
Beyond the Harmonic Approximation: Impact of Anharmonic Molecular Vibrations on the
Thermochemistry of Silicon Hydrides

Gernot Katzer* and Alexander F. Sax
Institut für Chemie, Strassoldogasse 10, Karl-Franzens-UniVersität Graz, A-8010 Graz, Austria

ReceiVed: March 18, 2002; In Final Form: May 23, 2002

Thermodynamic state function (enthalpy, entropy, and heat capacity) were calculated for several types of
silicon hydrides taking into account the strongly anharmonic character of some of the molecular vibrations
(internal rotation, inversion, and pseudorotation). The anharmonic motions were treated as one-dimensional
motions taking place along the harmonic normal coordinates, neglecting anharmonic coupling terms. Partition
functions were calculated from the idealized numerical eigenvalue spectrum in the case of pseudorotation;
for the other types of large amplitude motions, we used quantum-corrected classical partition functions.
Following the work of Knyazev and Tsang, we derived a novel partition function for an asymmetric double
well potential. We then used the data to calculate enthalpies, entropies and free energies of reaction for
several types of chemical reactions among silicon hydrides, at both the harmonic and the anharmonic level.
Differences arising from the inclusion of anharmonicity are discussed.

1. Introduction

The calculation of thermodynamic properties of substances
by means of ab initio molecular computations is an important
task of quantum chemistry. Such computations apply the
principles of statistical thermodynamics and use additional
approximations to treat electronic and nuclear motions. For the
nuclear motion, which is the concern of this work, the harmonic
oscillator approximation is the most important one, sometimes
limiting the accuracy of the results.

Although the harmonic approximation is sufficient to describe
nuclear motion in most molecules at room temperature,1 this is
not necessarily true at higher temperatures, when some vibra-
tional degrees of freedom become highly excited: the amplitude
of the nuclear motion increases, and finally the system leaves
the part of the potential energy surface where the harmonic
approximation to the potential energy surface holds. Motions
with amplitudes that large are called “large amplitude motions”.
Molecules showing this kind of behavior are often referred to
as “floppy”, but at sufficiently high temperatures, most mol-
ecules will exhibit one or more vibrational degrees of freedom
with substantially “floppy” character.2

Floppiness puts an end to the validity of the harmonic
approximation. Yet no general procedure is in common use that
allows for improved treatment of floppy, or strongly anharmonic,
molecular vibrations. In his pioneering work on internal rotation,
Pitzer,3-6 calculated tables of partition functions of internal
rotators. These data is still valid today, but the thermochemistry
modules of the most widely used quantum chemical packages
do not take advantage of it. Neither has the work of Witschel7-9

and Gibson10 on anharmonic oscillators found a way into main-
stream quantum chemistry. Recently, Ayala, and Schlegel11 have
developed a partially automatic method for the treatment of
internal rotations; their method has been included into the latest
release of the Gaussian quantum chemical package.

In the meanwhile, thermodynamic data on floppy molecules
is scarce for temperatures well above 300 K. Internal rotations

are an extremely common feature in organic compounds; yet
collections of thermochemical data at high temperatures, like
the JANAF tables,12 contain only few organic molecules
showing internal rotation; for example, fundamental species such
as C2H6 and C3H8 are omitted from the JANAF tables. Clearly,
this is a disadvantage hindering the understanding of high-
temperature gas-phase reactions involving such species, like
combustion and chemical vapor deposition (CVD) processes.

In previous work,13,14 our group has studied the energetics
of small and medium-sized silicon hydride compounds. For lack
of available methods, the discussion of bond strengths, relative
isomer stabilities, and reaction ratios was limited to 300 K,
although the CVD processes15 that end in the deposition of Si
films from an SiH4 atmosphere take place at much higher
temperature. We therefore decided to search for a more general
method to account for the strong anharmonicities found in floppy
molecules and calculate thermodynamic state functions beyond
the regime of the harmonic approximation.

2. Thermodynamics

Statistical thermodynamics allows to calculate thermodynamic
(macroscopic) observables from knowledge of molecular (mi-
croscopic) data. Each degree of freedom of the microscopic
system contributes to all thermodynamic quantities; if the degree
of freedoms can be assumed independent, then also their
thermodynamic contributions can be calculated separately.

In molecules, the degrees of freedom are electronic motion
and nuclear motion, which can be further subdivided into
translation, rotation and vibration. The molecular partition
function can be written as a product

whereâ ) 1/RTandR is the gas constant,R ) 8.3144 J mol-1

K-1.
In most molecules, electron motion results only in a temper-

ature-independent contribution to the internal energy,U(0), and
so we will not further consider electronic degrees of freedom.

* To whom correspondence should be addressed. E-mail: gernot.katzer@
uni-graz.at, alexander.sax@uni-graz.at.

Q(â) ) qtrans(â)‚qrot(â)‚qvib(â)‚qelec(â) (1)
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The contributions of translation and rotation depend only on
the mass and moment of inertia of the molecule, and they are
thus easy to calculate using the simple models of the particle
in a box and the rigid rotator, respectively. In contrast, the
vibrational contributions are, in general, difficult to evaluate,
and thus are the prime issue of this work.

For anN-atomic nonlinear molecule, the vibrational problem
is 3N - 6 dimensional. If one assumes the harmonic oscillator
approximation to be valid, then this 3N - 6 dimensional problem
can be reduced to 3N - 6 independent one-dimensional
harmonic oscillators, and the vibrational partition function can
be written as a product of one-mode partition functions

where each of theq(i) is a sum of Boltzmann factors using the
eigenvalue spectrum of theith normal mode

By plugging in the eigenvalues of the one-dimensional oscillator

we can write the partition function for one single vibrational
degree of freedom in the harmonic approximation as

whereE(i) ) -pω(i) is the spacing between energy levels of
theith normal mode. In this formulation of the partition function,
the zero-point energy has been included into the temperature-
dependent part of the internal energy, and there is no need to
consider it separately.

If one wants to go beyond the harmonic oscillator level, then
two different problems arise: First, the partition function of an
harmonic oscillator must be replaced by a partition function of
an anharmonic oscillator, and, second, the individual vibrational
degrees of freedom couple with each other, which means the
product form for the total vibrational partition function (eq 2)
is no longer valid. For that reason, the anharmonic problem is
inherently multidimensional, and both difficult and time-
consuming to solve.

In this work, however, we will retain the separation of the
various vibrational degrees of freedom, eq 2, as anapproxima-
tion inherited from the harmonic approximation, although some
vibrational degrees of freedom will be treated as anharmonic
oscillators. We will, instead, concentrate on the derivation of
anharmonic partition functions that can replace eq 5 to account
for the anharmonic character of a particular vibrational degree
of freedom.

From knowledge of the partition function and its derivatives
with respect toâ, thermodynamic quantities such as internal
energyU, absolute entropyS and isochorous heat capacityCV
can be calculated very easily at any given temperatureT (or â).
The formulas are the same for all kind of partition functions;
this is, thermodynamic quantities for the whole molecule, for
the rotational or vibrational contributions alone, even for a single
vibration, can be calculated by the same formalism from the
corresponding partition function

In this equation,U(0) refers to the temperature-independent part
of the internal energy. Enthalpies, Gibbs functions and isobar
heat capacities can be obtained fromU, S, and CV using the
elementary relations of phaenomenologic thermodynamics.

An important thermodynamic function is the standard en-
thalpy of formation

where the molecular atomization energy consists of electronic,
vibrational, translational, and rotational contributions

The symbol∆atU(element) denotes the atomization energies of
the element phases in their reference states; these energies are
needed to establish the conventional zero point of∆fH. In the
equations of this paragraph, all quantitiesU andH depend on
the temperature.

The electronic atomization energy,∆Eel, is by far the largest
contribution to∆atU and thus to∆fH; therefore, it dominates
over both the molecular vibration energy,Uvib, and the dis-
sociation energy contributions arising from rotation and transla-
tion, Urot and∆atUtr.

The vibrational part,Uvib, is the largest temperature-dependent
contribution to the dissociation energy. However, anharmonic
corrections toUvib typically amount to only a small fraction of
the total value; therefore, these corrections are very small
compared to the electronic dissociation energy. To include
anharmonic effects reasonably inU and∆fH presupposes that
the electronic energies have been calculated to a “chemical
accuracy” of a few kJ/mol, or better. This is a very difficult
goal to archive by pure ab initio means even for small
molecules,16,17and for molecules the size of Si5H10, one has to
resort to empirical corrections of the electronic dissociation
energy.13,14

3. Types of Anharmonic Motions

To devise an approximation that goes beyond the limits of
the harmonic oscillator approximation, it is useful to review
shortly the most important types of anharmonic nuclear motions
in molecules. We are only concerned with anharmonic motions
that significantly and even qualitatively differ from purely
harmonic motions; the small anharmonicities often dealt with
in spectroscopy by polynomial expansions or Morse potentials
are of little significance for thermodynamic applications, and
will not be considered here.

The best known and also best investigated11,18 case of a
strongly anharmonic molecular motion isinternal rotation. It
is the most important case both because is occurs very frequently
in chemistry, and the deviations from the harmonic oscillator
can grow to quite large magnitude.

The prototype of a system showing internal rotation is ethane,
CH3-CH3. Starting from thestaggeredminimum, the internal
rotation leads via theeclipsedmaximum to another minimum,
which is identical to the starting minimum in this case. The
barrier to internal rotation is about 13 kJ/mol at the RHF level

qvib(â) ) q(1)(â)‚q(2)(â)‚‚‚q(3N-6)(â) (2)

q(i) ) ∑
j

exp(-âεj
(i)) (3)

εn
(i) ) pω(i)(n + 1/2) ) E(i)(n + 1/2) (4)

q(i)(â) )
exp(-1/2âE(i))

1 - exp(-âE(i))
(5)

U(T) - U(0) ) q′
q

S(T) ) R ln q - q′
Tq

CV(T) ) q′′q - q′2

RT2q2
(6)

∆fH(molecule)) H(molecule)- ∑
elements

H(element) (7)

) ∑
elements

∆atU(element)- ∆atU - ∆(pV) (8)

∆atU ) ∆Eel + Uvib + Urot + ∆atUtr (9)
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of theory: For energies far below the barrier, the system may
behave harmonically in good approximation, and for energies
far above the barrier, the system’s properties converge toward
those of a free rotator. Because harmonic oscillation and free
rotation have quite different partition functions and, thus,
thermodynamic properties, the harmonic oscillator treatment for
internal rotations will necessarily give great errors at high
temperatures.

Another type of strongly anharmonic motion is associated
with the inversion at nonplanar trivalent centers, e.g., the
inversion of ammonia. The characteristic feature of this motion
is the existence of two stable configurations separated by an
energy barrier. The harmonic approximation remains valid as
long as the thermal energy stays below the barrier, but as soon
as the thermal energy approaches, or exceeds, the barrier, the
molecule becomes much more conformationally free (floppy),
and significant anharmonic effects may be expected.

Almost the same type of motion is also found in small ring
compounds (“ring inversion”). Ring inversion can take place
in nonplanar rings of four or more atoms. Low barriers, and
therefore significant anharmonicities, are often found in four-
and five-membered rings.

Certain small rings show another type of strongly anharmonic
motion: pseudorotation,19 which is a concerted motion of
several atoms along a periodic coordinate. The textbook example
of pseudorotation is cyclopentane, C5H10, where thebent
(enVelope) and twistedconformers interconvert via a pseudo-
rotation process. The same type of pseudorotation appears in
cyclopentasilane, Si5H10.15,20 Although in general there is a
barrier to pseudorotation, this barrier is often found to have
negligible size: In this case, we speak of “free pseudorotation”.
As there is no potential in free pseudorotation, the harmonic
approximation is invalid even at temperatures as low as room
temperature.

4. Anharmonic Potentials

In this section, we shall introduce analytical potentials that
can be used to describe internal rotation and inversion. The third
case of strongly anharmonic nuclear motion, pseudorotation,
needs no potential in its description if free pseudorotation is
assumed.

4.1 Periodic cos Potential.The potential used to describe
an internal rotation must depend on an angular coordinate and
display several maxima and minima within one cycle. An
obvious choice is a single cosine3 function

This potential hasn equal minima atx ) 0, 2π/n, 4π/n,...
2(n - 1)π/n which are separated byn maxima of heightV0.
The parametern is referred to as theperiodicityof the potential,
andV0 is calledbarrier height.Because of the existence of a
barrier, motion in potential 10 is often referred to ashindered
rotation.

The cosine potential, eq 10, is a good approximation for
internal rotations involving identical conformers, as in ethane
or propane. In general, internal rotation about highly substituted
bonds may give rise to different conformers which usually differ
in energy; the torsion potential then becomes asymmetric, having
minima and maxima at different energies, and cannot be
accurately described by a single cosine function. It is often found
that the minima have similar energies, and then eq 10 can serve
as a useful approximation.

4.2 Symmetric and Unsymmetrical cos-tan2 Potentials.
To treat inversions and similar processes with two stable
configurations, one needs a double-well potential. Among the
double-well potentials found in the literature, the most popular
ones are polynomial potentials of fourth and sixth order. These
are, however, not well suited for thermodynamic applications,
as the calculation of the partition function is not possible in
closed form, and computing enough eigenvalues numerically
to calculate the partition function according to eq 3 is a tiresome
and expensive process.

Knyazev and Tsang21 have introduced a novel double-well
potential which is here written in a slightly different form: With
the auxiliary potential

we can define a symmetric double well potential

which is twice continuous differentiable. It depends on a
dimensionless (relative) coordinatex limited to the interval
(-1-γ, 1+γ). There are two equivalent minima atx ) (1
separated by a central maximum of heightV0. The parameterγ
relates the width of the barrier to the width of the outer, repulsive
part of the potential; a high value ofγ indicates a narrow barrier.
At the end points of the interval, the potential grows to+∞,
which means that it is steeper than any polynomial potential.

The symmetric cos-tan2 potential is suited for inversion
motions such as the inversion of NH3 or the ring inversion of
cyclobutane, where two identical species are involved. In less
symmetric molecules, the two species produced by inversion
are not degenerate (e.g., the equatorial and axial conformers of
substituted cyclobutane); for such cases, we propose an unsym-
metrical double well potential.

The symmetric cos-tan2 potential in eq 12 can be easily
modified to become unsymmetrical

This new potential is also twice continuous differentiable, and
for x > 0 it is identical to the symmetric cos-tan2 potential;
for x < 0, it is raised vertically byδ and scaled horizontally
and vertically in order to yield a smooth transition atx ) 0.
The minimum of the left branch lies atx ) (V0/(V0 - δ))1/2.
The energetic difference between the two minima is given by
δ. We will assume 0e δ < V0.

5. Partition Functions

The calculation of quantum mechanic partition functions
requires knowledge of the QM energy spectrum{εi}. For the
pseudorotation, the energy spectrum is the same as for rigid
rotation in one dimension2,19

V(x) )
V0

2
(1 - cosnx) (10)

V†(x, V0) ) {V0

2
(1 + cosπx) 0 e x e 1

V0γ
2tan2( π

2γ
(x - 1)) 1 < x < γ + 1

(11)

V(x) ) {V†(-x, V0) -(γ + 1) < x < 0

V†(x, V0) 0 e x < γ + 1
(12)

V(x) ) {V†(-xV0/(V0 - δ)x, V0 - δ) + δ

-x(V0 - δ)/V0(1 + γ) < x< 0

V†(x, V0)
0 e x < 1 + γ

(13)

εn ) hcBh n2 for n ) ..., -2, -1, 0, 1, 2,... (14)
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whereBh (or hcBh in other literature) is called the pseudorotational
constant. Therefore, it is possible to compute the partition
function by numerical summation (eq 3). In many cases,
however, a so-called “high temperature approximation” is
employed, replacing the sum in eq 3 by an integral

This procedure has the advantage of yielding a simple closed
expression for the partition function, but may be inadequate for
some types of pseudorotation with large pseudorotational level
spacing.20

For most anharmonic oscillators, the energy spectrum isnot
known, which means that application of eq 3 is not straight-
forward for anharmonic oscillators corresponding to the potential
shapes discussed in the previous section. Numerical solutions
of the eigenvalue problem are possible yet time-intensive.

At this point, classical partition functions are a viable
alternative. The classical partition function is defined as an
integral over normalized phase space elements,dx dp/h

where T(p) ) p2/2m is the kinetic andV(x) is the potential
energy;h is Planck’s constant andσ is a symmetry number.
The classical partition function can be used in the same way as
the quantum mechanical one to calculate state functions, but as
it does not incorporate quantum effects, it will fail at deep
energies, and its use is justified only in the high-temperature
regime.

The main advantage of the classical partition function over
the quantum mechanical partition function is that it can be
evaluated analytically for many nontrivial potentials. The
classical partition function for hindered rotation (eq 10) is3,22

A very similar formula that contains some correction for the
zero point energy was derived by McClurg et al.;23 in their
expression,V0 in the argument of the exponential function of
eq 17 is replaced by a corrected potential barrier

Knyazev and Tsang21 have described a method that allows to
solve the phase space integral via the classical density-of-states
function; their method can be used to construct classical density-
of-states functions, sum-of-states functions and partition func-
tions for the potentials eqs 10 and 12. For the symmetric double
well potential, the classical partition function is given by

whereq† is an auxiliary function

In these equations,E is the energy of an harmonic oscillator
with the same curvature at the minimum,I0 is the modified
Bessel function of the first kind and erfc is the complementary
error function. The symmetry numbersσ do not follow from
the potential, but from symmetry properties of the molecule:
They reflect the number of distinguishable minimum structures.
For the internal rotation about ann-fold bond, in most casesσ
is either 1 orn, whereas for inversion motions,σ can be either
1 or 2. If all potential minima belong to distinguishable
structures, thenσ ) 1 for all partition functions.

The partition function of the unsymmetrical double well
potential, eq 13, can be derived from eq 19 in the following
way: We first split the phase space integral atx ) 0

wheref stands for ((V0 - δ)/V0)1/2. We observe that the second
summand is just one-half of the symmetric cos-tan2 potential
partition function, eq 19, withσ ) 1. In the first part, we can
move the term exp(-âδ) before the integral, switch the integral
limits, and substitute a new integration variable in place offx.
The integral then becomes the partition function of a symmetric
double well oscillator with a modified barrier height

The complete partition function of the asymmetric double well
potential is thus

Clearly, there is no symmetry number involved in the
statistical description of motion in an unsymmetrical double well
potential.

6. Quantum Correction

The classical partition function is not a reasonable description
for the system at low temperatures, as it will not reproduce some

q(â) ) ∑
n)-∞

∞

exp(-âhcBhn2) ≈

∫-∞

∞
exp(-âhcBhn2)dn ) x π

hcBhâ
(15)

qcl(â) ) 1
hσ∫exp(-â(T(p) + V(x)))dx dp (16)

qcl(â) ) n
σExV0π

â
exp(-

âV0

2 )I0(âV0

2 ) (17)

V1 ) V0 - E2

E + 8V0
(18)

qcl(â) ) 1
σExV0π

â
q†(â, V0) (19)

q†(â, V0) )

exp(-
âV0

2 )I0(âV0

2 ) + γ erfc(xâV0γ
2)exp(âV0γ

2) (20)

qcl(â) ) 1
h∫x)-f (1+γ)

1+γ
exp(-â(T(p) + V(x))) dp dx)

) 1
h∫x)-f (1+γ)

0
exp(-â(T(p) +

V†(-fx, V0 - δ) + δ)) dp dx+
1
h∫x)0

1+γ
exp(-â(T(p) + V†(x, V0))) dp dx (21)

1
h∫x)-f (1+γ)

0
exp[-â(T(p) + V†(-fx, V0 - δ) + δ)] dp dx)

exp(-âδ)
h ∫x)-f (1+γ)

0
exp[-â(T(p) +

V†(-fx, V0 - δ))] dp dx)

exp(-âδ)
h ∫x)0

f (1+γ)
exp[-â(T(p) + V†(fx, V0 - δ))] dp dx)

f exp(-âδ)
h ∫y)0

1+γ
exp[-â(T(p) + V†(y, V0 - δ))] dp dy)

1
ExπV0

â
exp(-âδ)

2
fq†(â, V0 - δ) (22)

qcl(â) ) 1
ExπV0

â
exp(-âδ)

2 (exp(âδ)q†(â, V0) +

xV0 - δ
V0

q†(â, V0 - δ)) (23)
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essential features that have their origin in quantum effects: zero
point energy, “freezing” of degrees of freedom and the Third
Law. Pitzer and Gwinn3 have suggested an easy correction
scheme that will include quantum effects in the classical partition
function under the condition that the anharmonic oscillator can
be approximated by a harmonic oscillator in the low-temperature
limit.

The basic idea of the so-calledPitzer-Gwinn correctionis
to construct a partition function that approaches (a) thequantum
mechanical harmonicoscillator partition function at low tem-
perature and (b) theclassical anharmonicpartition function at
high temperature; they suggested the following formula

The anharmonic quantum mechanical partition functionqao is
thus approximated by the anharmonic classical partition function,
qcl

ao and a correction factor which is the ratio of quantum
mechanical and classical partition function of an harmonic
oscillator. The partition functionsqho (eq 5) andqcl

ho ) 1/âE
refer to an harmonic oscillator fitted to the anharmonic potential
at the minimum.

The correction term becomes unity in the high-temperature
limit, when the quantum mechanical and the classical partition
functions of the harmonic oscillator converge. In the low-
temperature limit, vibrational amplitudes are small, and one can
supposeqcl

ao ≈ qcl
ho in most cases; in this case, eq 24 reduces to

qao ≈ qho which is the correct behavior.

7. Validation

7.1 Calculated Energy Levels.The Pitzer-Gwinn (PG)
correction is an ad hoc method that can be judged only by its
success (or lack of success) in realistic situations. It is therefore
necessary to validate the PG correction scheme, which can be
done by comparing results obtained from PG corrected classical
partition functions with results from partition functions obtained
by numerical summation over energy levels, eq 3.

We obtained inversion potentials for several test molecules
by pointwise RHF geometry optimizations at fixed out of plane
angles (5° increments). The data were then fitted by a symmetric
double well potential (eq 12), and the exact vibrational levels
were determined solving the corresponding one-dimensional
Schrödinger equation, applying the Fourier Grid Hamiltonian
method of Balint-Kurti.24

We then calculated the exact QM partition function by
numerical summation and compared it to the classical and PG
corrected ones. In the literature, such comparisons have been
performed3,25at the level of the values of partition function and
its derivatives; we, however, decided not to compare the values
of the partition function directly, but rather the thermodynamic
quantities calculated therefrom: Internal energyU, entropyS
and isochorous heat capacityCV (eq 6).

U depends only on the relative changes ofq with respect to
the temperature, butSdepends mostly on the low-temperature
behavior ofq and also on its absolute magnitude. The calculation
of CV involves the second derivative of the partition function
and will, therefore, unveil even small inaccuracies in the
temperature-dependence at all temperatures.

Tables 1 and 2 show the calculatedU, S, and CV of the
inversion mode of ammonia, NH3, and trisilylsilyl, Si(SiH3)3,
for temperatures between 100 K and 1000 K. The two molecules
were chosen because they represent different types of double
well oscillators: In NH3, the calculated barrier to inversion is

high and broad (V0 ) 33 kJ mol-1, γ ) 5.7), and also the
harmonic energy (E ) 13 kJ mol-1) is well above thermal
energy in the temperature interval considered. Si(SiH3)3, on the
other hand, has a low and narrow barrier (V0 ) 6.5 kJ mol-1,
γ ) 12.9) and the harmonic energy separation is much smaller
(E ) 1.2 kJ mol-1).

Due to its highE, NH3 has a high characteristic vibrational
temperature,θ ) E/R) 1552 K, and quantum effects are visible
even at 1000 K; below 500 K, they are essential. On the other
side, NH3 has a large barrier to inversion, and anharmonicity is
a comparatively small correction. This can be seen in the
classical heat capacity, which in the complete temperature
interval does not deviate much from the ideal value for a
harmonic oscillator,R ) 8.31 J mol-1 K-1.

Because quantum effects dominate, the uncorrected classical
results in Table 1 are seriously in error. But it is reassuring that
the PG correction works well and corrects the classical results
toward the quantum mechanical with a deviation of about 1%
(or 0.1 kJ mol-1 and 0.1 J mol-1 K-1, respectively).

In Si(SiH3)3 (Table 2), the behavior is more anharmonic, as
seen by the low classical heat capacities, and quantum effects
play a minor role; therefore, the classical results already
resemble the exact quantum mechanical ones, and the PG
correction has less work to do. The PG corrected results agree
with the purely quantum mechanical results excellently.

Because most of the interesting cases of molecular inversions
fall between the extremes of NH3 and Si(SiH3)3, it appears that
the PG correction is sufficient to include quantum effects in
classical partition functions for anharmonic molecular vibrations.

7.2 Experimentally Observed Energy Levels.In the previ-
ous section, the two partition functions compared were both
derived theoretically from the same potential energy function
by the methods of classical mechanics and quantum chemistry,

qao ) qcl
ao‚ qho

qcl
ho

(24)

TABLE 1: Internal Energy U, Entropy S and Isochorous
Heat Capacity CW for the Umbrella Mode of NH3, Calculated
from Classical, PG-Corrected, and Quantum Mechanic
Partition Functions

U/kJ mol-1 S/J mol-1 K-1 CV/J mol-1 K-1

T/K class PG QM class PG QM class PG QM

100 0.83 6.46 6.29-14.43 0.05 0.00 8.37 0.05 0.00
200 1.67 6.47 6.30 -8.61 0.14 0.05 8.43 0.33 0.30
300 2.52 6.56 6.39 -5.18 0.46 0.38 8.52 1.48 1.57
400 3.38 6.78 6.63 -2.71 1.10 1.05 8.64 3.02 3.16
500 4.25 7.16 7.01 -0.77 1.93 1.91 8.80 4.42 4.54
600 5.14 7.66 7.52 0.85 2.84 2.84 8.94 5.52 5.60
700 6.04 8.25 8.12 2.23 3.75 3.76 9.04 6.33 6.37
800 6.95 8.91 8.79 3.44 4.64 4.65 9.08 6.90 6.90
900 7.85 9.62 9.50 4.51 5.47 5.48 9.06 7.27 7.24

1000 8.76 10.36 10.23 5.46 6.25 6.26 8.99 7.50 7.46

TABLE 2: Internal Energy U, Entropy S and Isochorous
Heat Capacity CW for the Umbrella Mode of Si(SiH3)3,
Calculated from Classical, PG-Corrected and Quantum
Mechanic Partition Functions

U/kJ mol-1 S/J mol-1 K-1 CV J mol-1 K-1

T/K class PG QM class PG QM class PG QM

100 0.85 0.99 0.99 5.60 6.29 6.29 8.82 7.51 7.53
200 1.76 1.83 1.82 11.84 12.02 12.02 8.99 8.63 8.62
300 2.62 2.67 2.66 15.35 15.44 15.43 8.27 8.11 8.10
400 3.41 3.45 3.44 17.64 17.68 17.68 7.60 7.51 7.51
500 4.15 4.18 4.17 19.28 19.31 19.30 7.15 7.10 7.10
600 4.85 4.87 4.86 20.56 20.58 20.57 6.87 6.83 6.84
700 5.53 5.55 5.54 21.60 21.62 21.61 6.70 6.67 6.67
800 6.19 6.21 6.20 22.49 22.50 22.50 6.59 6.57 6.57
900 6.84 6.86 6.85 23.26 23.27 23.27 6.52 6.51 6.51

1000 7.49 7.51 7.50 23.95 23.95 23.95 6.48 6.47 6.47
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respectively. Their numerical equivalency demonstrates the
validity of the PG correction, but is does not in any way
guarantee that the thermodynamical data calculated therefrom
compares well to experimental data from these molecules.

It is difficult to find a reference system where thermodynami-
cal data has been experimentally determined with sufficient
accuracy; but it is possible to calculate partition functions from
spectroscopically observed energy levels and compare these with
our PG corrected classical partition functions. By this procedure,
the choice of potential function, the choice of potential
parameters and the PG correction can be validated. We
performed this test for the internal rotation of methanol, whose
first fifteen energy levels are known both theoretically and
experimentally.26,27

We optimized the minimum structure of methanol at the RHF
level of theory and scaled the harmonic frequencies by a factor
of 0.900; from that,E was determined to 3.61 kJ mol-1. From
the Hessian eigenvectors, we estimated28 the barrier to internal
rotation toV0 ) 5.11 kJ mol-1, which compares favorably to
both the RHF value (5.16 kJ mol-1) and the experimental29 one
(4.76 kJ mol-1). We used McClurg’s formula23 for the partition
function of a hindered rotator.

The internal energy, entropy, and heat capacity contributions
of the internal rotation mode in CH3OH are shown in Figure 1.
Although the harmonic approximation (dashed) is seriously in
error, the results from the PG corrected partition function (bold)
agree very well with those of the QM partition function (solid).

At higher temperatures, the heat capacity calculated from the
QM partition function can be seen to decrease below the
theoretical high-temperature limit ofR/2 ) 4.16 J mol-1 K-1.
This is not a physical effect, but an artifact due to the limited
number of states included in the partition function. The internal
energy is affected in lesser degree.

8. Methods

Molecular structures and electronic energies for all molecules
discussed here were calculated following the path of the previous
work of our group:l3,14 For geometry optimization, we used RHF
(restricted Hartree-Fock) for closed-shell species, ROHF
(restricted open-shell Hartree-Fock) for radicals and MCSCF
(multiconfiguration self-consistent field) for singlet states of
diradicalic systems (disilenes, silylenes); these calculations were
performed with the GAMESS30 program. Electronic energies
were calculated using MOLPRO31 as single point energies at
the ACPF (average coupled pair functional) level of theory; for
these calculations, we used an ANO (atomic natural orbitals)
basis set of quadrupleú quality employingf functions for silicon
and d functions for hydrogen. The core electrons of Si were
dealt with by a local pseudopotential.32

The electronic parts of the standard enthalpy of formation
were calculated from atomization enthalpies; incompleteness in
the one electron basis was corrected by an empirical correction
scheme described earlier.14

The vibrational contributions to all thermodynamic functions
were determined at the basis of independent motion along
different vibrational degrees of freedom (eq 2), using anhar-
monical partition functions wherever appropriate. This approach
is similar to that of Ayala and Schlegel,11 although these authors
applied it only to internal rotation.

We have developed a method that allows to estimate the free
parameters (V0, n, σ, γ) of the partition functions for internal
rotation and double well oscillations from the minimum structure
and the Hessian eigenvalues and eigenvectors. We use Hessian
eigenvectors in redundant internal coordinates1 to identify
internal rotations11 and to estimate barrier heights; periodicity
and symmetry numbers are derived from careful analysis of the
equilibrium structure alone. Technical details of this method
will be published in a separate paper shortly.28

In general, it is not necessary to perform additional ab initio
calculations in order to get the anharmonic parameters, except
in the case ofδ in eq 23. We did, however, perform such
calculations in many cases to ensure that the automatic guesses
were correct.

9. Results and Discussion

In this section, we will present our results using anharmonic
partition functions. This section is not meant to give an overview
on silicon hydride chemistry, but on the possible extent of
anharmonic terms in thermochemistry. We will therefore discuss
the nature, origin and magnitude of anharmonic contributions
in several example molecules, and explore the importance of
anharmonic corrections in observable quantities such as heats
of reaction and equilibrium constants.

9.1 Anharmonic Contributions to Molecular Quantities.
9.1.1 Internal Rotation.The simplest example of internal rotation
in a silicon hydride occurs in disilane, SiH3-SiH3. This system
has a low barrier to internal rotation (4 kJ mol-1 at the RHF
level), and one can expect the onset of anharmonic behavior at
or slightly above room temperature.

The upper row of Figure 2 shows thermodynamic state
functions (internal energy, entropy, isochorous heat capacity)
for the internal rotation degree of freedom of Si2H6, calculated
both with a harmonic (eq 5) and an anharmonic (eq 17) partition
function. At room temperature, harmonic energy and entropy
are well reproduced by the harmonic partition function, but the
heat capacity already is influenced by anharmonicity. In the
temperature range between 1000 and 2000 K, inclusion of
anharmonic effects become essential to stay within “chemical
accuracy”. The anharmonic contribution toU is 4.3 kJ mol-1

at 1500 K.
It is interesting to compare the anharmonicities of disilane

and its carbon analogue, ethane (Figure 2, second row). At RHF
level, the barrier to torsion in ethane is 12.5 kJ mol-1, and thus
anharmonicity manifests itself at somewhat higher temperatures
than in disilane.

Figure 1. Thermodynamic contribution of internal rotation in methanol to internal energyU, entropyS, and heat capacityCV. Harmonic curves
dashed, experimental solid thin, anharmonic theoretical solid bold.
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Trisilane, SiH3-SiH2-SiH3 is the simplest example of a
silicon hydride with two internal rotations. Both internal
rotations give similar anharmonic contributions as the single
internal rotation in Si2H6, and the resulting anharmonic correc-
tion to the state functions of Si3H8 is about twice as large as
for disilane.

In tetrasilane, SiH3-SiH2-SiH2-SiH3, we have a new
situation, as internal rotation about the central Si-Si bond
produces three distinguishable isomers. This has two conse-
quences: First, the usage of potential eq 10 and partition
function eq 17 is an additional approximation, as it neglects
the different heights of the minima and maxima along the
internal rotation path. The error induced hereby is expected to
be small: The antiperiplanar and synclinal minima of Si4H10

differ by only 1.5 kJ mol-1.
Second and probably more important, the symmetry number

is affected (σ ) 1 in eq 17). The large amplitude character of
this vibration therefore contributes a temperature-independent
increment ofR ln 3 ) 9.1 J mol-1 K-1 to the calculated entropy.
The third row of Figure 2 shows the sum of the thermodynamic
contributions of all three internal rotations in this molecule; apart
from the increment to the entropy, the curves look very much
like those of the upper row in Figure 2 multiplied by three:
The anharmonic contributions of internal rotations about Si-

Si bonds in silanes do not much depend on the molecular
environment.

Internal rotations occur not only in silanes but in all open-
chain silicon hydrides. In most cases, the barriers to internal
rotation, and thence the anharmonic contributions, resemble
those we already reported for silanes. There are, however,
exceptions to that: For example, the internal rotation about an
SidSi double bond in disilenes has a periodicity ofn ) 1 and
a high barrier; it is, thus, best treated as an harmonic vibration.

Another exception arises in the context of silylenes. Although
in most silylenes the barriers to internal rotation are similar, or
even slightly smaller, than in silanes, this is not the case for
three-ring substituted silylenes, e. g., cyclotrisilanyl silylene
(Si3H5-SiH). In these species,33 the periodicity is reduced ton
) 2, and the barriers range aroundV0 ) 30 kJ mol-1;
consequently, the anharmonic contributions to the energy are
smaller than in isomeric silylenes such as Si3H3-SiH3, and the
existence of two distinguishable isomers affects the entropy
(Figure 2, bottom row).

In Figure 2 (and in the subsequent figures), the thermody-
namic functions are plotted up to temperatures of at least 4000
K. Although we do not hold that all species for which we plot
thermodynamic data are stable up to these high temperatures,
we are aware that such data is still useful for calculating

Figure 2. Thermodynamic contribution of internal rotation degrees of freedom to internal energyU, entropyS, and heat capacityCV. Top row:
One internal rotation in disilane, SiH3-SiH3. Second row: One internal rotation in ethane, C2H6. Third row: Three internal rotations in tetrasilane,
Si4H10. Fourth row: One internal rotation in cyclotrisilanyl silylene, Si3H5-SiH. Harmonic curves dashed, anharmonic curves solid.
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equilibrium concentrations, even if these are very small.
Furthermore, anharmonic effects often become clearer at very
high temperatures.

9.1.2 InVersion.Silyl radicals feature a trivalent Si atom with
pyramidal coordination; thus, they exhibit an “umbrella mode”
just like NH3. The barrier to inversion, however, depends on
the degree of substitution; at the RHF level of theory, it is 36.5
kJ mol-1 for silyl, SiH3, but only 6.3 kJ mol-1 for trisilylsilyl,
Si(SiH3)3. Therefore, also the magnitude of the anharmonic
correction depends on substitution.

Figure 3 shows the anharmonic corrections to both silyl (upper
row) and trisilylsilyl (middle row); for the latter species,
contributions arising from the three internal rotations are omitted.
It can be seen that in SiH3, anharmonicity is of minor
importance, whereas in Si(SiH3)3 the anharmonic correction for
the inversion mode is almost as large as the anharmonic
correction for the internal rotation of Si2H6.

Disilenes (e.g., disilene SiH2dSiH2) have a puckered mini-
mum geometry and therefore show the same type of planariza-
tion mode. Like in silyl radicals, the barrier depends on the
degree of substitution: In disilene, it is 19 kJ mol-1 and in

tetrasilyldisilene it is 12 kJ mol-1 at the MCSCF level. The
anharmonic corrections are therefore larger than in SiH3 but
smaller than in Si(SiH3)3.

Unsymmetrically substituted silyl radicals and disilenes can
exist in two degenerate distinguishable configurations; therefore,
σ ) 1 in eq 19, and the calculated entropy increases byR ln 2
) 5.8 J mol-1 K-1.

The bottom row in Figure 3 shows the thermodynamic
properties of the ring inversion (puckering mode) in cyclo-
tetrasilane. The barrier is very low (2 kJ mol-1), and conse-
quently, there are large anharmonic corrections to the thermo-
dynamic functions.

The partition function for the asymmetric double-well po-
tential, eq 23, gives us an opportunity to study the effect of
slight symmetry breaking. Figure 4 shows the thermodynamic
functions of a hypothetical symmetric double-well oscillator (E
) 200 cm-1, V0 ) 15 kJ mol-1, γ ) 3, σ ) 1) in comparison
to an asymmetric double well oscillator withδ ) 6 kJ mol-1

and otherwise identical parameters.
Asymmetry mainly affects the heat capacity at low temper-

atures; consequently both the internal energy and the entropy

Figure 3. Thermodynamic contribution of the inversion (“umbrella”) mode to internal energyU, entropySand heat capacityCV. Top row: Inversion
in silyl, SiH3. Middle row: Inversion in trisilylsilyl, Si(SiH3)3. Bottom row: Ring inversion in Cyclotetrasilane. Harmonic curves dashed, anharmonic
curves solid.

Figure 4. Thermodynamic contributions of symmetric and unsymmetrical inversion to internal energyU, entropyS, and heat capacityCV. The
underlying potentials do not correspond to real molecules; see the text for the potential parameters chosen. Harmonic curves are dashed, symmetric
double well solid thin, asymmetric double well solid bold.
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are shifted vertically by rather small values: The internal energy
is increased by about 2 kJ mol-1 and the entropy is decreased
by about 0.7 Jmol-1 K-1. We note that the actual shift in the
internal energy is much smaller than the energetic difference
between the two different isomers,δ.

From this finding, it appears that small asymmetries in the
order of a few kJ mol-1 can be neglected safely. We have reason
to believe that the same is also true for asymmetric internal
rotations, where we have no partition function at hand to test
the assumption.

9.1.3 Pseudorotation.Pseudorotation is best known in
puckered five-ring systems, although it is not restricted to these
molecules. We will limit our discussion to cyclopentasilane as
the simplest case of pseudorotation in silicon hydride com-
pounds. The pseudorotation constant,Bh, is needed to generate
the eigenvalue spectrum and, thus, the partition function (eq
3); it was calculated20 to about 1 cm-1.

In cyclopentasilane, there are two strongly anharmonic
modes: Pseudorotation and ring puckering. Both give rise to
anharmonic corrections, but the dominating contributions come
from the pseudorotation mode (Figure 5). Both entropy and heat
capacity are strongly affected even at room temperature.

9.2 Anharmonic Contributions to Reaction Quantities.
Reaction-specific quantities such as the enthalpy of reaction
(∆rH) are calculated as differences of substance-specific quanti-
ties such as the enthalpy of formation (∆fH) for reactants and
products. Anharmonic corrections to the individual enthalpies
of formation will, therefore, in some cases cancel each other
and in other cases enforce each other. Moreover, some
thermodynamic functions (∆rH, ∆rS) may be more sensitive to
anharmonic corrections than others (∆rG).

Strongly anharmonic oscillations are associated with floppi-
ness and conformational freedom; whenever a chemical reaction
converts a comparatively rigid system into a floppy one, strong
effects of anharmonicity on the heat of reaction and entropy
can be expected. If, however, products and reactants show a
similar degree of floppiness, anharmonic corrections are likely
to remain small, even if the individual molecules have many
anharmonic degrees of freedom by themselves.

9.2.1 Si-H Dissociation.The dissociation of Si-H bonds
does not alter the conformational flexibility of the silicon
backbone much; it does, however, create a tricoordinate center
that can show an anharmonic inversion mode. We have seen
before that the anharmonicity of these inversions depends on

the number of silyl substituents. From that, it will appear that
the dissociation of a tertiary Si-H bond will need more
anharmonic correction than the dissociation of a primary Si-H
bond. On the other side, cleavage of a Si-H bond in an SiH3
group will often increase the number of distinguishable isomers,
and thus add an extra increment to∆rS.

These considerations can be exemplified by the reactions of
disilane, trisilane, and isotetrasilane to disilanyl, 1-trisilanyl and
trisilylsilyl, respectively (Figure 6). The first two examples
involve the formation of a primary silyl radical and both show
only small anharmonic corrections to the enthalpy of reaction,
but in the second example, the entropy of reaction (and
consequently, the Gibbs function) is affected by the existence
of three different conformers in 1-trisilanyl, SiH3-SiH2-SiH2.

In the last example, anharmonicity affects both the enthalpy
and entropy of reaction. Although the anharmonic corrections
to ∆rH and∆rSare larger than in the previous example, the net
effect on∆rG is smaller because the anharmonic corrections
are negative for both∆rH and∆rS, and error cancellation occurs
when∆rG is calculated.

9.2.2 H2 Elimination.In this section, we will discuss the 1,1
elimination and 1,2 elimination of H2 from silanes, yielding
silylenes and disilenes, respectively.

1,1 elimination converts a silane to a silylene, both of which
have the same number of internal rotations and lack other
nonharmonic degrees of freedom. In most cases, the barriers to
internal rotation are almost the same in a silane and all the
silylenes derived from it. Still, the number of distinguishable
conformers in the silylene may be higher, and then∆rS and
∆rG can be influenced. An example for that is the formation of
trisila-1,1-diyl (SiH3-SiH2-SiH, three conformers) from tri-
silane (SiH3-SiH2-SiH3, one conformer).

Figure 7 (upper row) shows the 1,1 H2 elimination reaction
of silylcyclotrisilane (Si3H5-SiH3, one conformer) to cyclo-
trisilylsilylene (Si3H5-SiH, two conformers). Although the
internal rotation in the reactant is only slightly hindered (V0 )
5 kJ mol-1), there is considerable hindrance in the product (V0

) 30 kJ mol-1), which behaves more harmonically. The figure
shows than both enthalpy and entropy of reaction are affected;
in the free energy, however, the effects on∆rH and∆rSpartially
cancel each other.

Formally, disilenes result from the 1,2 elimination of H2 from
silanes. They have one internal rotation less than the corre-
sponding silane, but on the other side exhibit an inversion mode

Figure 5. Thermodynamic contribution of anharmonic modes in cyclopentasilane to internal energyU, entropySand heat capacityCV. Top row:
Pseudorotation. Bottom row: Pseudorotation plus ring puckering. Harmonic curves dashed, anharmonic curves solid.
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lacking from their silane counterparts. As the anharmonic
contributions of a double well oscillator are smaller that those
of an internal rotator, anharmonicity can influence the thermo-
dynamics of such reactions.

In Figure 7 (lower row), thermodynamic functions for the
1,2 elimination of disilane to disilene are shown. The anhar-
monic corrections are, however, quite small; they are most
pronounced for the enthalpy of reaction, (7 kJ mol-1 at 2000
K); entropy and particularly free energy show even smaller
anharmonic corrections.

9.2.3 Cyclization Reactions.Formation of cyclic structures
is always associated with a loss of conformational freedom;
therefore, anharmonic effects can be expected to grow to
significant size.

As an example, we take the formation of cyclotrisilane from
trisilane via H2 elimination (Figure 8, upper row). In the course
of this reaction, two internal rotation degrees of freedom vanish,
and the product cyclotrisilane does not show any significantly
anharmonic modes. The figure shows that anharmonicity affects
both enthalpy and entropy of reaction with the same sign;
therefore, error compensation keeps the effect of anharmonicity
on ∆rG small.

Anharmonic effects are particularly strong in reactions that
form five membered rings. The lower row of Figure 8 shows
the isomerization of 1-pentasilene (SiH2dSiH-SiH2-SiH2-
SiH3) to cyclopentasilene. Although the reactant has nine
different conformers produced by internal rotations about the
central Si-Si single bonds, the product, although floppy, has

Figure 6. Effects of anharmonicity on Si-H dissociation reactions. Top row: Si2H6 f H + Si2H5. Middle row: Si3H8 f H + SiH3-SiH2-SiH2.
Bottom row: SiH(SiH3)3 f H + Si(SiH3)2. Harmonic curves dashed, anharmonic curves solid.

Figure 7. Effects of anharmonicity on H2 elimination reactions. Top row:cyclo-Si3H5-SiH3 f H2 + cyclo-Si3H5-SiH. Bottom row: Si2H6 f
H2 + SiH2dSiH2. Harmonic curves dashed, anharmonic curves solid.
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less conformational entropy. As a consequence, we find that
all functions, ∆rH, ∆rS and ∆rG, are heavily affected; at
temperatures above 2000 K, the harmonic and the anharmonic
results for ∆rG have different sign and show almost no
resemblance.

9.2.4 Hydrogen Migration.In the examples discussed so far,
the most important types of anharmonic motions were internal
rotations (and pseudorotations in the case of five-membered
rings). Because internal rotations show larger deviations from
harmonic behavior than inversions, the former tend to dominate
over the latter in the net effect.

If, however, the number of internal rotations remains constant
during a reaction, and if the enthalpy (and Gibbs energy) of
reaction has low absolute value, the effect of inversions may
become crucial for the correct prediction of∆fH. As an example,
we look at the isomerization ofprim-isotetrasilanyl totert-
isotetrasilanyl (trisilylsilyl). It is well known14 that electronic
effects favor tertiary over primary radicals energetically, and
so does anharmonicity (Figure 9).

The energetic stabilization of the tertiary radical is, however,
overbalanced by its entropic destabilization, which has its source
in part in the strongly anharmonic inversion, but even more so
in the loss of three distinguishable isomers in the primary to
only one isomer in the tertiary case. Because of the small
absolute value of∆rH, the entropy term in the Gibbs enthalpy
∆rG exceeds the enthalpy term even at modest temperature (500
K), and the entropy becomes the dominating factor for∆rG and,
therefore, the equilibrium constant.

The product distribution of this reaction is shown in Figure
10; the graphic shows the mole fraction of the tertiary radical
in the equilibrium mixture. The harmonic approximation leads
to an dramatic overestimization of the stability and thus

concentration of the tertiary radical: In the temperature range
of 1000 K to 2000 K, it even predicts the dominating species
incorrectly. In the high-temperature limit, the harmonic ap-
proximation is still wrong by a factor of 5 (40% vs 8%).

9.3 Enthalpy of Formation and Enthalpy of Reaction.All
calculated thermodynamic quantities are sums of a large number
of different contributions. In the special case of the enthalpy of
formation, there are not only contributions arising from the
molecule in question, but also contributions from the corre-
sponding element phases due to the special choice of zero in
enthalpies of formation.

The molecule-related contributions to the enthalpy of forma-
tion have different orders of magnitude, and one might ask
whether small anharmonic corrections are of any practical
influence. Table 3 shows these contributions to two isomeric
Si5H10 species, 1-pentasilene and cyclopentasilane, and also the
corresponding contributions to the enthalpy of reaction of the
isomerization (cf. section 9.2.3 and Figure 8). The figures are
given for three different temperatures, 298, 2000, and 3000 K.

It can be seen that the electronic contribution, which is the

Figure 8. Effects of anharmonicity on cyclization reactions. Top row: Si3H8 f H2 + cyclo-Si3H6. Bottom row: SiH2dSiH-SiH2-SiH2-SiH3 f
cyclo-Si5H10. Harmonic curves dashed, anharmonic curves solid.

Figure 9. Effects of anharmonicity on radical isomerization SiH(SiH3)2-SiH2 f Si(SiH3)-SiH3. Harmonic curves dashed, anharmonic curves
solid.

Figure 10. Effects of anharmonicity on the primary/tertiary radical
equilibrium SiH(SiH3)2-SiH2 f Si(SiH3)-SiH3. Harmonic curve
dashed, anharmonic curve solid.
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negative electronic atomization energy, is by far the largest
summand, being more than 1 order of magnitude larger than
the vibrational contribution at room temperature. Even at high
temperatures, the anharmonic correction is only a few percent
of the total vibrational contribution.

Although the atomization energy is so much larger than the
vibrational contributions, and the anharmonic correction is only
a tiny fraction of the latter, anharmonicity can still be an
important effect, as shown in the lower third of Table 3, where
the same contributions to the enthalpy of reaction are displayed.
As before, the electronic energies form the dominating contribu-
tion, but as the harmonic parts of the vibrational contributions
cancel almost exactly, anharmonicity is the second largest
contribution at higher temperatures.

The Si5H10 isomerization described here exemplifies that
anharmonicity can become a matter of relevance within chemical
accuracy, even if other contributions to the enthalpy of formation
are larger.

10. Conclusions

We have illustrated the influence of anharmonic nuclear
motion (internal rotation, inversion and pseudorotation) on
thermodynamic properties such as energy, entropy, or equilib-
rium composition. For most single species, anharmonicity
usually decreases internal energy, entropy and heat capacity in
comparison to the purely harmonic results. If, however, anhar-
monic motions produce chemically distinguishable species
(conformers, configurations), then the entropy may actually
increase. When enthalpies of formation are combined to give
enthalpies of reaction, or Gibbs energies are calculated from
enthalpy and entropy, these effects will in some cases cancel
each other but, in other cases, will reinforce each other and give
substantial anharmonical net effects.

We have investigated a number of classes of silicon hydrides
and reactions between them to rationalize the magnitude and
sign of anharmonic corrections. When, during a reaction, floppy
degrees of freedom emerge or vanish, strong effects on∆rH
and∆rScan be expected, although not necessarily on∆rG. We

have found that formation of rigid ring systems from confor-
mationally less constrained open-chain compounds is prone to
large anharmonic effects.

In the high-temperature regime, the entropy is often the
dominating factor for the value of∆rG if reactions with small
∆rH are considered. An example of such reactions are equilibria
between radicals with the same silicon backbone. We found
that the number of distinguishable isomers is the key factor
determining the concentrations of the various species at high
temperatures, when their energetic differences become com-
paratively unimportant.

An online version of our program operating on data for about
200 silicon hydride compounds can be found at http://
bthec11.kfunigraz.ac.at/∼katzer.
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TABLE 3: Enthalpies of Formation for Two Si 5H10 Species
at Different Temperatures and Enthalpy of Reaction for
their Interconversion, in kJ/mol

T ) 298 K 2000 K 3000 K

∆fH (1-pentasilene) 397.2 147.2 171.6
elec -4210.6 -4210.6 -4210.6
trans 6.2 41.5 62.3
rot 3.7 24.9 37.4
vib, harmon 240.1 687.5 999.2
anharm +0.4 -19.4 -33.2

∆fH (cyclopentasilane) 215.1 -28.4 2.6
elec -4393.4 -4393.4 -4393.4
trans 6.2 41.5 62.3
rot 3.7 24.9 37.4
vib, harmon 242.2 687.7 999
anharm -1.1 -12.4 -19.6

∆rH (isomerization) -182.1 -175.6 -169.0
elec -182.8 -182.8 -182.8
trans 0.0 0.0 0.0
rot 0.0 0.0 0.0
vib, harmon 2.2 0.2 0.2
anharm -1.5 +7.0 +13.6
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