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This paper presents results of numerical simulations of electron tunneling through water that extend our
previous calculations on such systems in several ways. First, a tip-substrate configuration is used; second,
calculations are carried in the presence of an external potential bias; third, the image potential that reflects
the interaction of the electron with the mobile metal electrons is taken into account in the static image
approximation. Finally, all-to-all transmission probability calculations are performed in order to get an order-
of-magnitude estimate of the current-voltage characteristics of this junction model. The computed currents
are within the range of the few available experimental observations on scanning tunneling microscope (STM)
currents in water, indicating that our calculation may have taken into account all the important physical
attributes of such systems. In addition we examine the effect of the water medium on the spatial distribution
of the tunneling flux. We find that while different water configurations scatter the tunneling electron in different
ways, on the average the water-affected loss of resolution is rather small in the deep tunneling regime but can
be substantial in energy regimes where the tunneling is strongly affected by water-supported resonance
structures.

1. Introduction

Electron tunneling through water is an important element in
all electron transfer processes involving hydrated solutes and
in many processes that occur in water-based electrochemistry.
Only a few systematic experimental studies of the effect of the
water structure on electron-transfer processes have been done.1-13

Early theoretical treatments have modeled water as a dielectric
continuum; however, there are indications that the discrete
3-dimensional structure of the water environment affects the
way tunneling takes place. Porter and Zinn3 have found, for a
tunnel junction made of a water film confined between two
mercury droplets, that at low (<1 nm) film thickness conduction
reflects the discrete nature of the water structure. Nagy9-11 has
studied STM current through adsorbed water layers and has
found that the distance dependence of the tunneling current
depends on the nature of the substrate and possibly indicates
the existence of resonance states of the excess electron in the
water layer. Vaught et al.8 have seen a nonexponential depen-
dence on tip-substrate distance of tunneling in water, again
indicating that at small distances water structure and possibly
resonance states become important in affecting the junction
conductance. Several workers have found that the barrier to
tunneling through water is significantly lower than in a vacuum
for the same junction geometry.1,2,4,7,11-14 The observed barrier
is considerably lower than the threshold observed in photo-
emission into water,15,16and, while image effects should be taken
into account when the tunneling takes place near an electrode
surface, their role in less obvious than in the corresponding
process in a vacuum.3 In several recent papers we17-26 and
others27,28 have attempted to correlate these observations with

numerical and theoretical studies. Our studies have indicated
that electron tunneling is indeed strongly affected by the
3-dimensional structure of the water layer. In particular we have
identified several sources that affect the apparent barrier to
tunneling through water as compared with vacuum. First, the
occupation of a substantial fraction of the space between the
electrodes by the cores of oxygen atoms, which are essentially
impenetrable to the tunneling electron, contributes to increase
the apparent barrier. Second, the ordering of water molecule
on the metal surface is often such that it causes reduction of
the metal work function and consequently a lower barrier to
tunneling. Finally, tunneling is enhanced by transient resonances
supported by cavities in the water structures. Figure 1 shows a
compilation of numerical results obtained for 20 water con-
figurations sampled from an equilibrium trajectory (300 K) of
water between two parallel Pt(100) planes separated by 10 Å.
This space contains three water monolayers at density 1g/cm3.
Shown is the total transmission probability as a function of
incident kinetic energy for an electron plane wave incident
normal to the Pt surface. (For more details of the model, the
potentials used, and the numerical method see refs 19, 20, and
23.) The vacuum barrier in this calculation was 5 eV, and the
structure in the transmission in the range of∼1 eV below it
arises from the aforementioned resonances. The distribution of
the corresponding peaks reflects the transient nature of these
resonances that depend on the evolving water structure. In
addition, it is seen that the existence of these resonances also
enhances the transmission probability in the deep tunneling
regime.

These calculations where done using static water structures
confined between two parallel planar electrodes in the absence
of potential bias. Image effects were not considered explicitlys† Part of the special issue “R. Stephen Berry Festschrift”.
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it was assumed that the vacuum potential used already incor-
porates the image contribution that, because of the given
geometry, does not depend on the lateral coordinates. In most
experimental situations, however, a tip with assumed atomic
dimensions is used as one of the electrode and the current is
monitored as a function of imposed voltage. Also, a calculation
of the type displayed in Figure 1, which is based on a given
incoming direction, has to be summed over all incoming
directions in order to evaluate the current. The present paper
describes calculations of electron tunneling through water that
take into account these needed generalizations. We note in
passing that another generalization that takes into account the
water nuclear dynamics and the associated inelastic contribution
to the tunneling current has been presented in a separate
publication.26 We have found that inelastic tunneling contribu-
tions are substantial; however, they are dominated by low-energy
phonons and therefore do not affect appreciably the electron
energy in what might be termed a quasi-elastic process. The
present study, like earlier ones,23 was carried out by using a
collection of static equilibrium water configurations.

The next Section briefly describes our model and method of
calculation. In section 3 we present results for tunneling in an
ideal “STM-configuration”swater filling the gap between an
atomic tip and an ideal substrate surface. Section 4 summarizes
our findings.

2. Model and Computational Method

A projection of the STM-like junction used in our calculation
is shown in Figure 2 The shaded gray areas are metal electrodes,
with the planar surfaces corresponding to the (100) surface of
Pt. The protrusion on the left electrode represents a tip whose
structure in the present calculations is described below. In the
following discussion the tip point is taken to be the origin of a
Cartesian coordinate system with thez axis going through the
tip axis as shown. A potential bias,∆Φ ) Φ2 - Φ1, is imposed
and the steady-state current in monitored as a function of this
bias.Φ1 and Φ2 are assumed constants on the corresponding
electrode surfaces. The space between the electrodes is filled
with water whose density was taken to be 1 g/cm3. Molecular

dynamics at 300 K is used to generate equilibrium water
configurations in the space between the electrodes. In this
calculation we use a cell of lateral dimensionsLx ) Ly ) 39.242
Å with periodic boundary conditions. The water potential was
taken to be the polarizable flexible simple point charge model
(PFSPC) described in refs 22 and 29, and the water-Pt
interaction was taken from refs 30 and 31. In addition the water
is subjected to the external field associated with the imposed
bias. To find this force we use the Laplace equation

with periodic boundary conditions in thex-y direction and
Dirichlet boundary conditionsΦ ) Φ1 andΦ ) Φ2 on the left
and right electrode surfaces, S1 and S2, respectively.

In the bulk of the metal electrodes the electron is assumed to
behave as a free particle of massm ) me. Next we construct
the potential for the electron motion in the space between the
electrodes. We approximate this potential by the sum

whereVB is the bare potential barrier whose height is given by
the difference between the vacuum potential and the bottom of
the metal conduction band,VW is the electron water pseudo-
potential, taken from the work of Barnett et al. and modified to
include the effect of the water electronic polarizability (for more
details see refs 20 and 23),VE is the potential energy associated
with the external voltage,VE ) -eΦ, whereΦ is the solution
of eq 1, and, finally,VI is the potential associated with the
interaction of the excess electron in the barrier with the metal
charge distribution, i.e., the image potential. The latter is an
enigma in this type of calculation, as is the way the water
electronic polarizability is included, since their inclusion is just
a poor man’s way to account for many-electron correlations in
the process. Here we follow past works on electron tunneling
near metal surfaces, as well as recent literature on image states
at such surfaces, and represent the image interaction by its static
limit (i.e., we assume that the time scale associated with a
tunneling event is long relative to the response time of the metal
electron (measured by the metal plasma frequency). In this static
limit we approximateVI(r ) by the classical image potential for
a point particle of chargee at position r . Even then, the
determination of the image contribution is subject to inaccuracies
resulting from the uncertainty about the location of the image
plane and the way the singularity at the metal surface is handled,
and we have arbitrarily chosen to truncate the potential at the

Figure 1. Compilation of numerical results for the transmission
probability as a function of incident electron energy, obtained for 20
water configurations sampled from an equilibrium trajectory (300 K)
of water between two planar parallel Pt(100) planes separated by 10
Å. The vacuum is 5 eV and the resonance structure seen in the range
of 1 eV below it varies strongly between any two configurations. Image
potential effects are disregarded in this calculation.

Figure 2. Projection of the model junction used in the calculations
presented in the Figures 3-7. See text for details.

∇2Φ ) 0 (1)

V ) VB + VW + VE + VI (2)
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point where it reaches the bottomE0 of the metal conduction
band. Near a planar surface this would mean

wherez is the distance from the metal plane. Between the two
metal surfaces of Figure 2, in particular in the presence of the
tipped surface,VI(r ) has to be evaluated numerically. The
numerical procedure that accomplishes this task is described
elsewhere.32 This calculation is based on solving a Poisson
equation for each position of the electron under the boundary
conditions determined by the electrode surfaces and subtracting
the singularity associated with the self-interaction of the electron
using analytical results for a point charge between two planar
surfaces. In the calculations described below, we have usedE0

) -12.4 eV (measured from vacuum) andEF ) 7.3 eV (above
E0, i.e., work function) 5.1 eV).

Results of these electrostatic calculations are shown in Figure
3. Figure 3a shows ay ) 0 cut of the external potentialΦ
between the surfaces displayed in Figure 2. The tip is taken as
a pyramid constructed by connecting the centers of atoms on

the surface of the atomic tip described below. The base of this
pyramid is a square of dimension 5a/x2 and its height is 2.5a
wherea ) 3.9242 Å is the Pt lattice constant, and the distance
of the tip point from the opposite surface is 9 Å. Figure 3b
displays the image potential computed as described above and
plotted as function of the distance between the two metals along
thez axis, fory ) 0 and forx ) 0 (a line going through the tip
axis),x ) 11.96 au, andx ) 23.92 au. The fact that the heights
of these potential sections do not vary much with the effective
distance between the metal surfaces (as compared, e.g., with
the results obtained between two planar surfaces) reflects the
3-dimensional tip structure of the present junction.

We note in passing the imposition of a potential bias between
the electrodes affects the electron tunneling both directly and
indirectly through its effect on the water structure. Figure 4
shows the effect of a bias of 0.5 V on the water structure as
expressed by the angular distribution of the molecular dipole
direction relative to the tip axis (i.e., the direction normal to
the flat electrode). In Figure 4a only those molecules whose
oxygen centers are located within a cylinder of radiusR ) 2 Å
about the tip axis are included. In parts b and c of Figure 4 this
cylinder is taken withR ) 6 and 12 Å, respectively. It is seen
that field-induced structural effects are most important in the
vicinity of the tip. They seem to be negligible far enough from
it; however, they are always important for the first monolayers
directly at the electrodes surfaces.17 The effect of preferential
water ordering on electron tunneling has been studied in ref
21.

In the work described in refs 17-21, 23, 25, 26, and 33 we
have evaluated the transmission probability through the given
potential barrier using the absorbing boundary condition (ABC)
Green’s function technique of Seideman and Miller.34,35 The
Hamiltonian is represented on a spatial Grid in the range-Lx/2
< x < Lx/2; -Ly/2 < y < Ly/2; -Lz/2 < z < Lz/2, with periodic
boundary conditions in thexy plane and absorbing boundary
conditions near the system edges alongz. Absorption at these
boundaries is affected by suitable imaginary potentials,εL(z)
andεR(z), that smoothly increase from zero toward the system
edges along thez axis. For a particle of energyE incident on
the barrier from the left (say) the “one-to-all” (i.e., a given
incident direction and a sum over all final directions) transmis-
sion probability is given by

while the “all-to-all” transmission probability (which includes
a sum also over all incident directions) is obtained from

In these expressionsG is the Greens function of the system
Hamiltonian supplemented by the absorbing potential, i.e.,

and the absorbing potentialsεL(z) andεR(z) are chosen arbitrarily
provided two conditions are satisfied: First, these functions
should vanish in the interior system where the actual scattering
takes place. Second, these potentials should rise smoothly toward
the edges of the system in the tunneling or scattering directions
so as to ensure a full absorption of all outgoing waves. For
more information on the choice of these functions in the present
context see refs 17 and 24.

Figure 3. Results of computed electrostatic contributions to the single
electron potential in the junction. (a) Ay ) 0 cut of the external
potential distribution between the tip and the flat substrate (that
corresponds to theVE term in eq 2) for a voltage drop of 0.5 V between
these electrodes. (b) The image potential computed along different lines
normal to the flat electrodes: (1)x ) 0 (a line going through the tip
axis); (2)x ) 11.96 au (distance from the tip axis); (3)x ) 23.92 au.

VI(r ) ) {-e2/4z for z > z0

-e2/4z0
for z e z0

(z0 defined frome2/4z0 ) E0)

(3)

u [φin(E)] ) 2
p

〈φin(E)|εLG
†(E)εRG(E)εL|φin(E)〉 (4)

u (E) ) 4 Tr[G(E)εRG†(E)εL] (5)

G(E;ε) ) [E - H + iε(r )]-1; ε(r ) ) εL(r ) + εR(r ) (6)
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We have recently shown that eqs 4 and 5 are in fact
approximations to the exact expressions obtained when a
quantum problem in infinite space is projected onto the subspace
in which the actual interactions occur, for example,

in which G is, as before, the Green’s function of the of the
given subspace

where Σ(E) is the self-energy associated with the truncation
procedure, that carries the effect of the rest of the universe on
this subspace and whereΓ(E) ) -2 Im(Σ(E)). If Σ(E) was
known exactly eqs 7 and 8 would provide a way for the exact
evaluation of the transmission probability. The ABC Green’s
function methodology is based on the observation that if the
system boundaries are taken far enough from the scattering
region the exact self-energy is unimportant as long as the
condition of absolute absorbance at the system boundary is
satisfied. This is the basis for replacing the (usually nonlocal)
exact self-energy by the local functionsεL(z) andεR(z). We note
that the need to place the system’s boundaries far enough from
the scattering region implies the need to use a very large basis
set, i.e., a very large grid, to describe the tunneling process.
For this reason we were able in refs 18-21, 23, and 24 to
calculate only one-to-all transmission probabilities, while all-
to-all calculations needed to evaluate the overall tunneling
current where too demanding given our computing resources.

On the other hand, if the exact self-energy is known, the
system boundaries in the tunneling (z) direction could be placed
just outside the scattering region, e.g., on surfaces S1 and S2

(see Figure 2), implying a substantially smaller system described
in terms of a smaller number of grid points. This goal in fact
can be achieved. In the spatial grid representation, using a finite
difference approximation for the kinetic energy operator, a free
particle Hamiltonian has a tight binding structure, in which case
the self-energy associated with truncating the system on any
planar boundary can be computed exactly. The detailed proce-
dure for carrying out such a program is described elsewhere.32

In a typical calculation this makes it possible now to use a
system whose dimension in the tunneling direction is∼1/3 the
size used in our previous work, implying an order of magnitude
reduction in CPU time. This makes it possible for us to compute
for the first time all-to-all transmission probabilities in the tip-
water-substrate junctions of the kind modeled by Figure 2.

Results obtained by using the methodologies outlined above
are presented next. The calculations reported were done on a
model system in which two parallel Pt (an FCC solid with a
lattice constanta ) 3.9242 Å and nearest neighbor atom distance
a/x2) slabs are placed with spacingD (along the z axis)
between them, so that the surface planes (001) are facing each
other. The size of each slab is 10a in the lateral directionsx
and y and 1.5a in the z direction (the latter corresponds to 3
(001) monolayers of Pt atoms in the FCC lattice. The tip is
constructed by placing five additional (001) layers on the left
slab with decreasing number of atoms: 25, 16, 9, 4, 1, where
the upper layer containing one atom constitutes the tip point,
so that the distance between this point and the opposite
(substrate) surface isd ) D - 2.5a.

3. Numerical Results

The present calculations generalize our previous work in four
important ways. First a tip structure is included making it
possible to study realistic scanning tunneling microscope
configurations. Second, a potential bias is imposed between the
tip and substrate electrodes. Third, image effects are taken into
account, albeit in a crude approximate way. Finally all-to-all

Figure 4. Angular distribution of water molecules in the junction
(Figure 2) under a bias of 0.5 V atT ) 300 K (solid lines). (a)
Molecules located within a cylinder of radiusR ) 2 Å, whose axis is
the line normal the flat electrode going through the tip. (b) Same with
R ) 6 Å. (c) Same withR ) 12 Å. In these calculations the vacuum
barrier was taken as 5 eV and the separation between the tip and the
flat electrode was 9 Å. The dashed lines are the corresponding results
in the absence of a potential bias.

u (E) ) Tr[G(E)ΓR(E)G†(E)ΓL(E)] (7)

G(E) ) (E - H - ΣL(E) - ΣR(E))-1 (8)
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transmission calculations are done, making it possible to estimate
theoretically the current in aqueous tunneling junctions. Two
groups of numerical results are shown and discussed below. In
the first we focus mainly on the presence of the tip in the
tunneling junction and discuss the interplay between the focusing
effect of the tip and the dispersion caused by the water. In the
second we combine the ingredients outlined above to compute
current vs voltage in our model of underwater STM experiment.

Given the junction configuration of Figure 2, tunneling in a
uniform medium (e.g., vacuum) is expected to be dominated
by the one-dimensional path running along the tip axis and
normal to the planar electrode. Figure 5a shows the distribution
of the z component of the tunneling flux,Jz, obtained for this
case, for tunneling with incident energy 1.38 eV below the
vacuum barrier. (The results depicted in Figure 5 were obtained
with the same choice of barrier parameters as in refs 17-26,
i.e., a vacuum barrier represented by a rectangular potential of
height 5 eV. Image effects are not included.) The electrodes
are not shown on these plots, except that a projection of the
pyramidal tip is shown as a reference. The electron is incident
as a plane wave in the bulk of the left electrode in the positive
z direction and the tunneling flux distribution in the space
between the electrodes is obtained from

using the exact scattering wave function computed as described
in ref 24. This flux is shown by forming contour plots
(neighboring contours differ by a fixed flux increment) on
consecutivexy planes and different values ofz and projecting
them all on the plane of the paper. The inset shows the flux
distribution as a function ofx for y ) 0 and forz ) 2.5 and 5
Å, both normalized to 1 at their maximum. It is seen that while
the flux has some spatial distribution, it is sharply peaked about
the (0,0,z) axis as expected.

The situation can be quite different in the presence of water
and depends, of course, on the water configuration. Two distinct
scenarios are displayed in parts b and c of Figure 5 (1.38 eV
below vacuum in Figure 5b; 1.27 eV below vacuum in Figure
5c). Figure 5b shows a situation with no preferred path, and
the tunneling electron seems to be scattered strongly in a large
part of available space. In contrast, Figure 5c shows a situation
where a resonance-supporting structure exists at some location
inside the water barrier. The flux distribution indicates that the
electron’s preferred path goes through this resonance even
though this means a strong deviation from the shortest straight-
line path. Obviously, these different characteristics are properties
of individual water configurations and will not be seen after
time or ensemble averaging.

These observations of the behavior of the flux distribution
are potentially relevant to assess the influence of the water
medium on the spatial resolution of an underwater STM image.
As an example, we show in Figure 6 the root of the second
moment ofJz on the surface of the planar electrode as a function
of its distance from the tip. This second moment is defined by

Figure 6a displays this measure of the width of the electron
distribution on the substrate surface as a function of substrate-
tip distance for the case where the incident electron energy is
2 eV below the vacuum barrier. Shown are results for a
rectangular (“vacuum”) barrier, for a similar junction with the
vacuum replaced by water (density 1 g/cm3) and for the same

barrier where the water is replaced by a random distribution of
hard spheres of the same density and radius equal to that of the
oxygen atom. Note that the results shown for the water barrier
represent an average over 10 equilibrium (300 K) water
configurations. Figure 6b shows similar results for electron

J ) p
2mi

(ψ*∇ψ - ψ∇ψ*) (9)

M2(z) ) ∫dx∫dy (x2 + y2)Jz(x,y,z)/∫dx∫dy Jz(x,y,z) (10)

Figure 5. Spatial distribution ofJz, thez component of the tunneling
flux, displayed as a contour plot taken on successivexy planes along
the tunneling directionz. (a) Vacuum. The inset shows the flux
distribution as a function ofx for y ) 0 and forz ) 2.5 (full line) and
5 Å (dotted line), i.e., at 2.5 and 5 Å to theright of the tip point in
Figure 2, both normalized to 1 at their maximum. (The ratio between
the absolute flux values at these maxima was 13.6.) (b)-(c) Water.
See text for details. The junction parameters are as in Figure 4 (Φ )
0.5 V).
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energy 1.3 eV below the vacuum barrier. Two observations are
immediately evident: first, a distribution of hard spheres hardly
affects the width of the electron current distribution over the
length scale considered. Second, the presence of water in the
space between the electrodes does affect the tunneling flux
distribution; however, this effect is far greater in the energy
regime closer to the vacuum barrier where tunneling is affected
by barrier resonances, while the effect in the deep tunneling
regime is modest.

We now turn to current vs voltage calculations. For this
purpose we need to prepare equilibrium water configurations
under a given potential bias between the electrodes, evaluate
the different contributions to the barrier potential, eq 2, then
calculate all-to-all transmission probabilities as a function of
electron energy for the given potential bias. The tunneling
current for this voltage∆Φ is then computed from36

It should be emphasized that since tunneling processes are

extremely sensitive to details of the potential barrier, we should
not hope to reproduce exact experimental observations of STM
current-voltage characteristics. In addition, our computing re-
sources are not sufficient to carry tunneling calculation on the
many water configurations needed for a good statistical average.
Rather, our aim is to test whether our model calculation yields
a reasonable order of magnitude estimate for electron transport
in tip-water-substrate junctions and to reexamine the issue
of the low effective barrier to tunneling in such systems.

Results of these calculations are summarized in Figure 7a.
The top and bottom lines represent the current against bias
voltage between tip and substrate separated by 5.85 Å (2 water
monolayers) and 12.15 Å (4 water monolayers). These are
results obtained from single water configurations. The inter-
mediate group of lines represent similar results obtained for five
different water configurations at tip-substrate separation 9 Å,
corresponding to three water monolayers. Figure 7b shows the
average of these five results as well as a linear least-squares
fit. These results obviously suffer from insufficient statistical
averaging. Still, the following observations can be made:

(a) The order of magnitude of the computed current, order
of 0.1 nA at∆Φ ) 0.5 V at 9 Å tip-substrate separation, is

Figure 6. Spread of thezcomponent of the tunneling flux distribution
about the direction defined by the tip axis, expressed by the square
root of the second moment of this distribution calculated on the substrate
surface (M2 (z ) d)) from eq 10, plotted against the tipssubstrate
distanced. The three lines show results obtained from different
interelectrode media: Dashed line with squares-vacuum. Dotted line
with trianglessa random distribution of hard spheres of radius and
number density same as the water oxygen cores. Full line with circless
one configuration of water. The vacuum barrier is 5 eV. (a) Incident
electron energy is 2 eV below the vacuum barrier (“deep tunneling”).
(b) Incident energy 1.3 eV below the vacuum barrier (closer to the
resonance tunneling regime).

I ) e
πp

∫0

∞
dE[fL(E) - fR(E + e∆Φ)]u (E) (11)

Figure 7. Current against bias voltage obtained from all-to-all tunneling
calculations in water, in a biased tip-planar electrode junction. (a) The
upper and lower lines are results of calculation done on single
configurations characterized by tip-substrate separation of 5.85 Å (2
water monolayers) and 12.15 Å (4 water monolayers), respectively.
The intermediate group of lines represent similar results obtained from
five different water configurations at tip-substrate separation 9 Å,
corresponding to 3 water monolayers. (b) The average of the five results
obtained at tip-substrate separation 9 Å, together with a linear least-
squares fit to these results.
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within reasonable agreement with the (scattered) available
experimental data, which are scattered in the range 0.1-1 nA
for this voltage and distance range.5,6,8,13Given the uncertainties
discussed above concerning the electron-water potential, the
tip structure, and the evaluation of the image potential, and given
our poor statistics, this is as much as we can hope for in this
type of calculation.

(b) The presence of water in the space between the electrodes
causes a substantial decrease in the effective junction barrier.
Fitting the currents computed in Figure 6a to similar calculations
done on a rectangular barrier model of a similar width, we find
effective barrier heights of 1.7, 2.0, and 2.8 eV (energies above
the Fermi energy) for the tip substrate distances of 5.85, 9.0,
and 12.15 Å, respectively. Again, these values are of the order
estimated from experimental data. It should be noted that the
dependence of the effective barrier height on the tip-substrate
separation reflects the structure of the image potential. Indeed,
the tops of the image potential curves displayed in Figure 3b
are 2.24, 3.14, and 3.75 eV, respectively. For this reason, fitting
the distance dependence data of Figure 7a to a simple
exponential dependenceI ∼ e-κd, with a constantκ, does not
reflect this more complex situation.

4. Summary and Conclusions

We have performed simulations of electron tunneling through
water that extend our previous calculations on such systems in
several ways. First, a tip-substrate configuration is used;
second, calculations were carried out in the presence of an
external potential bias; third, the image potential that reflects
the interaction of the electron with the mobile metal electrons
is taken into account in the static image approximation. Finally,
all-to-all transmission probability calculations were performed
in order to get an order-of-magnitude estimate of the current-
voltage characteristics of this junction model.

Both the external bias and the image interactions are
obviously necessary ingredients in any calculation of electronic
currents in molecular junctions. Relative to our previous
calculations that have disregarded these factors, the lowering
of the barrier by the image interaction seems to be the most
important. This also has the effect of broadening the resonance
structure found in our earlier studies;24 however, the contribution
of these resonances to the further average reduction of the
effective barrier is not expected to change. Other effects arise
from the dependence of the water structure on the bias field.
We have shown before21 that this can be an important effect in
large fields, but in the moderate fields considered in this paper
(and normally used in the laboratory) it seems to be within the
noise associated with the smallness of our sample and cannot
be assessed with our limited statistics.

The currents computed in this work are within the range of
the few available experimental observations, indicating that our
calculation may have taken into account all important physical
attributes of this systems. In addition we have examined the
effect of the water medium on the spatial distribution of the
tunneling flux. We have found that while different water
configurations scatter the tunneling electron in different ways,
on the average the water-affected loss of resolution is rather
small in the deep tunneling regime but can be substantial in
energy regimes where the tunneling is strongly affected by
water-supported resonance structures. Together with our earlier
results of inelastic effects in tunneling through water,26 these
studies provide a complete qualitative picture of electron
tunneling through this important medium. It should be kept in
mind though that several important questions still remain

unanswered. For example, our poor statistics makes it impossible
to analyze at present the quantitative effect of water and of the
existence of tunneling resonances on the image resolution in
underwater STM studies. Similarly, a quantitative assessment
of the nonlinear current-voltage behavior expected from the
field effect on the water structure awaits a more extensive
numerical work. Finally, the possible role of rare structural
fluctuations in the deep tunneling regime24 is an important
subject for future study.
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