dimension would suddenly disappear when the dimension is defined by

increasedE1 can be regarded as a diagnosis to deduce the

minimum embedding dimension from a givenite scalar time
series.

All realistic finite time series of interest are contaminated by
noise, round-off errors, and so forth. Moreover, both stochastic
and high-dimensional chaotic time series may result in conver-

gence ofE1(d) at a certain high dimensiod, and it is very
difficult to identify the origin of this convergence, that is,

lag = ZPAB(av b) Ixs(a, b) 9)
Pu(@b)l Pra(@. D (10)

= a, (0] —

g Do

whether the convergence arises from a high-dimensional chaoswhere Pag(a, b) is the joint probability density thaa and b
or from a stochastic but finite time series. To discriminate will be observed in measurements A and B, respectively, and
stochastic time series from high-dimensional chaos, Cao pro-Pa(a) and Pg(b) are the corresponding individual probability

posed’“8a supplemental diagnosi2 defined by

E(d+1)
2(d) =———=
E2(d) £ (7)
where
N—zd
E*(d)= |s(i + 7d) — s(n(i, d) + zd)| (8)
N—1zd &

densities. Iag(a, b) represents the amount learned by the
observation ofrin measurement A abolitin measurement B
(and vice versa) in bits. If these two observations from
measurements A and B are completely independent (iRagif

(a, b) = Pa(a) Ps(b)), Ias(a, b) = 0. The average mutual
informationlag, an average ofag(a, b) over all observations
{a} and{b}, thus implies the degree of mutual correlation of
the two measurements A and B. Fraser and Switthesed an
average mutual information(t) with the value ofs(n) as the
set of measurement A and the value sof + t) as that of

E*(d) is relevant to how the nearest neighbors will, on average, meéasurement B,

move away from one another in a finite timel in the
reconstructed space of a chosen dimensidifithe time series

s(n) is driven by a stochastic system, the progress in time of
the variable should be almost independent of the previous value,

and one can expeéf (d) to be almost constant irrespective of
the choice ofd. Thus, the indicatoE2 will be approximately
unity, independently ofd. However, if s(n) arises from a
dynamical systeng(n) is expected to give rise to a lar@&(d)

at small values ofl (<d,) because of the existence of false
nearest neighbors, resulting in a significant dependende of

P(s(n), s(n + 1))
P(s(n)) P(s(n + 1))

They proposed to take the timign(= 7) of the first minimum

of I(t) as a characteristic time scale inherent to the system. It is
knowr?2:33 empirically that this simple prescription usir)
provides a good delay timefor practical purposes and works
better than using the linear autocorrelation functigsn) —
S)(s(n + t) — 9O(S is the time average o).

1) = P(s(n), s(n+1)) |092’ (11)
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C. Principal Component Analysis. There is no general bonds ) angles _
answer of what kinds of observable(s), coordinate(s), or projec- V= z K.(r, — r{))2 + Z Ko(6;, — 0'0)2
tion(s) is(are) best to reveal the mechanism of complexity of i [
nonlinear dynamics of multidimensional chaotic systems (e.g., dihedral
proteins and biological systems). We chose in this report the + z [A(1 + cos®,) + B(1+ cos 3D,)]

I

so-called principal component (PC) analy$i4? to determine
a set of linear, collective coordinates to best represent the most .

. L nonbonded pairs o\12 RAL
fluctuations of the system. Suppose we havelata points + des||—| - sf—
associated witlp variables (e.g.n instantaneous structures of i<;_3) R R
3N Cartesian coordinates bfparticles along an MD trajectory). ! !
Let D be ann x p matrix whose elementd, are defined as |n this potential, the van der Waals (vdW) interactions are used
the deviation of the (mass-weighteddh Cartesian coordinate  to mimic the hydrophilic, hydrophobic, and neutral characters

Xi(tm) at a timety (1 < m < n) from the time averagéxil of the beads:S, = S, = 1 for BB (attractive) interactionss,
=2/3andS; = — 1 for LL and LB (repulsive) interactions, and
d,, = Xi(t,) — X0 (22) S = 1 and$; = 0 for the other sets involving|, expressing
only excluded-volume interactions. For the bond-stretching and
where angle-bending force constants, we lise= Ky = 20¢(rad) 2,

with the equilibrium bond length, = o and the equilibrium
10 bond anglefl, = 1.8326 rad. Throughout this paper, the units
X[= —in(tm) (13) of energy, temperature, bead mass, time, and frequency, are
Ni= elkg, M, t = ov/M/e, and 1f', unless otherwise noted. The
sequence BN3(LB)4N3BgN3(LB)sL folds into a lowest-energy
Then, using g x p variance-covariance matriR, S-barrel structure with four strand$3® Folding into this
structure is ensured by setting up the dihedral potential so that
there are stiff trans preferences in the four strands, whereas at
the loop regions consisting of neutral beads, the dihedral
potential has a small barrier with no preference for any of the
(whereDT is the transpose matrix @), whose second-moment  three rotameric states. In particuldr= B = 1.2, except for
elementr;; is dihedral angles involving two or more neutral residues where
A =0 andB = 0.2. This model, referred to as BLN hereatfter,
10 exhibits highly frustrated potential energy topogral§t¥rather
ry=- z Xi(tw) — DXDX(ty — XD (15) than ideal funnel-like topography. We examine both the original
Mn=1 BLN model and a less-frustrated"@ike BLN model studied
by Nymeyer et al? in which only 47 native contact pairs of
we can define a set of principal compone@sby using the hydrophobic beads possess attractive vdW interactions, whereas

1

R="
n

DD’ (14)

eigenvectord) that diagonalizeR: the interactions between all the other pairs are repulsive, which
is responsible for the excluded volume. For the constant-
RU = Ur(UTU =1) (16) temperature MD simulation, we used Berendsen’s méthaith

a time step of 0.0025in which the system is weakly coupled
to an external heat bath with a coupling time 6f Fhis method
does not involve any explicit stochastic variables in the equation
of motion and can control the temperature well with minimal
D local disturbance to the system. Here, we focus on analyzing
Q=SuX (17) th_e _mternal conformatlon_al dynamics _of the system and

]Z ! eliminate the total translational and rotational contributiehs.
The trajectory calculations are performed over a wide range of
temperatures ranging from 0.2 to 5.0. The simulation at each
temperature is preceded by &>H0ep equilibration starting from
the final conformation of the previous higher temperature. At
each temperature, the trajectory data are collected every 100
steps for up to 10steps& 25 00Q").

The eigenvalue;, the ith element of the diagonal matrix
represents the variance of tite collective coordinate);:

The larger ther;, the moreQ; represents the configurational
protein fluctuations. Throughout this paper, the principal
component®) are sorted in order of decreasing variangex
ra,..., = rp. Note that a complementary approach, the so-called
principal coordinate analysfdthat replaces eq 14 by anx n
matrix, R = %,D'D, has also been studied by Becker and

Karplus** and Elmaci and Ber# to visualize the complexity IV. Results and Discussion

of the multidimensional energy landscapes of proteins. In Figures 1 and 2, representative time series of potential
energiesV(t) are shown af = 0.2, 0.72, and 2.0 for the BLN
1. Model And Calculations model and al = 0.2, 0.6, and 2.0 for the Glike model. As

discussed by Nymeyer et af.the Golike model manifestly

In the present paper, we apply these analyses to time serieexhibits a two-state-like transition about the folding temperature,
over a wide range of temperatures of a coarse-grained, off-T = 0.6, because of its less-frustrated energy landscape. The
lattice, 3-color, 46-bead protein modét36 The rigid bonds of potential energy fluctuation of the BLN model is rather diffuse,
the original model by Honeycutt and Thirumé&laiare replaced whereas one may expect the existence of “long-lived” memory
with stiff but harmonic spring-like bonds. The model is in the time series about the collapse temperatlires 0.72,
composed of hydrophilic (L), hydrophobic (B), and neutral (N) when compared with that of the other temperatdfe=igures
beads interacting with the following potential: 3 and 4 show the so-called Allan variaPt&® of the time series
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Figure 1. Potential energy fluctuations of the original BLN model. Tar 0.2, (b) T = 0.72, and (c)T = 2.0.
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Figure 2. Potential energy fluctuations of the"@ike BLN model. (a)T = 0.2, (b) T = 0.6, and (c)T = 2.0.

200 250

of the potential energies of these models at several temperaturesshould be satisfied, obeying the law of large numbers, which

The Allan variances’(N) is defined by

ZN—EWN i—EN i+N
GA()_Z N|:S() N.:S( )

and measures the degree of nonstationarity of a given time series o pronounced in the Glike model than in the BLN model.

T s

s(t). If s(t) is stationary, the following scaling relation

gaN) ~ O(N77)

(y is a positive constant) (19)

guarantees the validity of the WiengKhinchin theorem. I§(t)

is nonstationaryy < 0. These Figures demonstrate that, for
both the BLN and Gdike models, significant nonstationary
features emerge about the collapse and folding temperatures in
V(t) but diminish as the system departs from these transition

temperatures. The emergence of the nonstationary feature is

In both models at these transition temperatures, the simple
scaling relations4(N) ~N~ 7 is obeyed for 0< t < 10P&" (=
1.6"= 10° simulation steps), after which the indgxchanges
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Both models exhibit a 1/noise-like spectral density that can
be expressed asf¥ wherea = 1.4 for the BLN model and
1.5 for the Gelike model. It is noteworthy that in the case of
the Golike model this behavior persists over 3 decades of
frequency, extending into the low-frequency regions, whereas
for the BLN model, the Flike spectrum extends for only 2
decades, with the crossover to white noise occurring at higher
frequencies. This supports the conclusions from the analysis of
the Allan variance that the nonstationarity of the-l&e model
is enhanced at the transition temperature. Figure 6 presents
for both models as a function of temperature. Theli& model
exhibits a much sharper transition to a white-noise spectrum
Figure 3. Allan variance of potential energy fluctuations of the original  than the BLN model as the temperature departs from the
BLN model. transition temperature. This finding also mirrors the results
obtained from the Allan variance, in which the -Gke model
exhibits a sharp transition to nonstationarity around the transition
temperature, whereas this transition is diffuse in the BLN model.
The appearance of fioise has been linked by many authors
to the existence of multiple-relaxation processes or inter-
mittency?26:57-59 Marinari et al. show that Lhoise also arises
from a random walk on a random self-similar landscépe.
However, Brownian motion on a simple double-well surface
would give 1f2 noise. To clarify the origin of the observed
power spectra, we compare the MD simulations with over-
damped Langevin dynamics simulati&hsf up to 50 ns using
the same potentials. In this case, the nonstationary behaviors
(i.e., ai(N) ~ N~ 7 (y < 0) andSf) ~ 1/f* of the potential
Figure 4. Allan variance of potential energy fluctuations of the-Go  energy fluctuations) are not so pronounced wijth= —0.4
like BLN model. (BLN) ~ — 0.2 (Golike) (y ~ 0.2 (BLN) ~ 0.15 (Golike) for

the stationary parts) at the transition temperatures and powers
from positive (stationary regimey =~ —1.1 (BLN),y = —1.2 of o~ 0.5-0.7 atT = 0.2-5.0 for both model&? This indicates
(Go-like)) to negative (nonstationary regimeg:= 0.60 (BLN), that the emergence of afype spectrum is not due to Brownian
y = 0.78 (Golike)). The nonstationary regime becomes motion but that it has a different origin. One possible interpreta-
stationary again near 100~10° steps) for the BLN model,  tion for the appearance af > 1 is the intermittent nature of
whereas it continues for even more thar? $teps for the Go  the nonstationary dynamics observed in the Allan variance
like model (this strong nonstationary behavior for the-iBe analysis. Intermittent dynamics yieldsf4/spectra when the
model was independent of the sampled trajectory, and only ajump time is close to zero, but when the jumps have a finite
few trajectories among the randomly sampled 100 trajectories duration, a smaller exponent of < 2 is expected® 5859
exhibited the turnover from nonstationary to stationary regions | ot us now examine how the principal components (PCs)

atglOO_—lOt(?](l*Allilke tho§e of thSe ELN r(rj]c')rdekl).tsﬁjk di shed light on the multidimensional dynamics of proteins. Figure
y using theé Allan variance, Sexo and 1aka aund in 7 shows the variano@i2 of the PCQs, Q,..., Q12 Series relative

Ary isomerization that a S|r_n_|lar nonstationarity ('-?-5_ 0.) to the total variance of the protein fluctuation, which is defined
also emerges at the transition temperature from solidlike to

liquidlike phases, whereas the simple scaling reIadié(N) ~

N=7 (y > 0) holds at the other temperatures. However, at the r

Arz transition temperature, transitions between stationary and o2= v « 100% 1)

nonstationary regimes, such as those observed in both protein !

models, do not exist. This apparent distinction may arise from Zrk

the generic feature inherent to the hierarchical energy landscapes =

in proteins. For short time scales, proteins move about only

within an individual rugged basin and exhibit local stationary at several temperatures for both modeis (£0) is theith

behavior due to the fast (chaotic) fluctuations. The longer the eigenvalue of the varianegovariance matriR). It was found,

time, the more the protein crosses between large basins, bringingor both models, that 90% of the total configurational fluctua-

about Iarge, slow fluctuations at the transition temperature. ThEtions can be well represented in terms of about 10 principa|

longer persistence of the nonstationarity of thellke model components at each temperature TAt 0.2—0.4, most of the

atTs compared with that of the original BLN model may indicate  system fluctuations are approximately localized on a few PCs

that a less-frustrated funnel-energy landscape leads to longekor hoth models. As the temperature increases, the system

memory persistence of the process at large. fluctuations become more delocalized, spreading over a wider
Figure 5 depicts the power spec8d) of the potential energy  range of the PCs. Note, however, that the number of PCs

fluctuations of the original BLN and the Gike model at the  yequired to represent the total configurational fluctuation of the

2
log, .0, (V)

2
log .0, (V)

collapse and folding temperatures, with systems is largest about the transition temperatttes,0.72
(BLN) and T = 0.6 (Golike).
gf) = 'Il"j(;T dt e”Mv(t)[? (20) Next, how long does memory persist in the principal

componentQ(t), and what are the characteristic time scales
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Figure 5. Power spectrum of potential energy fluctuations at transition temperatures. (a) Original BLN model andlig®) BIdN model.

[ "o , , ' ™] temperatures. Figure 10 shoviEl(d) and E2(d) of several
141 AA 4 principal components as a function of the tentative dimension
I © A BLN 1 d. In this Figure, (a), (b), and (c) display the principal
T ] component€;—Qs, (d), (€), and (7) displagyi—Qzs, and (g),
= Lo o . (h), and (i) displayQs1—Qss at T = 0.2, 0.72, and 5.0,
o A respectively. The more the variance (eigenvalue of the matrix
08 O ) R) of the PC decreases (i.e., the more the index of the PC
0.6F Go-liké o increases), the moie2(d) flattens to unity, resulting in a random
A o 1 time series with an “infinite” dimensionality. This implies that
0410 05 o 5" even if one reaches a finite dimensionality in terms of Hie
' Tem'peratureT. ' (d) such dimensionality should artificially arise from the
finiteness of the sampling length. An observation from the

Figure 6. Powero. of 1/f * as a function of temperature for the original . ; . P
BLN model and the Gdike BLN model. embedding analysis that is perhaps even more striking appears

in the behavior at the collapse temperature. That is, compared

inherent to them? The average mutual informatigt) of the with the other temperatures, the. ".“’de' protein more likely

individual principal componen@;i(t) is one of the versatile prgsgrvelzs nonrandom _charaﬁe;:shcs .for a \(/jwd_er range of

means of measuring the degree of the mutual correlation of principa components (ie., the flattening 51.2( ) is more.

Q(to) and Q(t + to). Figure 8 depicts, as a representative suppressed). Figures 11 qngl 12 show, respecnv_ely, thg minimum

example |l 1o(t) as a (logarithmic) function of time at = 0.2— of E2(d), EZmin, and the minimum embedding dimensidnof

5.0 for the Gelike BLN model. The timestmin of the first each principal component at several temperatures. Her,

minimum of 11¢(t) are indicated by arrows;q(t) has a longer determl_neq by the convergenceti(d) to within 95% of unity.

tail in t at T = 0.6 than at the other temperatures, resulting in E2min (= M{E2(1), E(2),...,E2(d)}) may indicate the degree

a longertmin. Figure 9 shows the first minimum timg,i, of of nonrandomness of the time series 24 goes to 1E2(d)

each PC for both the BLN and @ike models afl = 0.2—5.0. becomes flatter independently df Figure 11 shows that as

In general, one can expect that the longgy, the longer the  the temperature departs from the collapse temperatuig2he

memory persistence in the sigr@(t). Except for the PCs with  values of all the PCs approach unity. The smaller the variances

very small variances, whose indexes are greater tHE®O for of the PCs (i.e., as the index of the PCs increases), the faster

the BLN and~80 for the Gelike models tmi, values of almost  theE2min values converge. Figure 12 confirms the conclusions

all the other PCs exhibit a longer increase at the transition from Figure 11: the larger the variance of the PC, the lower

temperatures] = 0.72 (BLN) andT = 0.6 (Golike), than do the dimensionality necessary to reconstruct the state space, and

those at the other temperatures. away from the collapse temperature, the dimensionality of the
Now, let us try to look deeply into the question of what is Staté space increases.

the dimensionality of the state space, which is buried in the  What is the implication of the dimensiah evaluated by a

complexity of the time series of the protein dynamics. Here we scalafinite time series of each principal component of saene

apply Cao’s embedding technique to every principal-component system? In Takens’ theorem, the embedding dimendiana

time series for the original BLN model over a wide range of global dimension equal to the number of (time delay) coordi-

—_ 70-‘ T T T T T T T T T T T — 70 T T T T T T T T T T T
SN IS
= 6of g a) 1 = e b) -
3 =02 ) 0 )
& sop 4 & osof .
o i @] 4
g 40n 4 8 40 -
2 ' T=0.72 2 \ T=0.6
< < 1
.- 30 - . p— 30 ‘.‘ -
,?2) 20 1 o 20 |
= 10 4 3210 i
g == — e oo

0 1 i S GLECED s e 0 [ N et s i =

1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13

number of PC number of PC

Figure 7. Relative variamceri2 of the principal component®;, Q,..., Qi2. (a) Original BLN model and (b) Gbke BLN model.
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dimension at these temperatures. At temperatures much lower
thanT = 0.2, where the system can move about a single local
minimum only, sayT = 0.01, the system motion is well
represented by normal modes (i.e., fully regular dynamics), all
the E2(d) exhibit strongd-dependencies, and both tie (d)

and E2(d) quickly converge to unity at a small dimension,
irrespective of the time period used to record the time series.

Almost all realistic observables of interest are always
contaminated by noise and computer round-off errors with a

7=04 | 720 . - : ) ;
05 702 7=50 906 ‘ finite resolution of observations and are sampled up to a certain
e 1 10 100 finite time. It is not useful to inquire into the absolute value of
timelag ¢ the embedding dimensiody. from a given finite time series,
Figure 8. Average mutual information of the principal compon@a- especially for high-dimensional systems. However, an analysis

(), l1o(t), for the Golike BLN model atT = 0.2-5.0. The horizontal ~ Of the dependence af_ on, say, temperature, the choice of
axis represents the Idgalong which each arrow indicates the time of ~ coordinates, projections, or observables can shed light on the

the first minimum ofl(t) at each temperature. dynamical structure of multidimensional complex systems. For
high-dimensional systems of more than a few tens degrees of
nates necessary to unfold an arbitrary ongjft) from self- freedom, it might be impossible to attain sufficient sampling to

intersections arising from a “wrong” projection to a lower- find the nearest neighbors to a pointn) besides the adjacent
dimensional space. If one measures several observables ogg4(n + 1) or yg(n — 1) points whend becomes very large,
quantities from the same system to find the embedding resulting in an apparent convergence at a certain high dimen-
dimensiond, each measurement along with its time lags provides sionality, but still smaller than the desired high dimension. One
a different nonlinear mapping of the original state-space plausible prescription might be to replace the searching of the
variablesx(t) into a d-dimensional reconstructed space. Each nearest neighbors at every (recorded) step by searching at every
should, in principle, reach the same global dimension inherent 10 or more (recorded) step%.Similarly, such a sampling
to the underlying dynamical structure under certain conditions problem arising from an insufficient search for the nearest
(e.g., an infinite sampling length and an infinitesimal resolution). neighbors that should converge to an adjacent point may also
For a finite time evolution, however, each measurement may make it difficult to interpret the difference af. of several
see different local topographies of the reconstructed state spaceneasurements from the same system. That is, different delay
and result in a differentocal dimensionality ¢, < d). times ¢ of different measurements from the same system
In principle, the time series of the principal components effectively yield different sampling lengths, which may result
analyzed in this article should not be random because all thein an apparent difference al_ arising not from the different
time series originally arise from the deterministic equation of local dimensionality of the dynamical structure but rather from
motion. In this report, at each temperature for both of the the difference of sampling insufficiency. We examined the
models, we analyzed the time series collected every 100 minimum embedding dimensiah of each principal component
simulation steps for up to IGsteps, that is, we could access Wwith a delay timer at each temperature whose sampling length
the time serie€(t) not with an infinitesimal resolution but with ~ Nsamp Was rescaled so as to be approximately equal to the

only a finite resolution. minimum sampling length a,(t) at the transition temperature
The flattening observed i&2(d) and the decreases bfin Tc with the maximum delay timemax

for some principal components with small variances that are

gnhanced when departing from the .transition temperature Nanp = T 16 22)

indicate that the fast chaotic fluctuations of the principal Trmax

components cause ti@#t) to “lose” their memory of the process

quickly, resulting in a random stochastic time series. One cannot The results using the rescaled sampling length are qualitatively
extract the geometric information of the underlying dynamical similar to the original ones, that is, the larger the variance of
structure from any observable composed of such “lost” degreesthe PC, the lower the dimensionality, and away from the collapse
of freedom. temperature, the dimensionality of the PC increases. Here, the
Note that the corresponding time ser@@) collected at every average numbers of nearest neighbors (besides adjacent points)
step exhibits a strond-dependency oE2(d) and yields a finite of each principal component measurement are likely to be equal

_of AMI
=
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105}

first minimum time ¢
first minimum time ¢ _.
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Figure 9. First minimum timer of the average mutual information of all principal components. (a) Original BLN model and {ik&8LN
model.
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Figure 11. Minimum embedding dimension, estimated by the
principal components af = 0.2, 0.72, and 5.0 for the original BLN
model.
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Figure 12. Minimum value ofE2(d) of the principal components at
= 0.2, 0.72, and 5.0 for the original BLN model.

to one other at all temperatures, except thafTathey are

V. Concluding Remarks

The law of kinetics describes the average behavior of
populations of a state. The direct observatioff of dynamical
behavior of a single molecule, buried deeply in an ensemble
average, should provide us with a new magnifying glass that
enables us to “see” the dynamical structure of complex
system$* The nonlinear time-series analysis is one of the means
to address this problem. In this article, we analyzed time series
of potential energy fluctuations and principal components at
several temperatures for two kinds of 46-bead models having
two distinctive energy landscapes. The less-frustrated funnel-
energy landscape (Gike BLN model) brings about stronger
nonstationary behavior with the significant emergence of 1/
noise structure at the folding temperature than the other, rather
frustrated energy landscape (original BLN model) at the collapse
temperature. We also employed Cao’s embedding analysis using
the principal components of the original BLN model. The fast
fluctuations with small amplitudes make the time series 80—

80% of the principal components almost random in only 100
simulation steps. It was found that the closer the temperature is
to the collapse temperature, the more the stochastic feature of
the principal components is suppressed through a wider range
of degrees of freedom.

Principal component analysis (PCA) is one of the versatile
means used to address the question of which coordinate(s) or
projection(s) is(are) best to trace the underlying mechanism of
dynamics in multidimensional complex systems. To what extent
can the PCA actually mimic the dynamical behaviors of a set
of original variables in terms of a reduced set of the new
variables? The answer may depend on the degree of closeness

relatively lower than at the other temperatures. This indicates of the distribution of the original data set to a Gaussian
that the observed distinctions oh at different temperatures
may reflect differences in the local dimensionality of the state basin, PCA is expected to work quite w2 in describing
space structures and differences in some nonstationary featuresnultidimensional dynamical behaviors by using a reduced small
of the finite time series (i.e., the nonstationarity at the collapse set of the PCs (e.g., & = 0.2 in Figure 7a and b). As the
transition temperature might require a longer time in comparison temperature increases above the transition temperature, the
with the other temperatures to obtain reliable sampling of the protein may find one or more reaction paths from one large
nearest neighbors). Additional analysis is needed to inquire basin to another and the transitions may take place through the

further into the problem.

distribution. If the protein moves about only within a single

curved or winding path(s). It is difficult for the standard PCA
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algorithm to represent a curved or winding distribution in a  (24) Nayak, S. K.; Jena, P.; Ball, K. D.; Berry, R. 5.Chem. Phys.
; o1 1998 108, 234.
reduced sz" ls(EI 0[: tf;ehPCS, e.ven Whll.e the P.C.:A could still (25) Donati, C.; Douglas, J. F.; Kob, W.; Plimpton, S. J.; Poole, P. H.;
draw a rough sketch of the basin-to-basin transitions. Glotzer, S. CPhys. Re. Lett. 1998 80, 2338.
In this article, we scrutinized the dimensionality of the state  (26) Ohmine, 1.J. Phys. Chem1995 99, 6767.
space by using univariate time series (e.g., principal components) (27) Yanagida, T.; Kitamura, K.; Tanaka, H.; Iwane, A. H.; Esaki, S.
f L : Curr. Opin. Cell Biol.200Q 12, 20.
of the original BLN model. However, the development of time . :
. . L . (28) Weiss, SNat. Struct. Biol.200Q 7, 724.
series analysis to multivariate observaBtés(e.g., embedding (29) Ishii, Y.; Yoshida, T.; Funatsu, T.; Wazawa, T.; YanagideCfiem.
analysis using inputoutput dat&63 is desired in order to  Phys.1999 247, 163.
extract a good projection, thus revealing the dynamical structure 8‘3 \éV;J”egrv % ‘y&'igeﬁ' ;’; nggjé;ie'hlll_esttté 1t93f1y7s‘1' g‘éilgs 570
P B 7 s by e A y W . y .
from. a ,I'mltecj set of Qbservablgs. It 'S, kno@@ﬁ. thaft the, (32) Abarbanel, H. D.-lIAnalysis of Obserd Chaotic DataSpringer-
application of embedding analysis to time series involving verlag: New York, 1995.
intermittency, like those of the Glike model, is not straight- y (33) _KarF\)tz, H; SCchreti)b%r, N%nllineirg gi7me Series AnalysiS8ambridge
H niversity Press: amoriage, U.K., .
forward and |_nvolves many problems that need to be overcome. (34) Berry, R. S.- Elmaci, N.; Rose. J. P. Vekhter Figoc. Natl. Acad.
The embedding analysis reconstructs the phase space in termgc; y.s A1997 94 9520.
of the delay-time coordinate system, a complicated, abstract (35) Elmaci, N.; Berry, R. SJ. Chem. Phys1999 110, 10606.
object of which one may not have a direct interpretation in terms T (FE’GA(:}Nacl:erf’ D. %FDsozyc?c’) é-lFlaK-l: Miller, M. A.; Mortenson, P. N.; Walsh,
_ . - . . R. Adv. Chem. Phy .
of the phase-space vanab_les. The Lie _transfé?rnwhlch (37) Honeycutt, J. D.; Thirumalai, (Biopolymers1992 32, 695.
transforms phase-space variables at any tirter, X(t + 1), (38) Guo, Z.; Brooks, C. L., Ill; Boczko, E. MProc. Natl. Acad. Sci.
into functions ofX(t) at timet, can shed light on the implications  U.S.A.1997 94, 10161.

i i i inei i ; oot (39) Computational Biochemistry and BiophysicBecker, O. M.,
Of.thls abstract Objec.t’ In.prmCIple’ if the time evolutio ) MacKerell, A. D., Jr., Roux, B., Watanabe, M., Eds.; Marcel Dekker: New
arises from a Hamiltonian system. These are some of theyq 2001,
subjects to be addressed in the future. (40) Levy, R. M.; Srinivasan, A. R.; Olson, W. K.; McCammon, J. A.

Biopolymers1984 23, 1099.
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