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Beyond the Harmonic Approximation: Impact of Anharmonic Molecular Vibrations on the
Thermochemistry of Silicon Hydrides
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Thermodynamic state function (enthalpy, entropy, and heat capacity) were calculated for several types of
silicon hydrides taking into account the strongly anharmonic character of some of the molecular vibrations
(internal rotation, inversion, and pseudorotation). The anharmonic motions were treated as one-dimensional
motions taking place along the harmonic normal coordinates, neglecting anharmonic coupling terms. Partition
functions were calculated from the idealized numerical eigenvalue spectrum in the case of pseudorotation;
for the other types of large amplitude motions, we used quantum-corrected classical partition functions.
Following the work of Knyazev and Tsang, we derived a novel partition function for an asymmetric double
well potential. We then used the data to calculate enthalpies, entropies and free energies of reaction for
several types of chemical reactions among silicon hydrides, at both the harmonic and the anharmonic level.

Differences arising from the inclusion of anharmonicity are discussed.

1. Introduction are an extremely common feature in organic compounds; yet

The calculation of thermodynamic properties of substances collections of thermochemical data at high temperatures, like

by means of ab initio molecular computations is an important the JANAF tables? contain only few organic molecules
task of quantum chemistry. Such computations apply the showing internal rotation; for example, fundamental species such
principles of statistical thermodynamics and use additional 35 Q.Ha anq GHgare omlttgd frqm the JANAF table§. Clearly,
approximations to treat electronic and nuclear motions. For the thiS iS a disadvantage hindering the understanding of high-
nuclear motion, which is the concern of this work, the harmonic emperature gas-phase reactions involving such species, like
oscillator approximation is the most important one, sometimes combustion and ChlgfﬂlCm vapor deposition (CVD) processes.
limiting the accuracy of the results. In previous work314 our group has studied the energetics

Although the harmonic approximation is sufficient to describe ©f Small and medium-sized silicon hydride compounds. For lack
nuclear motion in most molecules at room temperatuhés is _of available _rr_u_athods, the dls_cussmp of bond_str_engths, relative
not necessarily true at higher temperatures, when some vibra-'SOMer stabilities, and reaction ratios was Ilmlteq to 300 .K’
tional degrees of freedom become highly excited: the amplitude &though the CVD procességhat end in the deposition of Si
of the nuclear motion increases, and finally the system leavesiims from an SiH atmosphere take place at much higher
the part of the potential energy surface where the harmonic temperature. We therefore decided to sear'c_h_for amore general
approximation to the potential energy surface holds. Motions method to account for the strong anharmonlcmes foupd in floppy
with amplitudes that large are called “large amplitude motions”, Molecules and calculate thermodynamic state functions beyond
Molecules showing this kind of behavior are often referred to the régime of the harmonic approximation.
as “floppy”, but at sufficiently high temperatures, most mol-
ecules will exhibit one or more vibrational degrees of freedom
with substantially “floppy” characte. Statistical thermodynamics allows to calculate thermodynamic

Floppiness puts an end to the validity of the harmonic (macroscopic) observables from knowledge of molecular (mi-
approximation. Yet no general procedure is in common use that croscopic) data. Each degree of freedom of the microscopic
allows for improved treatment of floppy, or strongly anharmonic, system contributes to all thermodynamic quantities; if the degree
molecular vibrations. In his pioneering work on internal rotation, of freedoms can be assumed independent, then also their
Pitzer?~6 calculated tables of partition functions of internal thermodynamic contributions can be calculated separately.
rotators. These data is still valid today, but the thermochemistry  In molecules, the degrees of freedom are electronic motion
modules of the most widely used quantum chemical packagesand nuclear motion, which can be further subdivided into
do not take advantage of it. Neither has the work of Witsclel  translation, rotation and vibration. The molecular partition
and Gibsoff’ on anharmonic oscillators found a way into main-  function can be written as a product
stream quantum chemistry. Recently, Ayala, and SchitgaVe

developed a partially automatic method for the treatment of Q(B) = UyrandB)*UoiB)* Ui (B)* Ueied B) (1)
internal rotations; their method has been included into the latest

release of the Gaussian quantum chemical package. where = 1/RTandRis the gas constarR = 8.3144 J mot®
In the meanwhile, thermodynamic data on floppy molecules K-1

is scarce for temperatures well above 300 K. Internal rotations

2. Thermodynamics

In most molecules, electron motion results only in a temper-

* To whom correspondence should be addressed. E-mail: gernot katzer@@&ture-independent contribution to the internal enetf@), and
uni-graz.at, alexander.sax@uni-graz.at. so we will not further consider electronic degrees of freedom.
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Beyond the Harmonic Approximation

The contributions of translation and rotation depend only on

the mass and moment of inertia of the molecule, and they are
thus easy to calculate using the simple models of the particle

in a box and the rigid rotator, respectively. In contrast, the
vibrational contributions are, in general, difficult to evaluate,
and thus are the prime issue of this work.

For anN-atomic nonlinear molecule, the vibrational problem
is 3N — 6 dimensional. If one assumes the harmonic oscillator
approximation to be valid, then thifN3— 6 dimensional problem
can be reduced toN8 — 6 independent one-dimensional
harmonic oscillators, and the vibrational partition function can
be written as a product of one-mode partition functions

Gin(B) = qdVB)-aP(B)-+- g™ (B) )

where each of thg() is a sum of Boltzmann factors using the
eigenvalue spectrum of théh normal mode

" ="y exp(-pe") (3)
J

By plugging in the eigenvalues of the one-dimensional oscillator

V' =hoOn+",) =EOMn+1,) @)

we can write the partition function for one single vibrational
degree of freedom in the harmonic approximation as

exp(—"1,$EY)

0By = — -
T 1 — exp(—pEY)

(®)

whereE) = —hw® is the spacing between energy levels of
theith normal mode. In this formulation of the partition function,
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In this equationJ(0) refers to the temperature-independent part
of the internal energy. Enthalpies, Gibbs functions and isobar
heat capacities can be obtained fréimS, andC, using the
elementary relations of phaenomenologic thermodynamics.

An important thermodynamic function is the standard en-
thalpy of formation

U<T)—U(0)=%' ST)=Rlng—

(6)

AH(molecule)= H(molecule)— z H(element) @)

elements

A U(element)— AU —

elements

A(pV) (8)

where the molecular atomization energy consists of electronic,
vibrational, translational, and rotational contributions

AU =AEy+ Uyp + U + AUy 9)
The symbolAU(element) denotes the atomization energies of
the element phases in their reference states; these energies are
needed to establish the conventional zero poinAdf. In the
equations of this paragraph, all quantitidsandH depend on
the temperature.

The electronic atomization energiEe., is by far the largest
contribution toAxU and thus toA{H; therefore, it dominates
over both the molecular vibration energy,i,, and the dis-
sociation energy contributions arising from rotation and transla-
tion, Urot and AatlJtr-

The vibrational part, is the largest temperature-dependent
contribution to the dissociation energy. However, anharmonic
corrections tdJyip typically amount to only a small fraction of
the total value; therefore, these corrections are very small

rot

the zero-point energy has been included into the temperature-compared to the electronic dissociation energy. To include
dependent part of the internal energy, and there is no need toanharmonic effects reasonablyihand A{H presupposes that

consider it separately.

If one wants to go beyond the harmonic oscillator level, then
two different problems arise: First, the partition function of an
harmonic oscillator must be replaced by a partition function of
an anharmonic oscillator, and, second, the individual vibrational

the electronic energies have been calculated to a “chemical
accuracy” of a few kJ/mol, or better. This is a very difficult
goal to archive by pure ab initio means even for small
molecules®17and for molecules the size ofBi;,, one has to
resort to empirical corrections of the electronic dissociation

degrees of freedom couple with each other, which means theenergy*3**

product form for the total vibrational partition function (eq 2)

is no longer valid. For that reason, the anharmonic problem is 3- Types of Anharmonic Motions

inherently multidimensional, and both difficult and time-
consuming to solve.

In this work, however, we will retain the separation of the
various vibrational degrees of freedom, eq 2, aggoroxima-
tion inherited from the harmonic approximation, although some

To devise an approximation that goes beyond the limits of
the harmonic oscillator approximation, it is useful to review
shortly the most important types of anharmonic nuclear motions
in molecules. We are only concerned with anharmonic motions
that significantly and even qualitatively differ from purely

vibrational degrees of freedom will be treated as anharmonic harmonic motions; the small anharmonicities often dealt with
oscillators. We will, instead, concentrate on the derivation of in spectroscopy by polynomial expansions or Morse potentials
anharmonic partition functions that can replace eq 5 to accountare of little significance for thermodynamic applications, and
for the anharmonic character of a particular vibrational degree will not be considered here.
of freedom. The best known and also best investigatéi case of a
From knowledge of the partition function and its derivatives strongly anharmonic molecular motion iisternal rotation It
with respect tos, thermodynamic quantities such as internal is the most important case both because is occurs very frequently
energyU, absolute entropy and isochorous heat capacity in chemistry, and the deviations from the harmonic oscillator
can be calculated very easily at any given temperafyce 3). can grow to quite large magnitude.
The formulas are the same for all kind of partition functions; The prototype of a system showing internal rotation is ethane,
this is, thermodynamic quantities for the whole molecule, for CH;—CHjs. Starting from thestaggeredninimum, the internal
the rotational or vibrational contributions alone, even for a single rotation leads via theclipsedmaximum to another minimum,
vibration, can be calculated by the same formalism from the which is identical to the starting minimum in this case. The
corresponding partition function barrier to internal rotation is about 13 kJ/mol at the RHF level
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of theory: For energies far below the barrier, the system may 4.2 Symmetric and Unsymmetrical cos-tan? Potentials.
behave harmonically in good approximation, and for energies To treat inversions and similar processes with two stable
far above the barrier, the system’s properties converge towardconfigurations, one needs a double-well potential. Among the
those of a free rotator. Because harmonic oscillation and free double-well potentials found in the literature, the most popular
rotation have quite different partition functions and, thus, ones are polynomial potentials of fourth and sixth order. These
thermodynamic properties, the harmonic oscillator treatment for are, however, not well suited for thermodynamic applications,
internal rotations will necessarily give great errors at high as the calculation of the partition function is not possible in
temperatures. closed form, and computing enough eigenvalues numerically
Another type of strongly anharmonic motion is associated to calculate the partition function according to eq 3 is a tiresome
with the inversion at nonplanar trivalent centers, e.g., the and expensive process.
inversion of ammonia. The characteristic feature of this motion =~ Knyazev and Tsarfg have introduced a novel double-well
is the existence of two stable configurations separated by anpotential which is here written in a slightly different form: With
energy barrier. The harmonic approximation remains valid as the auxiliary potential
long as the thermal energy stays below the barrier, but as soon
as the thermal energy approaches, or exceeds, the barrier, the Vo
molecule becomes much more conformationally free (floppy), Vi _]2
- , (x Vo) =
and significant anharmonic effects may be expected. 2ol Ex — 1 ey
Almost the same type of motion is also found in small ring Voy'ta (2V(X )) I<x=<y+l1
compounds (“ring inversion”). Ring inversion can take place
in nonplanar rings of four or more atoms. Low barriers, and we can define a Symmetric double well potentia|
therefore significant anharmonicities, are often found in four-
and five-membered rings.
Certain small rings show another type of strongly anharmonic V(X) = [
motion: pseudorotatiod® which is a concerted motion of
several atoms along a periodic coordinate. The textoook example =~ . . . .
of pseudorotation is cyclopentanestGo, where thebent whlch is twice contllnuous dlfferen'glaple. It depgnds on a
(envelopd and twisted conformers interconvert via a pseudo- dimensionless (relative) coordlna_tellmlted to the interval
rotation process. The same type of pseudorotation appears il ~1~7; 17). There are two equivalent minima &t= +1
cyclopentasilane, Si10152 Although in general there is a separated byacentral maximum of h.elga.tThe parametey
barrier to pseudorotation, this barrier is often found to have relates the width of the barrier to the width of the outer, repulsive

negligible size: In this case, we speak of “free pseudorotation” part of the potential; a high value gfindicates a narrow barrier.

As there is no potential in free pseudorotation, the harmonic At the end points of the interval, the potential grows+e,
approximation is invalid even at temperatures as low as room Which means that it is steeper than any polynomial potential.

(1 + costx) 0=x=1
(11)

Vi(=x, V) —(y+1)<x<0

12
V(% V) O<x<y+1 (12)

temperature. The symmetric costar? potential is suited for inversion
motions such as the inversion of Nidr the ring inversion of
4. Anharmonic Potentials cyclobutane, where two identical species are involved. In less

. . . . . symmetric molecules, the two species produced by inversion
In this section, we shall introduce analytical potentials that are ot degenerate (e.g., the equatorial and axial conformers of

can be used to describe internal rotation and inversion. The third g hstituted cyclobutane): for such cases, we propose an unsym-
case of strongly anharmonic nuclear motion, pseudorotation, metrical double well potential.

needs no potential in its description if free pseudorotation is  The symmetric costar? potential in eq 12 can be easily

assumed. _ ) ) modified to become unsymmetrical
4.1 Periodic cos Potential. The potential used to describe
an internal rotation must depend on an angular coordinate and T NN — S) _
display several maxima and minima within one cycle. An V=YV (Vo — )% Vo = 0) + 0
obvious choice is a single cosifinction V() = (Vo= 0)IVy(1+y) <x<0 (13)
y Vi(x, Vg)
V() = 70 (1 — cosny) (10) O=x=<1+y

This new potential is also twice continuous differentiable, and

: . ; for x > 0 it is identical to the symmetric cesar? potential;
2(n — L)z/n which are separated iy maxima of heightvo. for x < 0, it is raised vertically by) and scaled horizontally

The parameten is referred to as thperiodicity of the potential, and vertically in order to yield a smooth transitionsat 0.
andVy is calledbarrier height.Because of the existence of 2  The minimum of the left branch lies at= (Vo/(Vo — 8))2

barrier, motion in potential 10 is often referred totasdered The energetic difference between the two minima is given by

rotation. . . o 0. We will assume Qs & < V.
The cosine potential, eq 10, is a good approximation for

internal rotations involving identical conformers, as in ethane 5. partition Functions

or propane. In general, internal rotation about highly substituted ) ) . )
bonds may give rise to different conformers which usually differ ~ The calculation of quantum mechanic partition functions
in energy; the torsion potential then becomes asymmetric, having'®duires knowledge of the QM energy spectrfia}. For the
minima and maxima at different energies, and cannot be PSeudorotation, the energy spectrum is the same as for rigid
accurately described by a single cosine function. It is often found fotation in one dimensicrt®

that the minima have similar energies, and then eq 10 can serve S~

as a useful approximation. €n=hcBn"forn=.,-2,-1,0,1,2,... (14)

This potential hasn equal minima atx = 0, 27/n, 4a/n,...
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whereB (or hcBin other literature) is called the pseudorotational
constant. Therefore, it is possible to compute the partition
function by numerical summation (eq 3). In many cases,
however, a so-called “high temperature approximation” is
employed, replacing the sum in eq 3 by an integral

Af)= T exp-phoBd) ~

[ exp(-phcen’)dn = 4 /é (15)
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qT(ﬁa Vo) =
BVo| (BVo
exr( — o\ | T erfc(y/ BVyy2)expBVyy?) (20)

In these equations; is the energy of an harmonic oscillator
with the same curvature at the minimuty,is the modified
Bessel function of the first kind and erfc is the complementary
error function. The symmetry numbeosdo not follow from

the potential, but from symmetry properties of the molecule:
They reflect the number of distinguishable minimum structures.
For the internal rotation about amfold bond, in most cases

is either 1 om, whereas for inversion motions,can be either

1 or 2. If all potential minima belong to distinguishable

This procedure has the advantage of yielding a simple closedstructures, thew = 1 for all partition functions.

expression for the partition function, but may be inadequate for

The partition function of the unsymmetrical double well

some types of pseudorotation with large pseudorotational level potential, eq 13, can be derived from eq 19 in the following

spacing?®
For most anharmonic oscillators, the energy spectrunois
known, which means that application of eq 3 is not straight-

forward for anharmonic oscillators corresponding to the potential

way: We first split the phase space integrakat 0

Q) =3[ .., XPEAT(R) + V() dp dx=

shapes discussed in the previous section. Numerical solutions 1,0

of the eigenvalue problem are possible yet time-intensive.

At this point, classical partition functions are a viable
alternative. The classical partition function is defined as an
integral over normalized phase space elemeaiksiph

A(B) = % JexpCAT(P) + V())dxdp  (16)

where T(p) = p#2m is the kinetic andV(x) is the potential
energy;h is Planck’s constant and is a symmetry number.

= et iy @PEAT(R) +
VI(—fx, V, — 0) + 9)) dp dx+

&[5 exp(B(T(R) + VI(x, Vo)) dp dx (21)

wheref stands for (o — 0)/Vo)Y2 We observe that the second
summand is just one-half of the symmetric edar? potential
partition function, eq 19, witlw = 1. In the first part, we can
move the term exp{39) before the integral, switch the integral
limits, and substitute a new integration variable in placéxof

The classical partition function can be used in the same way asThe integral then becomes the partition function of a symmetric
the quantum mechanical one to calculate state functions, but asdouble well oscillator with a modified barrier height

it does not incorporate quantum effects, it will fail at deep

energies, and its use is justified only in the high-temperature

regime.

The main advantage of the classical partition function over
the quantum mechanical partition function is that it can be
evaluated analytically for many nontrivial potentials. The
classical partition function for hindered rotation (eq 16)%fs

win =g ol

VO
7) (7

A very similar formula that contains some correction for the
zero point energy was derived by McClurg et;lin their
expressionyy in the argument of the exponential function of
eq 17 is replaced by a corrected potential barrier

E2
E+8V,

V,=V,— (18)

Knyazev and Tsarfg have described a method that allows to

1 .0
et @i BXPEBT(R) + Vi(—fx, V, — 0) + 0)] dp dx=

o)
OXRCR o expEBTR) +

VI(—fx, V, — 0))] dp dx=

exp(-f9)
h

fexp( ﬁé)ny

= [T epl-B(T(R) + V' (%, Vo — 0)] dp dx=

exp[-B(T(p) + V'(y, Vo — 9))] dp dy=

1 /7Vo eX|o( f9)
NF oz a6V 9

The complete partition function of the asymmetric double well
potential is thus

V, —Bo
@) =gy 5 M(exp(@a)q*w, v +

(22)

solve the phase space integral via the classical density-of-states

N,—0
function; their method can be used to construct classical density- OTQT(ﬁ Vo — 6)) (23)
of-states functions, sum-of-states functions and partition func- 0

tions for the potentials eqs 10 and 12. For the symmetric double  Clearly, there is no symmetry number involved in the

well potential, the classical partition function is given by statistical description of motion in an unsymmetrical double well
potential.

Vo

B

whereq' is an auxiliary function

qu(B) = q'(8, Vo) (19) 6. Quantum Correction

The classical partition function is not a reasonable description
for the system at low temperatures, as it will not reproduce some
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essential features that have their origin in quantum effects: zeroTABLE 1. Internal Energy U, Entropy S and Isochorous

Law. Pitzer and Gwinhhave suggested an easy correction oM Classical, PG-Corrected, and Quantum Mechanic
. . . ... Partition Functions

scheme that will include quantum effects in the classical partition

function under the condition that the anharmonic oscillator can U/kJ mor™ SJ moft K™ C/J molt K™

be approximated by a harmonic oscillator in the low-temperature T/K class PG QM class PG QM class PG QM

limit. 100 0.83 646 6.29-14.43 005 0.00 837 0.05 0.00
The basic idea of the so-calldtltzer—Gwinn correctionis 200 1.67 6.47 6.30 —8.61 0.14 0.05 8.43 0.33 0.30

to construct a partition function that approaches (ajtentum 300 252 6.56 6.39 —5.18 046 0.38 852 148 157

mechanical harmonioscillator partition function at low tem- 400 3.38 6.78 6.63 —2.71 110 1.05 8.64 3.02 3.16

: : s : 500 425 7.16 7.01 —0.77 193 191 8.80 4.42 4.54
perature and (b) thelassical anharmonigartition function at 600 514 766 752 085 284 284 894 552 560

h|gh temperature; they Suggested the f0||OW|ng formula 700 6.04 825 8.12 223 375 3.76 9.04 6.33 6.37
h 800 6.95 891 8.79 3.44 464 4.65 9.08 6.90 6.90

ao_ a0, 0 © 24 900 7.85 9.62 9.50 451 547 548 9.06 7.27 7.24

q = Qg ﬁ (24) 1000 8.76 10.36 10.23 546 6.25 6.26 899 7.50 7.46

cl
TABLE 2: Internal Energy U, Entropy S and Isochorous
The anharmonic quantum mechanical partition functighis Heat Capacity C, for the Umbrella Mode of Si(SiHs)s,
thus approximated by the anharmonic classical partition function, Calculated from Classical, PG-Corrected and Quantum

qi’ and a correction factor which is the ratio of quantum Mechanic Partition Functions

mechanical and classical partition function of an harmonic U/kJ molt SJmoltK? C,Jmolt K™t
oscillator. The partition functiong™ (eq 5) andqgo = 1/pE TK class PG QM class PG QM class PG QM
refer to an harmonic oscillator fitted to the anharmonic potential “100 085 099 099 560 6.29 6.29 882 7.51 7.53
at the minimum. 200 1.76 1.83 1.82 11.84 12.02 12.02 8.99 8.63 8.62

The correction term becomes unity in the high-temperature 300 2.62 2.67 2.66 1535 1544 1543 827 8.11 8.10
limit, when the quantum mechanical and the classical partition 400 3.41 3.45 3.44 17.64 17.68 17.68 7.60 7.51 7.51
functions of the harmonic oscillator converge. In the low- 500 415 4.18 4.17 1928 1931 19.30 7.15 7.10 7.10

P . 600 4.85 4.87 4.86 20.56 20.58 20.57 6.87 6.83 6.84
temperature limit, vibrational amplitudes are small, andonecan 7q5 553 555 554 2160 21.62 2161 670 667 667

supposea’ ~ df in most cases; in this case, eq 24 reduces to 800 6.19 6.21 6.20 22.49 22.50 22.50 6.59 657 6.57
o?° ~ g"° which is the correct behavior. 900 6.84 6.86 6.85 23.26 23.27 23.27 6.52 6.51 6.51

1000 7.49 7..51 750 23.95 2395 2395 6.48 6.47 6..47
7. Validation
. . high = k i1, y = 5.7), Iso th
7.1 Calculated Energy Levels.The Pitzer-Gwinn (PG) igh and broad\(o = 33 kJ mof %, y = 5.7), and also the

oo . __harmonic energyE = 13 kJ mot?) is well above thermal
correction is an ad hoc method that can be judged only by its energy in the temperature interval considered. Si¢gjtdn the

success (OrtlaCkl'(()jf stuct(;]es;)én reahs'il_c sﬂua;]tlons. It |hs_tr|;ereforbeother hand, has a low and narrow barriel & 6.5 kJ mot™,
necessary to vajidate the corréction scheme, which can ey = 12.9) and the harmonic energy separation is much smaller
done by comparing results obtained from PG corrected classical

L : : o ) . (E = 1.2 kJ mot?).
partition functions with results from partition functions obtained N . T
by numerical summation over energy levels, eq 3. Due to its highE, NH3 has a high characteristic vibrational

We obtained inversion potentials for several test molecules temperaturef) = E/R = 1552 K, and quantum effects are visible

by pointwise RHF geometry optimizations at fixed out of plane even at 1000 K; below 590 K, Fhey are essential. On th? pth_er
angles (8 increments). The data were then fitted by a symmetric side, Nk ha§ allarge bliarrler to |.nver5|ﬁ.n, and agharmonlpltyrl]s
double well potential (eq 12), and the exact vibrational levels a comparatively small correction. This can be seen in the
were determined solving the corresponding one-dimensional _classmal heat capacity, which in the complete temperature

Schralinger equation, applying the Fourier Grid Hamiltonian 'r?;fr:;/grl]ig%isci"r;c;:)r%efaéesin;ﬂogo&njhe ideal value for a
method of Balint-Kurti?4 e )

We then calculated the exact QM partition function by Because quantum effects dominate, the uncorrected classical

numerical summation and compared it to the classical and pgresultsin Tablg 1 are seriously in error. But it is reassuring that
corrected ones. In the literature, such comparisons have beerj® PG correction works well and corrects the classical results
performe@25at the level of the values of partition function and toward the quantum mechanical with a deviation of about 1%
its derivatives; we, however, decided not to compare the values(0r 0-1 kJ mof and 0.1 J mot* K™, respectively). .
of the partition function directly, but rather the thermodynamic  In Si(SiHs)s (Table 2), the behavior is more anharmonic, as
quantities calculated therefrom: Internal enetdyyentropyS seen by the low classical heat capacities, and quantum effects
and isochorous heat capaci®y (eq 6). play a minor role; therefore, the cla_ssical results already
U depends only on the relative changegjafith respect to resemple the exact quantum mechanical ones, and the PG
the temperature, bu depends mostly on the low-temperature ~CoOrrection has less work to do. The PG corrected results agree
behavior ofg and also on its absolute magnitude. The calculation With the purely quantum mechanical results excellently.
of C, involves the second derivative of the partition function ~ Because most of the interesting cases of molecular inversions
and will, therefore, unveil even small inaccuracies in the fall between the extremes of NHnd Si(SiH)s, it appears that

temperature-dependence at all temperatures. the PG correction is sufficient to include quantum effects in
Tables 1 and 2 show the calculated S, and C, of the classical partition functions for anharmonic molecular vibrations.
inversion mode of ammonia, NyHand trisilylsilyl, Si(SiH)s, 7.2 Experimentally Observed Energy Levelsin the previ-

for temperatures between 100 K and 1000 K. The two molecules ous section, the two partition functions compared were both
were chosen because they represent different types of doublalerived theoretically from the same potential energy function
well oscillators: In NH, the calculated barrier to inversion is by the methods of classical mechanics and quantum chemistry,



Beyond the Harmonic Approximation J. Phys. Chem. A, Vol. 106, No. 31, 2002209

U [kd/mol} S [J/mol K} Cv [J/mol K]
4
3
2
1
200 300 400 500 TIK " 200 300 400 500 Tk 200 300 400 so0

Figure 1. Thermodynamic contribution of internal rotation in methanol to internal enekggntropyS, and heat capacit,. Harmonic curves
dashed, experimental solid thin, anharmonic theoretical solid bold.

respectively. Their numerical equivalency demonstrates the The vibrational contributions to all thermodynamic functions
validity of the PG correction, but is does not in any way were determined at the basis of independent motion along
guarantee that the thermodynamical data calculated therefromdifferent vibrational degrees of freedom (eq 2), using anhar-
compares well to experimental data from these molecules.  monical partition functions wherever appropriate. This approach
It is difficult to find a reference system where thermodynami- is similar to that of Ayala and Schleg€lalthough these authors
cal data has been experimentally determined with sufficient applied it only to internal rotation.
accuracy; but it is possible to calculate partition functions from  We have developed a method that allows to estimate the free
spectroscopically observed energy levels and compare these wittparameters\(y, n, o, y) of the partition functions for internal
our PG corrected classical partition functions. By this procedure, rotation and double well oscillations from the minimum structure
the choice of potential function, the choice of potential and the Hessian eigenvalues and eigenvectors. We use Hessian
parameters and the PG correction can be validated. Weeigenvectors in redundant internal coordinatés identify
performed this test for the internal rotation of methanol, whose internal rotations! and to estimate barrier heights; periodicity
first fifteen energy levels are known both theoretically and and symmetry numbers are derived from careful analysis of the
experimentally?8:27 equilibrium structure alone. Technical details of this method
We optimized the minimum structure of methanol at the RHF will be published in a separate paper shoffly.
level of theory and scaled the harmonic frequencies by a factor |n general, it is not necessary to perform additional ab initio
of 0.900; from thatE was determined to 3.61 kJ mal From calculations in order to get the anharmonic parameters, except
the Hessian eigenvectors, we estimatede barrier to internal in the case ofd in eq 23. We did, however, perform such
rotation toVo = 5.11 kJ mot?, which compares favorably to  calculations in many cases to ensure that the automatic guesses
both the RHF value (5.16 kJ md) and the experimentlone were correct.
(4.76 kJ mot?). We used McClurg’s formufé for the partition

function of a hindered rotator. 9. Results and Discussion
The internal energy, entropy, and heat capacity contributions
of the internal rotation mode in GG®H are shown in Figure 1. In this section, we will present our results using anharmonic

Although the harmonic approximation (dashed) is seriously in partition functions. This section is not meant to give an overview
error, the results from the PG corrected partition function (bold) on silicon hydride chemistry, but on the possible extent of
agree very well with those of the QM partition function (solid).  anharmonic terms in thermochemistry. We will therefore discuss
At higher temperatures, the heat capacity calculated from the the nature, origin and magnitude of anharmonic contributions
QM partition function can be seen to decrease below the jn several example molecules, and explore the importance of
theoretical high-temperature limit /2 = 4.16 J mot* K~ anharmonic corrections in observable quantities such as heats
This is not a physical effect, but an artifact due to the limited of reaction and equilibrium constants.
number of states included in the partition function. The internal 9 1 Anharmonic Contributions to Molecular Quantities.

energy is affected in lesser degree. 9.1.1 Internal RotatioriThe simplest example of internal rotation
in a silicon hydride occurs in disilane, S§HSiHz. This system
8. Methods has a low barrier to internal rotation (4 kJ mblat the RHF
Molecular structures and electronic energies for all molecules level), and one can expect the onset of anharmonic behavior at
discussed here were calculated following the path of the previousor slightly above room temperature.
work of our group?4For geometry optimization, we used RHF The upper row of Figure 2 shows thermodynamic state
(restricted HartreeFock) for closed-shell species, ROHF functions (internal energy, entropy, isochorous heat capacity)
(restricted open-shell Hartre€ock) for radicals and MCSCF  for the internal rotation degree of freedom oft%j, calculated
(multiconfiguration self-consistent field) for singlet states of both with a harmonic (eq 5) and an anharmonic (eq 17) partition
diradicalic systems (disilenes, silylenes); these calculations werefunction. At room temperature, harmonic energy and entropy
performed with the GAMES® program. Electronic energies are well reproduced by the harmonic partition function, but the
were calculated using MOLPRDas single point energies at heat capacity already is influenced by anharmonicity. In the
the ACPF (average coupled pair functional) level of theory; for temperature range between 1000 and 2000 K, inclusion of
these calculations, we used an ANO (atomic natural orbitals) anharmonic effects become essential to stay within “chemical
basis set of quadrupftequality employing functions for silicon accuracy”. The anharmonic contribution tbis 4.3 kJ mot?
andd functions for hydrogen. The core electrons of Si were at 1500 K.
dealt with by a local pseudopotentfal. It is interesting to compare the anharmonicities of disilane
The electronic parts of the standard enthalpy of formation and its carbon analogue, ethane (Figure 2, second row). At RHF
were calculated from atomization enthalpies; incompleteness inlevel, the barrier to torsion in ethane is 12.5 kJ mpand thus
the one electron basis was corrected by an empirical correctionanharmonicity manifests itself at somewhat higher temperatures
scheme described earli¥r. than in disilane.
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Figure 2. Thermodynamic contribution of internal rotation degrees of freedom to internal ebkrggtropyS, and heat capacit€,. Top row:
One internal rotation in disilane, SiHSiHs. Second row: One internal rotation in ethanel€ Third row: Three internal rotations in tetrasilane,
SisH1o. Fourth row: One internal rotation in cyclotrisilanyl silylenegt®i—SiH. Harmonic curves dashed, anharmonic curves solid.

Trisilane, SiB—SiH,—SiH; is the simplest example of a  Si bonds in silanes do not much depend on the molecular
silicon hydride with two internal rotations. Both internal environment.
rotations give similar anharmonic contributions as the single Internal rotations occur not only in silanes but in all open-
internal rotation in SHe, and the resulting anharmonic correc- chain silicon hydrides. In most cases, the barriers to internal
tion to the state functions of $ig is about twice as large as  rotation, and thence the anharmonic contributions, resemble

for disilane. those we already reported for silanes. There are, however,
In tetrasilane, Sikt+SiH,—SiH,—SiH;, we have a new  exceptions to that: For example, the internal rotation about an
situation, as internal rotation about the centrat-Si bond Si=Si double bond in disilenes has a periodicityrof 1 and

produces three distinguishable isomers. This has two conse-a high barrier; it is, thus, best treated as an harmonic vibration.
quences: First, the usage of potential eq 10 and partition Another exception arises in the context of silylenes. Although
function eq 17 is an additional approximation, as it neglects in most silylenes the barriers to internal rotation are similar, or
the different heights of the minima and maxima along the even slightly smaller, than in silanes, this is not the case for
internal rotation path. The error induced hereby is expected to three-ring substituted silylenes, g., cyclotrisilanyl silylene
be small: The antiperiplanar and synclinal minima oft-&b (SisHs—SiH). In these specie€d the periodicity is reduced to
differ by only 1.5 kJ mot™. = 2, and the barriers range arounty = 30 kJ moi?;
Second and probably more important, the symmetry number consequently, the anharmonic contributions to the energy are
is affected ¢ = 1 in eq 17). The large amplitude character of smaller than in isomeric silylenes such agHgi-SiHs, and the
this vibration therefore contributes a temperature-independentexistence of two distinguishable isomers affects the entropy
increment olRIn 3= 9.1 J mot! K~1to the calculated entropy.  (Figure 2, bottom row).
The third row of Figure 2 shows the sum of the thermodynamic  In Figure 2 (and in the subsequent figures), the thermody-
contributions of all three internal rotations in this molecule; apart namic functions are plotted up to temperatures of at least 4000
from the increment to the entropy, the curves look very much K. Although we do not hold that all species for which we plot
like those of the upper row in Figure 2 multiplied by three: thermodynamic data are stable up to these high temperatures,
The anharmonic contributions of internal rotations about Si  we are aware that such data is still useful for calculating
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Figure 3. Thermodynamic contribution of the inversion (“umbrella”) mode to internal energgntropySand heat capacit@,. Top row: Inversion
in silyl, SiHs. Middle row: Inversion in trisilylsilyl, Si(SiH)s. Bottom row: Ring inversion in Cyclotetrasilane. Harmonic curves dashed, anharmonic
curves solid.
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Figure 4. Thermodynamic contributions of symmetric and unsymmetrical inversion to internal eberggtropyS, and heat capacit€,. The
underlying potentials do not correspond to real molecules; see the text for the potential parameters chosen. Harmonic curves are dashed, symmetric
double well solid thin, asymmetric double well solid bold.

equilibrium concentrations, even if these are very small. tetrasilyldisilene it is 12 kJ mol at the MCSCF level. The
Furthermore, anharmonic effects often become clearer at veryanharmonic corrections are therefore larger than inz Sitit
high temperatures. smaller than in Si(Sik)s.

9.1.2 Irversion.Silyl radicals feature a trivalent Si atom with Unsymmetrically substituted silyl radicals and disilenes can
pyramidal coordination; thus, they exhibit an “umbrella mode” exist in two degenerate distinguishable configurations; therefore,
just like NHs. The barrier to inversion, however, depends on o= 1in eq 19, and the calculated entropy increaseR by 2
the degree of substitution; at the RHF level of theory, it is 36.5 = 5.8 J mof't K™%

kJ mol? for silyl, SiHs, but only 6.3 kJ mot* for trisilylsilyl, The bottom row in Figure 3 shows the thermodynamic
Si(SiHg)s. Therefore, also the magnitude of the anharmonic properties of the ring inversion (puckering mode) in cyclo-
correction depends on substitution. tetrasilane. The barrier is very low (2 kJ mé), and conse-

Figure 3 shows the anharmonic corrections to both silyl (upper quently, there are large anharmonic corrections to the thermo-
row) and trisilylsilyl (middle row); for the latter species, dynamic functions.
contributions arising from the three internal rotations are omitted. ~ The partition function for the asymmetric double-well po-
It can be seen that in Sgd anharmonicity is of minor tential, eq 23, gives us an opportunity to study the effect of
importance, whereas in Si(Si)d the anharmonic correction for  slight symmetry breaking. Figure 4 shows the thermodynamic
the inversion mode is almost as large as the anharmonicfunctions of a hypothetical symmetric double-well oscillatér (
correction for the internal rotation of sle. = 200 cn1?, Vo = 15 kJ mot?t, y = 3, 0 = 1) in comparison
Disilenes (eg., disilene SiH=SiH,) have a puckered mini-  to an asymmetric double well oscillator with= 6 kJ moi?
mum geometry and therefore show the same type of planariza-and otherwise identical parameters.
tion mode. Like in silyl radicals, the barrier depends on the  Asymmetry mainly affects the heat capacity at low temper-
degree of substitution: In disilene, it is 19 kJ mbland in atures; consequently both the internal energy and the entropy
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Figure 5. Thermodynamic contribution of anharmonic modes in cyclopentasilane to internal dneegyropyS and heat capacitZ,. Top row:
Pseudorotation. Bottom row: Pseudorotation plus ring puckering. Harmonic curves dashed, anharmonic curves solid.

are shifted vertically by rather small values: The internal energy the number of silyl substituents. From that, it will appear that
is increased by about 2 kJ méland the entropy is decreased the dissociation of a tertiary SH bond will need more
by about 0.7 Jmoft K~1, We note that the actual shift in the anharmonic correction than the dissociation of a primaryt&i
internal energy is much smaller than the energetic difference bond. On the other side, cleavage of a-Hibond in an SiH
between the two different isomers, group will often increase the number of distinguishable isomers,
From this finding, it appears that small asymmetries in the and thus add an extra incrementAeS.
order of a few kJ mot! can be neglected safely. We have reason  These considerations can be exemplified by the reactions of
to believe that the same is also true for asymmetric internal disilane, trisilane, and isotetrasilane to disilanyl, 1-trisilanyl and
rotations, where we have no partition function at hand to test trisilylsilyl, respectively (Figure 6). The first two examples
the assumption. involve the formation of a primary silyl radical and both show
9.1.3 Pseudorotation.Pseudorotation is best known in only small anharmonic corrections to the enthalpy of reaction,
puckered five-ring systems, although it is not restricted to these but in the second example, the entropy of reaction (and
molecules. We will limit our discussion to cyclopentasilane as consequently, the Gibbs function) is affected by the existence
the simplest case of pseudorotation in silicon hydride com- of three different conformers in 1-trisilanyl, SiHSiH,—SiH,.

pounds. The pseudorotation constatis needed to generate In the last example, anharmonicity affects both the enthalpy
the eigenvalue spectrum and, thus, the partition function (eq and entropy of reaction. Although the anharmonic corrections
3); it was calculate®f to about 1 crmt. to A{H andA,Sare larger than in the previous example, the net

In cyclopentasilane, there are two strongly anharmonic effect onA/G is smaller because the anharmonic corrections
modes: Pseudorotation and ring puckering. Both give rise to are negative for botiH andA.S and error cancellation occurs
anharmonic corrections, but the dominating contributions come when AG is calculated.
from the pseudorotation mode (Figure 5). Both entropy and heat 9.2.2 H Elimination. In this section, we will discuss the 1,1
capacity are strongly affected even at room temperature. elimination and 1,2 elimination of Hfrom silanes, yielding

9.2 Anharmonic Contributions to Reaction Quantities. silylenes and disilenes, respectively.

Reaction-specific quantities such as the enthalpy of reaction 1,1 elimination converts a silane to a silylene, both of which
(AH) are calculated as differences of substance-specific quanti-have the same number of internal rotations and lack other
ties such as the enthalpy of formatiofid) for reactants and  nonharmonic degrees of freedom. In most cases, the barriers to
products. Anharmonic corrections to the individual enthalpies internal rotation are almost the same in a silane and all the
of formation will, therefore, in some cases cancel each other silylenes derived from it. Still, the number of distinguishable
and in other cases enforce each other. Moreover, someconformers in the silylene may be higher, and thgs and
thermodynamic functions\(H, A;S) may be more sensitive to  A,G can be influenced. An example for that is the formation of
anharmonic corrections than others@). trisila-1,1-diyl (Sikk—SiH,—SiH, three conformers) from tri-

Strongly anharmonic oscillations are associated with floppi- silane (SiH—SiH,—SiHs, one conformer).
ness and conformational freedom; whenever a chemical reaction Figure 7 (upper row) shows the 1,% ldlimination reaction
converts a comparatively rigid system into a floppy one, strong of silylcyclotrisilane (SiHs—SiHs, one conformer) to cyclo-
effects of anharmonicity on the heat of reaction and entropy trisilylsilylene (SgHs—SiH, two conformers). Although the
can be expected. If, however, products and reactants show anternal rotation in the reactant is only slightly hinder& €
similar degree of floppiness, anharmonic corrections are likely 5 kJ mofl1), there is considerable hindrance in the prodifgt (
to remain small, even if the individual molecules have many = 30 kJ mof1), which behaves more harmonically. The figure
anharmonic degrees of freedom by themselves. shows than both enthalpy and entropy of reaction are affected;

9.2.1 Si-H Dissociation.The dissociation of SiH bonds in the free energy, however, the effects/il andA,S partially
does not alter the conformational flexibility of the silicon cancel each other.
backbone much; it does, however, create a tricoordinate center Formally, disilenes result from the 1,2 elimination of ffbm
that can show an anharmonic inversion mode. We have seensilanes. They have one internal rotation less than the corre-
before that the anharmonicity of these inversions depends onsponding silane, but on the other side exhibit an inversion mode
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Figure 6. Effects of anharmonicity on SiH dissociation reactions. Top row: ;8is — H + Si;Hs. Middle row: SgHg — H + SiH;—SiH,—SiH,.
Bottom row: SiH(SiH); — H + Si(SiHs),. Harmonic curves dashed, anharmonic curves solid.
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Figure 7. Effects of anharmonicity on Helimination reactions. Top rowcyclo-SisHs—SiH; — H, + cyclo-SisHs—SiH. Bottom row: SiHe —
H, + SiH,=SiH,. Harmonic curves dashed, anharmonic curves solid.

lacking from their silane counterparts. As the anharmonic  As an example, we take the formation of cyclotrisilane from
contributions of a double well oscillator are smaller that those trisilane via H elimination (Figure 8, upper row). In the course
of an internal rotator, anharmonicity can influence the thermo- of this reaction, two internal rotation degrees of freedom vanish,
dynamics of such reactions. and the product cyclotrisilane does not show any significantly
In Figure 7 (lower row), thermodynamic functions for the anharmonic modes. The figure shows that anharmonicity affects
1,2 elimination of disilane to disilene are shown. The anhar- both enthalpy and entropy of reaction with the same sign;
monic corrections are, however, quite small; they are most therefore, error compensation keeps the effect of anharmonicity
pronounced for the enthalpy of reaction, (7 kJ mait 2000 on AG small.
K); entropy and particularly free energy show even smaller  Anharmonic effects are particularly strong in reactions that
anharmonic corrections. form five membered rings. The lower row of Figure 8 shows
9.2.3 Cyclization Reactiong:ormation of cyclic structures  the isomerization of 1-pentasilene ($#SiH—SiH,—SiH,—
is always associated with a loss of conformational freedom; SiHz) to cyclopentasilene. Although the reactant has nine
therefore, anharmonic effects can be expected to grow to different conformers produced by internal rotations about the
significant size. central Si-Si single bonds, the product, although floppy, has
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Figure 8. Effects of anharmonicity on cyclization reactions. Top row;Hgi— H, + cyclo-SisHs. Bottom row: SiH=SiH—SiH,—SiH,—SiH; —
cyclo-SisHie. Harmonic curves dashed, anharmonic curves solid.
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Figure 9. Effects of anharmonicity on radical isomerization SiH(§i+SiH; — Si(SiHs)—SiHs. Harmonic curves dashed, anharmonic curves
solid.

less conformational entropy. As a consequence, we find that X(1P'°d)
all functions, A\H, A/S and A,G, are heavily affected; at

temperatures above 2000 K, the harmonic and the anharmonic 0.8
results for A\G have different sign and show almost no 0.6
resemblance. 0.4

9.2.4 Hydrogen Migrationin the examples discussed so far,
the most important types of anharmonic motions were internal
rotations (and pseudorotations in the case of five-membered 1000 2000 3000 4000T (K]
rings). Becausellnternall rOta“.onS show larger deviations from Figure 10. Effects of anharmonicity on the primary/tertiary radical
harmonic behay|or than inversions, the former tend to dominate equilibrium SiH(SiH),—SiH, — Si(SiHy)—SiHs. Harmonic curve
over the latter in the net effect. dashed, anharmonic curve solid.

If, however, the number of internal rotations remains constant
during a reaction, and if the enthalpy (and Gibbs energy) of concentration of the tertiary radical: In the temperature range
reaction has low absolute value, the effect of inversions may of 1000 K to 2000 K, it even predicts the dominating species

0.2

become crucial for the correct predictionmH. As an example, incorrectly. In the high-temperature limit, the harmonic ap-
we look at the isomerization gbrim-isotetrasilanyl totert- proximation is still wrong by a factor of 5 (40% vs 8%).
isotetrasilanyl (trisilylsilyl). It is well know#* that electronic 9.3 Enthalpy of Formation and Enthalpy of Reaction.All
effects favor tertiary over primary radicals energetically, and calculated thermodynamic quantities are sums of a large number
so does anharmonicity (Figure 9). of different contributions. In the special case of the enthalpy of

The energetic stabilization of the tertiary radical is, however, formation, there are not only contributions arising from the
overbalanced by its entropic destabilization, which has its sourcemolecule in question, but also contributions from the corre-
in part in the strongly anharmonic inversion, but even more so sponding element phases due to the special choice of zero in
in the loss of three distinguishable isomers in the primary to enthalpies of formation.
only one isomer in the tertiary case. Because of the small The molecule-related contributions to the enthalpy of forma-
absolute value of\(H, the entropy term in the Gibbs enthalpy tion have different orders of magnitude, and one might ask
AG exceeds the enthalpy term even at modest temperature (50Qvhether small anharmonic corrections are of any practical
K), and the entropy becomes the dominating factor@s and, influence. Table 3 shows these contributions to two isomeric
therefore, the equilibrium constant. SisH10 Species, 1-pentasilene and cyclopentasilane, and also the

The product distribution of this reaction is shown in Figure corresponding contributions to the enthalpy of reaction of the
10; the graphic shows the mole fraction of the tertiary radical isomerization (cf. section 9.2.3 and Figure 8). The figures are
in the equilibrium mixture. The harmonic approximation leads given for three different temperatures, 298, 2000, and 3000 K.
to an dramatic overestimization of the stability and thus It can be seen that the electronic contribution, which is the
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TABLE 3: Enthalpies of Formation for Two SisH;o Species have found that formation of rigid ring systems from confor-
at Different Temperatures and Enthalpy of Reaction for mationally less constrained open-chain compounds is prone to
their Interconversion, in kJ/mol large anharmonic effects
T= 298 K 2000 K 3000 K In the high-temperature regime, the entropy is often the
AH (1-pentasilene) 397.2 147.2 171.6  dominating factor for the value ak,G if reactions with small
elec —4210.6 —4210.6 —4210.6 A(H are considered. An example of such reactions are equilibria
trans 6.2 41.5 62.3 between radicals with the same silicon backbone. We found
rot 3.7 24.9 374 that the number of distinguishable isomers is the key factor
vib, harmon 240.1 687.5 999.2 det. inina th trati f th . . t high
anharm ‘o4 194 339 etermining the concentrations of the various species at hig
AfH (cyclopentasilane) 215.1 —28.4 26 temperatures, when their energetic differences become com-
elec —4393.4 —4393.4 —4393.4 paratively unimportant.
trans 6.2 41.5 62.3 An online version of our program operating on data for about
\r/ci’tt) harmon 22;2 33%97 Sgé“ 200 silicon hydride compounds can be found at http:/
anﬁarm 11 124 _196 bthec11.kfunigraz.ac.atkatzer.
AH (isomerization) —182.1 —1756 —169.0
elec -182.8 -—1828 -1828 References and Notes
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