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Signal processing is one of the most important system control mechanisms across a wide variety of functional
devices and mechanisms from electronics to biology. The chemical reaction networks underlying the response
of a cell to both externally and internally generated signals comprise an extraordinary real-time multivariate
control problem. There are two phenomena that exemplify the biological importance of chemical systems’
response to oscillatory signals. One includes a number of important cases of differential cellular response to
particular frequencies of periodic chemical signals. The most widespread example of this is the encoding of
an external agonist concentration in the frequency of calcium ion concentration spiking inside certain eukaryotic
cells. The second is based on the fact that, owing to the low concentrations and slow reaction rates often
associated with, for example, the mechanisms of gene expression, a significant amount of fluctuation in protein
production rates is to be expected. Thus, mechanisms that are essential for the life of the cell must be robust
to these and other types of random noise in the environment as well as be able to filter relevant signals from
the background successfully. We analyze a number of commonly occurring chemical reaction networks,
“motifs” or “modules”, for their response to periodic single- and multifrequency signals. We find that even
very simple chemical reaction networks can be selectively responsive to specific frequency ranges of the
input signals. The main results are that first, a general system of linear reactions with a single external oscillatory
input signal always acts as a low-pass frequency filter. With more than one input at the same frequency, the
system can also be made to behave as a band-pass filter in a selected range but never as a high-pass one.
Second, a class of bimolecular reaction mechanisms can behave as a band-pass filter, but the behavior is very
sensitive to the kinetic parameters. Third, a class of excitable chemical systems can act as a robust band-pass
filter. These results also suggest methods for controlling system behavior through its response to oscillatory
inputs, for deducing chemical reaction mechanisms, and for estimating the associated rate constants from
measurements of system responses to frequency-variable perturbations.

I. Introduction

For an organism to control its own development and respond
to environmental cues, it relies on a complex network of reacting
and interacting molecules as well as molecular assemblies to
execute and affect the program stored in its genome. Analogous
to electrical circuits, these chemical circuits have “devices” that
send signals to other “devices” on the same “network segment”,
which after an often complex signal processing sequence1

consisting of signal passage and modulation from one device
to another device, finally execute a behavioral or developmental
change.2 The lowest-level devices are the regions of genomes
and molecules making up the network itself: genes, promoters,
proteins, small ions, metabolites, et cetera. The signals are the
activities of each of the molecules at any given time and at
their sites of action. Higher-level devices may be identified in
networked collections of chemical reactions that form “regula-
tory motifs” (“modules”). In previous work, for example, we
showed how one motif, related to “futile cycles” of phospho-
rylation and dephosphorylation of signal kinases, can implement
logic operations by analogy to digital electronic logical gates
such as AND and OR.2,3 However, in general, devices identifi-

able in chemical circuits are of the nonlinear analogue type.4-6

Furthermore, in a cell, these devices operate in a noisy
environment and under the influence of multiple, time-dependent
inputs, imparting upon them complex response profiles and an
effective “fuzzy” logic behavior.2,7,8

One of the methods for analyzing such systems is “signal
processing”, which generally refers to the differential response
by a system to the variation of its external parameters. Through
signal processing, a system can extract information from its
direct inputs as well as from other external variables to regulate
its functions. For periodic external inputs, these signals are
typically realized through amplitude and frequency modulation.

As an example of biochemical signal processing, consider
the phenomenon of hormone-induced calcium release into the
cytosol of an eukaryotic cell. In many eukaryotic cells, the
calcium ion/inositol triphosphate (IP3) signaling cascade is a
central pathway in bringing signals from the outside of the cell
to various points inside the cell.9,10 Here, an input device (a
cell surface receptor protein) can activate another device (a
second membrane-associated protein that produces IP3) upon
binding of a hormone. IP3 then activates the release of calcium
ions from internal stores by signaling (binding to) another
receptor. Calcium then enters the cytosol and signals a number
of targets of its presence, and depending on cell type and history,
various other pathways are activated and deactivated. Calcium
interacts with tens, if not hundreds, of protein devices in the
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cell. The signal transferred by calcium is of particular interest
because its activity is not merely characterized by its concentra-
tion. In many cell types, the concentration of calcium is periodic
in time, and a concentration of agonist (a molecule that binds
to the cell surface receptor) on the outside of the cell is finally
translated to a frequency of calcium spiking inside the cell. More
generally, a number of different receptors, responsive to different
extracellular signals, can all generate signals for calcium release
in a single cell. These signals, generally hormones, neurotrans-
mitters, or growth factors, control such diverse responses as
contractility and motility, cell-cycle control, gene expression,
neuronal development, and carbohydrate metabolism. Simulta-
neous action of these multiple signals can lead to complicated
temporal behavior of calcium concentration in the cell. Thus,
information about many external factors is multiplexed onto a
single complex calcium signal.

The ability of cellular machinery to respond differentially to
limited amplitude/frequency regimes of calcium concentration
has been shown experimentally. For example, Hajnoczky, et
al.11 showed that calcium-sensitive mitochondrial dehydroge-
nases (CSMD) were maximally transiently activated by [Ca2+]
oscillations greater than 0.5 min-1 and led to sustained elevated
mitochondrial metabolism. Sustained or slower calcium tran-
sients were ineffective at activating the CSMDs. Dolmetsch et
al.9 showed that expression of a number of transcription factors
in B-lymphocytes was differentially activated within a limited
window of frequency and amplitude. Gu and Spitzer12 have also
observed that different patterns and frequencies of calcium
spiking and calcium waves lead to distinct outcomes in neuronal
development. In non-calcium-based systems, for example, Tang
and Kongsamut13 have reported the stimulus-frequency-depend-
ent inhibition of neurotransmitter release. Lansky et al.14 have
studied chemosensory transduction under a periodically chang-
ing ligand concentration and have demonstrated that optimal
response was achieved only within a narrow frequency range.
Okamoto4 has shown that long-term potentiation may be
achieved by target systems that are modulated only by high-
frequency signals. There are many other oscillatory biochemical
systems, both naturally occurringsvolume oscillations in mito-
chondria, glycolytic oscillations in central metabolism, G-protein
activity oscillations, cell-cycle oscillators, and pulsatile release
of hormones from the pituitarysand purely synthetic.15 Thus,
understanding how kinetic networks are able to process these
signals is central to understanding cellular regulation.

Therefore, given that biochemical pathways appear to be able
to respond to particular temporal patterns of chemical concen-
trations, we ask how such target pathways recognize, demul-
tiplex, and effect these signals. For instance, how can one of
the previously noted systems decompose and effect a signal such
as calcium oscillations into commands that tell the pathway
either to activate or deactivate itself? To study this, we discuss
a well-known engineering concept of signal processing through
frequency-modulated filtering and apply it to the general class
of linear reaction networks as well as to a couple of simple
nonlinear reaction mechanisms. We show that even relatively
simple chemical networks can be differentially responsive to
specific frequency components in a complex periodic input. In
the inverse problem, it may also be possible to deduce a great
deal of information about a given kinetic mechanism by
measuring its response to periodic perturbations.

First, we review the engineering principles of frequency-
modulated signal filtering (or, simply, “frequency filtering”).
We then mathematically solve three cases of systems of
increasing dynamic complexity. The first case is a completely

general network of linear chemical reactions driven by oscil-
latory inflow of one or more of the chemical species. We find
that any network of such reactions driven by the inflow of a
single chemical species generally acts as a low-pass filter on
the signal. However, when two or more inputs are allowed, we
deduce a way to select a specific choice of the amplitude and
phase difference between the input signals that causes the linear
network to exhibit more complex filtering behavior (band-pass,
notch, etc.). We then analytically solve the dynamics of a simple
bimolecular reaction and show how it can behave as a band-
pass filter for a single input into the system. Finally, we mathe-
matically analyze an excitable biochemical enzyme network that
has previously been shown, numerically and experimentally,
to behave as a band-pass filter. Each of these archetypical chem-
ical mechanisms behaves as a chemical device, for which we
subsequently discuss the electrical circuit analogy.

II. Background: Signal Detection and Filtering

To measure the response of the system to a particular
oscillatory signal, we apply the well-known concept of frequency
filtering. That is, we look at the response of the system output
(in the case of chemical or biochemical systems, the outflow
of some species) to the variations in the frequency of the input
signal (the inflow of some signaling species, for example,
calcium transients). The measure of this dependence is generally
taken to be the filtering ratio,Rij

r , which is the ratio of the
amplitude of the outflow rate of theith species to the amplitude
of the inflow rate of thejth control (input) species. We can
also define an associated concentration filtering ratio,Rij

c,
defined analogously toRij

r as the ratio of inflow to outflow
concentration amplitude averaged over one signal period. If a
pathway responds differentially to different input frequencies,
then these ratios themselves are functions of frequency,Rij

r (ω)
and Rij

c(ω). Through understanding of the nature of these
dependencies, we gain significant insight into the way periodic
input signals affect and control the underlying system behavior.

On the basis of the shape of the plot of the filtering ratio
versus frequency, all systems may be divided according to their
filtering properties:

neutral: no response to the input frequency variation.
low-pass: filtering ratio is monotonically decreasing with the

increase in frequency.
high-pass: filtering ratio is monotonically increasing with the

increase in frequency.
band-pass: the plot of the filtering ratio has maxima, which

along with their neighborhoods are called “bands”, that is, the
system exhibits a strong response to frequencies in a band
around some characteristic frequency, with the response to the
frequencies immediately outside the band being suppressed.

Note that this does not preclude there being another band in
some other frequency range with an even stronger response to
the input. All we ask is that the frequencies immediately outside
the band be suppressed so that the stronger response region is
clearly pronounced (analogously, we can define a “band-
suppress” filter, which has minima with bands defined around
them).

In mathematical terms, the existence of the aforementioned
band-pass/suppress filter around some characteristic frequency
ω* can be stated as a resonance condition for the filtering ratio.
That is, a given system has a band filter at resonant frequency
ω* if and only if for some{i, j} pair

dRij(ω)

dω |
ω)ω*

) 0 (I)
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The band-pass behavior is of most interest to us because it is
this behavior that allows the usage of the same medium (e.g.
calcium) for selective signal transmission to different systems.
That is, if two pathways act as band-pass filters at different
frequencies with respect to the same signaling molecule, then
the molecule may be used to signal to each of the two pathways
at those respective frequencies, independently. For instance, one
pathway may be activated at a specific range of high frequencies
of oscillation of the signal species (say, calcium ion) and
inactived at low frequencies, whereas another independent
pathway might have the inverse behavior.

III. Linear Chemical Reaction Networks
III.A. System Description. We first consider the simplest

type of chemical reaction network: one composed entirely of
first-order chemical reactions. This might be obtained in a
network of proteins following Michaelis-Menten kinetics
wherein the substrates for all the enzymes are present at
concentrations far less than the Michaelis constant.10 For this
case, it is possible to derive analytically and analyze the response
of the most general network of linear chemical reactions to the
most general sinusoidal perturbations.

The system is an isothermal open reaction network ofn

species,Ai, with n possible outflows of the typeAi f
ki

inter-
connected byn(n - 1)/2 first-order reactions of the type

Ai a
kij

kji

Aj . In addition, there is possibly an inflow of each

species into the tank. Here, we consider the case where the
inflow rate for each species consists of a constant component,
the pillar Pi, and an oscillatory component with amplitudeγi

lower thenPi. A functional unit of such a network involving a
pair of speciesAi andAj is represented in Scheme 1.

We now show that whereas a network of first-order chemical
reactions with an arbitrary specified set of input and internal
parameters generally behaves as a low-pass filter with respect
to a signal inflowed to a single species and measured at the
outflow of the same or of another species it can, under certain
choices of inflows into multiple species, behave as a band-pass/
suppress filter. We also provide a formula that allows one to
deduce explicitly the conditions required of the inflow drivers
to produce a band filter on a specific species at specific
frequency in such a network.

III.B. Analytical Framework. A linear chemical network
with n species,n possible outflows, andn inflows is determin-
istically described by a system of linear first-order differential
equations of chemical kinetics, which may be written in matrix
form as

whereAB(t) ) (A1(t), A2(t), ...,An(t)) is the network species vector,

is a constant reaction rate matrix, andQB(t) is a general inflow
rate vector. The system in eq 1 has the general solution

whereAB(t0) is an initial-conditions vector and e-K t ) [eK t]-1 is
the exponential matrix, namely, a matrix that is always
invertible, such that for any diagonalizable rate matrixK we
have

where theλi’s are the eigenvalues ofK andΛ is its similarity
transform matrix.

We now analyze a number of different choices for the
composition of the input vector,QB(t). In all cases,QB(t) will be
composed of one or many sinusoidal components.

III.C. Single-Frequency Signal Filtering. For the following
analysis, we consider the most general linear chemical reaction
network (see Scheme 1 and eq 1) with an input vector of the
form

where (γbæ)k ) γkeiæk is the system’s phase-amplitude vector.
This represents the most general single-frequency oscillatory
input of the sinusoidal form,Θ ∼ sin(ωt), which is a common
choice experimentally and often a good approximation physi-
cally.10,16

The matrixK in eq 2 is nonsingular if at least one of the
outflow rate constants,ki, is nonzero. In addition,K never has
purely imaginary eigenvalues or eigenvalues with positive real
parts because it is diagonally dominant (i.e.,Kjj < ∑

i
i*j

Kij and

Kjj e Kij for all i). Thus, eq 3 may always be solved forAB(t)
because the matrix [iωI - K ] that appears in the exponential
after substitution of the expression forQB(t) is always inver-
tible under these conditions.17 The general result is

where all of the exponential terms are guaranteed to decay,

eK t98
tf∞

0. This removes all of the initial condition information
as the time gets large (i.e. the network is “memoryless”, which
is as expected for a linear system).

This solution nicely separates all of the filtering information
(the ω dependence of the amplitude in the sin-cos terms) for

SCHEME 1: Generic Functional Unit of an Arbitrary
Linear Chemical-Reaction Networka

a Θi is a time-dependent component of the inflow of speciesi.

dAB(t)
dt

) KAB(t) + QB(t) (1)

K ) ( kij , i * j

-ki - ∑
i′

i′*i

ki′i , i ) j ) ) constant (2)

AB(t) ) eK t[AB(t0) + ∫t0

t
e-K t ′ QB(t′) dt′] (3)

eK t ) Λ eDtΛ-1

(eDt)ij ) eλi t δij (4)

QB(t) ) (P1 + γ1 sin(ωt + æ1)

P2 + γ2 sin(ωt + æ2)

‚ ‚ ‚
Pn + γn sin(ωt + æn)

) ) PB + Im[eiωt γbæ] (5)

AB(t) ) eK t CB0 + Im[eiωt(iωI - K )-1γbæ] -

K-1PB(I - eK t) ) eK t CB0 - K-1PB(I - eK t) +

cosωt Im[(iωI - K )-1γbæ] + sin ωt Re[(iωI - K )-1γbæ]
(6)
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further consideration. Equation 6 shows that the linear network
sustains the sinusoidal form of the resulting oscillations in the
reacting species. Thus, it can be rewritten as

where æ̃i(ω) ) arg[(iωI - K )-1γbæ] i and Âi(ω) ) ||(iωI -
K )-1γbæ)i|| are simply derived from eq 6. The time independence
of the phase allows us to rewrite the problem in the time-delay
framework, where

andτi(ω) is the time delay between the inflow driver (see eq 5)
and the resulting long-term limit steady-state oscillations of the
driven speciesAi (see Scheme 1).

Hence, in a reverse problem, if we are presented with a
situation where the concentration time series with the respective
time delays can be measured but the inflow properties and
system parameters (other than the assumption of its linearity)
are not known, we can determine the system and inflow
parameters from the time-delay measurements using eq 8 and
the definition ofæ̃i(ω) from eq 7.

Furthermore, if the inflow frequency can be varied, this
equation allows us to deduce the rate constants of the system
via the relationship betweenæ̃i(ω) and rate matrixK as defined
in eq 7. By measuringn2 time delays τi(ωj) at different
frequencies, we obtain a full set of linearly independent
equations that allow us to determine all components ofK .

In the long-time limit, the exponential transients decay, and
we are left with

Hence, the stationary amplitude of the outflow rate is

Therefore, the filtering-rate ratio for a general first-order
network, which is the ratio of the outflow amplitude to the input,
is

Now we can immediately deduce the first result:

That is, for large values ofω, a general first-order network
acts as a low-pass filter regardless of the system and input.

We now ask whether this behavior holds for all values ofω.
If so, thenRij

r is a monotonically decreasing function of fre-
quency and should have no positive derivatives with respect to
ω. However, if our linear chemical network can perform band
filtering, then in some frequency range, this derivative is
positive. To determine if such a range exists, we first rewrite
the expression forRij

r using eq 11 in the following way:

whereP(i) is the projection matrix and

Now we take derivatives of the filtering ratio with respect to
ω. From eq 13, we have

Thus, by eq 12,

where

The matrixH l(ω) is, by inspection, Hermitian and possesses
at most two nonzero eigenvalues, which correspond to the
growth and decay modes of the filtering ratio. Solving for the
eigenvalues ofH l(ω), we get

The orthonormal eigenvectors corresponding to the first two
(nontrivial) eigenvalues are

and the rest,xb l
i(ω), 3 e i e n, are the eigenvectors belonging

to the null space of the matrixH l(ω) (i.e., I (H l)), which is
orthogonal to the subspace spanned by the two nontrivial
eigenvectorsxb l

((ω). The set of orthonormal eigenvectors
{xb l

i(ω)}i)3
n spanningI is obtained via the Gramm-Schmidt

orthonormalization of the nonorthonormal eigenvectors:

(γj

ki
Rij

r (ω))2

) ||(M(ω)γbæ)i||2 ) γbæ
† M†(ω) P(i) M(ω) γbæ

(12)

M(ω) ≡ (iωI - K )-1

P(i) ) {(δik δkl)kl}

P(i) ) P†(i) ) P(i)2 (13)

dM(ω)
dω

) -M(ω)2 dM-1(ω)
dω

) -iM(ω)2 (14)

(γj

ki
)2 d(Rij

r (ω))2

dω
) (M(ω)2 γbæ)† H i(ω)(M(ω)2 γbæ) (15)

H l(ω) ) i[P(l)M-1(ω) - (M-1(ω))†P(l)] )

[ ikl1

0 l 0
ikl(l-1)

-ikl1 ‚‚‚ -ikl(l-1) -2ω -ikl(l+1) ‚‚‚ -ikln

ikl(l+1)

0 l 0
ikln

] (16)

λ1l(ω) ) λl
+(ω) ) -ω + xω2 + ∑

j*l

klj
2

λ2l(ω) ) λl
-(ω) ) -ω - xω2 + ∑

j*l

klj
2

λ3l ) λ4l ) . . . ) λnl ) 0 (17)

xbl
1,2(ω) ) xbl

((ω) )
1

xλl
((ω)2 + ∑

j*l

klj
2

×

(ikl1, . . . , ikl(l-1), λl
((ω), ikl(l+1), . . . , ikln) (18)

Ai(t) ) [eK t CB0] i + Âi(ω) sin(ωt + æ̃i(ω)) -

[K-1PB(I - eK t)] i (7)

ωτi ) æ̃i(ω) - æi(ω) (8)

AB(t)98
tf∞

cos(ωt) Im[(iωI - K )-1γbæ] +

sin(ωt) Re[(iωI - K )-1γbæ] - K-1PB (9)

Amp(ki Ai) ) ki||([iωI - K ]-1γbæ)i|| (10)

Rij
r )

Amp(ki Ai)

γj
)

ki

γj
||([iωI - K ]-1γbæ)i|| (11)

Rij
r )

ki
γj

||([iωI - K ]-1γbæ)i||98
ωf∞ ki

γj
||([iωI ]-1γbæ)i|| ∝

1
ω
(II)
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wherej + 1 * l (i.e., xb l
i are real fori > 2, are independent of

ω, and have nolth component.18

Because eigenvectors of a Hermitian matrix form a complete
set, we can expand the vector, which enters in the quadratic
form of eq 15 in the orthonormal eigenvector basis

where

from the orthonormality condition.
After substituting eq 21 into eq 20 and using the orthonor-

mality of the eigenvectors, we obtain from eq 15

We see that dRij
r (ω)/dω has two modes: a positive one cor-

responding to the increase in the filtering ratio (becauseλ+ >
0) and a negative one corresponding to the decrease in the
filtering ratio (becauseλ- < 0).

Now, using the resonance condition given in eq I, we can
explicitly derive an analytical criterion for the existence of a
band filter on a particular node of a linear chemical reaction
network. That is, for a given input phase-amplitude vectorγbæ,
the band filter exists on nodei if and only if the equation

has a real, positive resonant-frequency solutionω*. If such a
solution exists, then from the results of eq II the system exhibits
low-pass behavior forω > ωc ) max ω* , with regions of
various band-filtering behavior for smallerω.

Equation 23 does not guarantee the existence of a band filter
in an arbitrary linear network under an arbitrary set of inputs.
However, given a frequencyω̂, we can always select vectorsPB
andγbæ in such a way as to guarantee the existence of a band
filter on a selected node at that frequency. That is, it is possible,
given the inflow characteristics of a signal entering at one
chemical species, to design a sinusoidal inflow pattern at other
chemical species that either allows or restricts the passage of
the original signal to the outflow of another species.

This result is due to the fact that for anyω eq 15 is a quadratic
form and thus has, at most,n linearly independent solutionsγbæ
for the zero intercept. But these solutions are simultaneously
the solutions to eq 23; thus, it is possible to derive all of the
solutions to eq 15, which are

where thexb i
j ’s are given in eq 18 forj ) {1, 2} and in eq 19

for j g 3, with Pj g γj g 0 for all i, j. Any of these input

vectors produce a band-pass/suppress filter, which is peaked at
ω̂. (Note: Using eqs 23 and 24, it is also possible to find values
of PB andγbæ such that the system exhibits only low-pass behavior
for all possibleω, as was shown in eq II). That is to say that
the system response to a signal will be amplified/damped the
closer it is to frequencies aroundω̂.

Whereas eq 24 provides a general way to select the inflow
rates for a system so as to induce a band filter for a chosen
species at a selected frequency, it does not a priori specify which
species need to be driven or whether control over only a selected
subset of the system components might be sufficient. In
particular, we may ask, Can a band-pass/suppress region exist
if there is only one oscillatory input into the system? For
example, in biological signal transduction, often the only
oscillatory input is the calcium ion concentration. It turns out,
however, that linear networks in general cannot act as anything
but low-pass filters when driven by a single oscillatory input.17

Therefore, in particular, if we observe in vivo a generic chemical
system with a single driver that displays band filtering, we can
conclude that it contains a nonlinear reaction.

No such general statement can be made about systems that
have oscillatory inputs into multiple species. In particular,
examples of purely linear systems that have band-pass/suppress
properties under multiple oscillatory inputs are shown in the
next section.

III.D. Examples
III.D.1. Band Filter. To demonstrate an application of the

analysis described in the last section, we consider specific
examples of general linear chemical reaction networks shown
below.

III.D.1.1. Two-Species System.This case is important
because this functional unit is the basic building block for any
general linear system (see Scheme 2). As shown in Figure 1,

Figure 1. Plot of band-pass/suppress filtering ratioRr
11 (amplitude of

species 1 rate of outflow to species 1 rate of oscillatory inflow) vs
frequency for the system given in Scheme 2. System parameters arek1

) 150.0,k2 ) 0.3, k12 ) 2.0, andk21 ) 100.0; the choice of scale is
arbitrary. The band-pass filter peak is atω̂ ) 75 with an inflow phase-
amplitude vectorγæ

- selected as prescribed in eq 24. The pass band is
preceded by a band-suppress trough centered at∼4.8.

SCHEME 2: Two-Species Linear Reactiona

a Minimal linear reaction network supporting band filtering.

x̃
f

l
j+2 ) 1

xkl1
2 + kl(j+1)

2
(klj, 0, ‚‚‚, 0, -kl1, 0, ‚‚‚, 0) (19){

j+1-th

M(ω)2 γbæ ) ∑
j)1

n

Rjl xb l
j (20)

Rjl ) (xb l
j)† M(ω)2 γbæ (21)

(γj

ki
)2 d(Rij

r (ω))2

dω
) λi

+(ω)||(xbi
+(ω))†M(ω)2 γbæ||2 +

λi
- (ω)||(xbi

- (ω))†M(ω)2 γbæ||2 (22)

λi
+(ω*) ||(xbi

+(ω*)) †M(ω*) 2 γbæ||2 +

λi
-(ω*) ||(xbi

-(ω*)) †M(ω*) 2 γbæ||2 ) 0 (23)

γbæ
((i, ω̂) ) [i ω̂I - K ]2 ‚ ( 1

xλi
+

xbi
+(ω̂) ( 1

x|λi
-|

xbi
-(ω̂))

γb æ
j (i, ω̂) ) [i ω̂I - K ]2‚xb i

j (24)
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even this simple system can exhibit rather interesting and rela-
tively complex behavior under an oscillatory input. We indeed
can observe band-pass/suppress filtering behavior in such linear
systems with appropriate inputs chosen according to eq 24.

Note that this result actually proves something stronger.
Because this subnetwork represents a basic unit of a general
linear chemical reaction network, this shows that a band filter

can be implemented in a linear chemical network with at least
two independently driven species.

III.D.1.2. Three-Species System.This is the next simplest
case to the two-species system considered earlier, and it is the
lowest system size in which the null-space eigenmode of eq 24
is present (see Scheme 3). Figure 2a demonstrates that the
behavior of the null-space eigenvector solution is essentially
similar to the ones corresponding to the nontrivial eigenvalues
and are easier to work with because null-space eigenvectors are
real and independent ofω. Figure 2b is an example of pure
band-pass behavior in externally driven linear systems.

III.D.2. Linear Chain. Finally, we analyze a signal propagat-
ing down an unbranched chemical pathway to determine both
how the signal is degraded and delayed by passage through
multiple chemical steps. As a simple model, consider a non-
branching chain of irreversible reactions with a periodic
sinusoidal inflow at its head (Scheme 4).

The concentration of the first node,A1, is given by the
differential equation

with the solution

The long time limit behavior of the solution is

This expression forA1 is of the same form as the initial input
function. Thus, by induction, we get that the long time limit
behavior of thenth species is functionally the same, that is

where

SCHEME 3: Three-Species Linear Reactiona

a Minimal linear reaction network supporting band filtering with the null-space eigenmode.

Figure 2. (a) Plot of band-filtering ratioRr
11 (as defined in eq 11) vs

frequency for the system given in Scheme 3. The filter suppress band
is centered atω̂ ) 5.0 by the inflow phase-amplitude vectorγæ

3 (first
and only null-space system eigenmode) selected as prescribed in eq
24. The trough is followed by a subsequent peak at∼25, which is
where the pass band is centered. (b) Plot of band-pass filtering ratio
Rr

23 vs frequency for the system given in Scheme 3. This is an example
of a pure band-pass filter, with the pass band set atω̂ ) 1.0 by the
inflow phase-amplitude vectorγæ

- selected as prescribed in eq 24.
System parameters arek1 ) 15.0,k2 ) 0.3,k3 ) 0.05,k12 ) 2.0,k13 )
1.0,k21 ) 10.0,k23 ) 3.0,k31 ) 0.1, andk32 ) 0.5; the choice of scale
is arbitrary.

SCHEME 4: Delay LinesAn Unbranched Linear Chemical Pathwaya

a Temporal behavior ofAi is completely determined by the behavior of speciesAi-1.

dA1(t)

dt
) -k1 A1(t) + P + γ sin(ωt) (25)

A1(t) ) P
k1

+ C0e
-k1t + γ

ω2 + k1
2
(k1 sin(ωt) - ω cos(ωt))

(26)

A1(t)98
t f ∞ P

k1
+

γ

xω2 + k1
2

sin(ωt + æ1)

æ1 ) -arccos( k1

xω2 + k1
2) (27)

An(t)98
t f ∞ Pn

kn
+

γn

xω2 + kn
2

sin(ωt + æn) (28)
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Therefore, the filtering ratio for successive species is

Note that the phase of each of the subsequent steps of the
linear nonbranching chain has a larger phase shift than the
previous one. This implies that each of the downstream species
has a greater time delay than the previous one,

which is what we expect.
The plot ofRn(n-1)

r versusω/kn is shown in Figure 3. This is
characteristic of a low-pass filter. Moreover, the functional form
of Rn(n-1)

r is identical to that of an electrical RC circuit with
low-pass capacitor voltage filter withkn ) 1/RC.

III.E. Multifrequency Signal Filtering. We now consider
a general linear multifrequency input vector (see Scheme 1) of
the form

whereωi * ωj if i * j. By rewriting QB(t) as

where

whereN is the number of frequency components in the input
signal andâi ) ωi/ω. We can observe thatQB(t) is thus essentially
a shifted Fourier series. Therefore, the solution for eq 1 withN
) 1 is all that is needed to obtain the general solution for any
N. This is because linear systems must obey the superposition
principle. That is, the solutionAB(t) to eq 1 with multifrequency

input, eq 32, may be written asAB(t) ) ∑i ABi(t), whereABi(t) is a
single-frequency solution for frequencyωi because

Thus, the solution of the linear system with multifrequency
input is the sum of the individual solutions to the equations

with QBi(t) given by eq 33. This confirms that the multifrequency
linear input case is just the sum of the respective single-
frequency solutions, eqs 6 and 7, with pillars properly adjusted.

Note that this means that the results we obtained in the
previous section regarding filtering properties of single-
frequency input linear systems hold for multifrequency systems
as well. As was shown above, by the superposition principle,
the result of a multifrequency input is the sum of individual
single-frequency solutions,AB(t) ) ∑i ABi(t). Because all of the
components are sinusoidal (eq 9), the overall system behavior
will be described by “beats” if the frequency values are close
or consist of a more complex pattern,19 but with Amp(AB(t)) )
∑i Amp(ABi(t)).20 Then, because a linear system generally behaves
as a low-pass filter with one single-frequency driver, its filtering
ratios and (for constant amplitude inputs, such as the ones we
are considering) species amplitudes, Amp(Ai,ω;âi), are mono-
tonically decreasing functions of frequency (see sections II and
III.C and eqs 11 and 24). Thus, the amplitude of the full multi-
frequency solution, Amp(AB(t,ω;âB)), is also a monotonically
decreasing function ofω, which means that the filtering ratios
of a linear chemical reaction network with a single multifre-
quency input driver are monotonically decreasing and the system
is a low-pass filter.

So whereas we deduce that, as we demonstrated earlier, a
general linear system with multiple oscillatory drivers can
exhibit both low-pass and band-pass/suppress behavior even with
single-frequency input, given a single driver, it can behave only
as a low-pass filter, regardless of whether the driver is single
or multifrequency. That is, because most input functions can

Figure 3. Plot of the filtering ratioRn(n-1)
r vs ω/kn for the case of a

nonbranching chain network (Scheme 4). The plot demonstrates the
characteristic low-pass filter behavior of the linear networks. This
behavior is analogous to the capacitor voltage low-pass filtering in
electrical RC circuits.

Pn ) Pn-1 ) P1 ) P k0 ) 1

γn ) γn-1 ×
kn-1

xω2 + kn-1
2

) γ × ∏
i)1

n-1 ki

xω2 + ki
2

γ1 ) γ
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xω2 + kn
2) ) -∑

i)1

n
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xω2 + ki
2)

æ0 ) 0 (29)

Rn(n-1)
r )

Amp(knAn)

Amp(kn-1An-1)
)

kn

xkn
2 + ω2

(30)

τn )
|æ̃n(ω)|

ω
<

|æ̃n+1(ω)|
ω

) τn+1 (31)

QB(t) ) ( P1 + ∑
i

γ1i sin(ωit + æ1i)

P2 + ∑
i

γ2i sin(ωit + æ2i)

‚‚‚

Pn + ∑
i

γni sin(ωit + æni)
) (32)

QB(t,ω; âB) ) ∑
i

QB i(t,ω;âi)

QB i(t,ω;âi) ) ( P1

N
+ γ1i sin(âiωt + æ1i)

P2

N
+ γ2i sin(âiωt + æ2i)

‚‚‚
Pn

N
+ γni sin(âiωt + æni)

) (33)

dAB(t)

dt
- KAB(t) - QB(t) )

d
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∑

i

ABi(t) - K∑
i
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i

QB i(t)

) ∑
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generally be represented via Fourier series expansion, if we
observe in vivo a generic chemical system with one external
input (whether single or multifrequency), which displays band
filtering, we can generally conclude that it contains a nonlinear
reaction.

IV. Nonlinear Chemical Reaction Networks

When a chemical mechanism contains even one nonlinear
reaction step, varied autonomous behavior as well as complex
responses to perturbations become possible. However, unlike
the case of the linear system, there is no general solution to a
set of nonlinear differential equations. Thus, we choose to
analyze a couple of basic cases that are representative of many
fundamental nonlinear system elements.

IV.A. Bimolecular Reaction
IV.A.1. System Description.Nearly all chemical mechanisms

can be broken into elementary unimolecular and bimolecular
reaction steps. Here, we discuss a basic example of a bimolecular
reaction step formally equivalent to a heterodimerization reac-
tion. To demonstrate that even such a simple system can have
complex signal-processing behavior, we choose a particular form
of the production kinetics for the reactants (see Scheme 5).

The chemical kinetic equations corresponding to this system
are

The equations forA andB can be combined and integrated
directly:

For any periodic form ofΘ, the solution to (A - B) diverges
in time unlessP ) RB. Because we want to study frequency
filtering by such systems, we make the relevant assumption that
the system is in balance for the purposes of this analysis:

Under this condition, eq 37, solved forA, can be substituted
into eq 36 to reduce the number of equations describing the
system to two. We obtain

whereb1 ) RB) P, b2 ) - k1(A0 - B0), andb4 ) -k1. Once
this system is solved,A is derived fromB through eq 37.

Equations 37 and 38 are the most general reduced forms of
the system given in eq 36. To proceed further, we need to
specify the form for the variable inflow driverΘ.

IV.A.2. Single-Frequency Signal Filtering.In this case,Θ
is given byγ sin ωt, and the system of differential equations
describing the reaction mechanism becomes

whereb3 ) -γk1.
The interesting feature, which becomes the source of all the

subsequent nonlinearities, is seen in the equation forB. Whereas
the first two terms are consistent with the standard linear kinetics
and by themselves lead to a simple exponential profile with
oscillations overlaid upon them, the third term gives the system
its complex properties. The equation forB is of the so-called
Riccati type, for which there is no general solution unlessb1 ≡
0 or b3 ≡ 0 or b4 ≡ 0. Because this is not, in general, the case
here, we must resort to calculating an approximate analytical
solution, outlined in the barest detail below, and checking that
approximation against the results of numerical computations.
These approximations, made within an appropriate analytical
framework, then allow us to deduce accurately both the
dynamics of the system and its frequency-filtering properties,
which is the goal of this work.

IV.A.3. Analytical Framework. We first analyze the general
formal solution forC(t) in terms of B(t) because one has a
relatively simple form in terms of the other. This allows us to
reduce the task to deriving an appropriate solution forB(t) only.

From eqs 38 and 39, the differential equation forC(t) in terms
of dB/dt is linear, so we can write the general solution forC(t)
directly in terms of as yet unknownB(t). From eq 38, we have

This expression gives the exact solution forC(t) in terms of
B(t). However, the integral in eq 40 (which is essentially a
Laplace transform) cannot, in general, be evaluated analytically.
An appropriate series expansion of eq 40 is thus necessary. We
are ultimately interested in understanding the behavior of the
amplitudes ofB and C as a function of frequency, hence we
chooseω as the expansion parameter. To obtain a uniform
expansion, we proceed to change the integration variables to
the dimensionless quantityx ) ωt so that the expression for
C(t) in terms ofB(t) becomes

Now we can immediately observe that the relevant system
scale parameter isk2/ω, which we will use to perform series
expansions of the solutions for bothC(t) andB(t) to obtain the
approximation we are looking for to the required accuracy. As
we shall demonstrate, analytical approximations to the second
order inω/k2 thus derived generally provide sufficient accuracy
for the purposes of our analyses.21

SCHEME 5: Second Order Bimolecular Reactiona

a P denotes a pillar-constant component ofA inflow rate,Θ denotes
a periodic variable component of theA inflow rate, RB denotes the
constant rate of inflow of speciesB.

dA
dt

) P + Θ - k1A‚B

dB
dt

) RB- k1A‚B
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dt

) k1A‚B - k2C (36)
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(A - B) ) A0 - B0 + (P - RB)t + ∫0
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Θ dt′ (37)

P - RB) 0 (III)

dB
dt

) b1 + (b2 + b4∫0

t
Θ dt′)B + b4B

2

dC
dt

) b1 - dB
dt

+ k2C (38)

dB
dt

) b1 + (b2 + 2
b3
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sin2 ωt

2 )B + b4B
2

dC
dt

) b1 - dB
dt

+ k2C (39)

C(t) ) C0e
-k2t +

b1

k2
(1 - e-k2t) - e-k2t∫0

t dB
dt′ ek2t′dt′ (40)

C(x) ) C0e
-(k2/ω)x +

b1

k2
(1 - e-(k2/ω)x) -

e-(k2/ω)x∫0

x dB
dx′ e

(k2/ω)x′dx′ (41)
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IV.A.3.1. Low-Frequency Regime (ω/k2 e 1). Whenω/k2

e 1, we can use repeated integration by parts in eq 41 to obtain
an expression forC(t) in terms of a convergent series:

Note that this result gives an exact formal solution forC(t)
in terms ofB(t) (albeit in terms of an infinite series). IfB(t) is
periodic, then so are all of its derivatives. Therefore, in the long
time limit (t f ∞) when B(t) actually becomes periodic, we
have

so that from eq 42

That is, in the long term, the average ofC(t) is independent of
frequencyω. (This result actually holds in both the low- and
high-frequency regimes.)

In the low-frequency regionω e k2, we obtain17

where

The value ofc is calculated from the initial conditions of the
problem.22

Similarly, we obtain the expression for the approximation
for C(t) from the first term in the expansion in eq 42,

Then the stationary-state expressions to lowest order are

whereQ(t) is given in eq 46. The calculations of averages and
amplitudes are then made directly from eq 48. To the lowest
order for the averages, we have

and for the amplitudes,

where

Note that unlike the high-frequency bimolecular case dis-
cussed below, or a general linear case discussed in Part III, we
do not get simple linear oscillatory behavior (i.e., cos-
sinusoidal) for the product of the reaction even in the long-
time limit, eq 48, which is characteristic of its nonlinear nature.

IV.A.3.2. High-Frequency Regime (ω/k2 > 1). If ω/k2 >
1, the series in eq 42 are divergent. Although adding the infinite
number of terms in the series gives the right answer, each term
is greater than the preceding one, and thus no statement can be
made about how good then-term approximation is compared
to the (n - 1)-term approximation. Therefore, we need another
expression that is more convenient for our purposes in this range
of ω. This may be accomplished analogously to the prior case,
except by using integration instead of differentiation, which
produces a polynomial expansion ofC(t) in powers ofk2/ω <
1, resulting in the renormalized convergent series

C(t) ) C0e
-k2t +

b1

k2

(1 - e-k2t) +

∑
n)1

∞

(-1)n(ω

k2
)n(dnB
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dxn |x)0
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with

and

whereRe[R] is determined by the initial conditions andIm[R]
is equal to 0 orπ/2 depending on the initial conditions (whether
we are starting above or below the stationary state).23 Then for
the ω/k2 > 1 region, we obtain

whereê ) ν/ω. Then from eqs 52 and 53, we have

where the functionF(t) - F(0) is a rather complicated
expression17 that approaches 1 exponentially for larget.

In the stationary state, long-term transients die out, and to
the lowest order,

Now we can easily deduce the quantities of interest for the
signal-processing analysis, that is, the averages

and amplitudes

all to the lowest order.
IV.A.4. Filter Profile. As was discussed earlier, the filtering

properties of the system, which affect the attenuation of the
signals propagating through the network, are measured in terms
of the filtering ratio,Rr, which in the case of the system given
in Scheme 5 is the ratio of the amplitude of the rate of output
flow, k2C, to the amplitude of the inflow rate of the driving
input reactants, which isγ in our system. As will now be shown,
in the case of a nonlinear system, we find that a network with
the reaction elements of the considered typealwayshas a band-
pass filter associated with it.

From eqs 50, 51, and 59, we can write down the explicit
analytical expressions for the filtering ratio in each of the two
regions:

where

Notice thatRr is a decreasing function of the frequency in
the high-frequency regime, whereas it is an increasing function
for the low frequencies. Thus this network element always works
as a band-pass filter, passing signals in a certain frequency
spectrum and suppressing them for frequencies outside the band.
It is interesting that the position of the upper limit of the selective
pass band for this filter is controlled by a single parameter: rate
coefficientk2. The width of the pass band [ωc, k2], that is, the
size of the frequency spectrum region where the filtering ratio
Rr is relatively flat and where all signal amplitudes are passed
through with minimal degradation, is then determined by the
nature of the ratio in the equation for the low-frequency regime.
Whereas initially (ω , γk1/2ν) the filtering ratio increases with
frequency from near zero almost linearly, it then behaves like
a square root (i.e., has an inflection of order half aroundωc )
γk1/2ν, eqs 50 and 51) and finally becomes almost flat as a
function of ω for ω . γk1/2ν. That is, the lower limit of the
selective pass band for this filter is24
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It is again interesting that the position of the lower limit of
the selective pass band, although dependent on the properties
of the inflow rate and initial conditions of the system (a
nonlinear system-specific property), can be used to estimate the
other intrinsic parameter of the systemsrate coefficientk1sin
much the same way as the upper pass-band limit yields the value
of k2. Thus, a measurement of the filter pass-band position yields
a measurement of the reaction rate coefficients.

In addition to leading to an understanding of the source of
the signal attenuation control, the above analytical formulas
allow us to make several interesting observations about the
properties of nonlinear chemical networks of this type.

Whereas in the usual linear chemical environment the
“memory” of the initial conditions is lost upon the system reach-
ing a stationary state (e.g., eqs 6 and 9), in the case of nonlinear
systems, initial conditions generally affect their long-term
behavior (e.g., eqs 48 and 57, where information about the initial
state of the system is preserved inb2 and ν among others).
Furthermore, as indicated in eqs 60 and 61, this information is
not only explicitly retained in the filtering ratio, thus controlling
the filter’s attenuation properties, but also affects its other
characteristics, such as the size of the pass band. This directly
demonstrates that loss of this memory is a general characteristic
of linear differential equations but not of nonlinear systems.

IV.A.5. Analogy with Electrical Circuits. As mentioned
earlier (see discussion of Figure 3), chemical reaction networks
often resemble electrical networks, particularly when it comes
to signal processing. This analogy is particularly useful when
considering and interpreting the results of frequency filtering
derived in this section (eqs 49-51 and 58-61).

First, we note that the long-term average ofC(t) is invariant
under a periodic perturbation and is, in fact, the same as the
average ofC(t) with no perturbation at all (eqs 43 and 44). In
the overall picture, this indicates that the units of the network
downstream fromC effectively decouple from the upstream
units (that is, their basal behavior is not affected because only
the amplitude of the input,C in this case, and not the average
is affected by the perturbation). This is also the case for the
high-frequency limit of long-term averages forA(t) and B(t).
This is the same key property that allows discretization of
electrical circuits into sets of localized circuit elements and is
shown here to apply to chemical networks.

The second analogy arises from the fact that the behavior of
Rr in the high-frequency regime (eq 60) looks very much like
the respective capacitor region of the RC circuit discussed
before. Furthermore, if we consider the ratio of the amplitudes
of the concentrations to be a filtering ratio (i.e.,Rc (see
discussion preceding eq I), then we again get a relation similar
to the one found for the RC circuits:

This is exactly half of the ratio we get for a low-pass RC circuit
with RC ) 1/2ν.

Additionally, for highω, the amplitudes ofB andC are the
same (at least to the second order) (eq 59). Because in this case
the amplitude ofC is independent ofk2, another analogy to AC
electrical circuits is made: the alternating chemical current
strength is the same throughout the circuit. The definition of
high frequency is then naturally established because the ap-

proximation in eqs 55-57 is valid for ω > k2 (i.e., this
mechanism resembles an electric circuit for frequency compo-
nents larger thank2).

Unfortunately, for the low-frequency case, we do not get
simple linear oscillatory behavior (i.e., cos-sinusoidal) of the
reactants (eqs 45-48) with the shape of pulses appropriately
being more tangentlike. However, the constancy of the average
of C is still preserved in accordance with the earlier derivation
so that the electrical circuit element analogy still holds, whereas
the average ofB still depends onω. Furthermore, the behavior
of Rr in the low-frequency regime (eq 60) still looks somewhat
like the respective RC circuit. In fact, it does behave essentially
like a “classic” high-pass filter in this region (as we have
discussed previously, chemical systems always behave as low-
pass filters forω f ∞) if A0 - B0 ) 0 (i.e., if the system is
made memoryless like the linear RCL model of small electrical
oscillations). ThenRr is again exactly half of the ratio we get
for a high-pass RC circuit with RC) 2ν/γk1 ) 1/ωc. No such
direct analogy exists if we choose to start the system with some
other set of initial concentrations.

IV.A.6. Example. For numerical analysis, we consider an
example of the system in Scheme 5 withP ) RB ) 1.0,A0 -
B0 ) 0.0, γ ) 0.05, k1 ) 0.01, andk2 ) 1.0 (i.e., all time
constants are in units ofk2 in accordance with the conclusions
that k2 is the natural time scale for the system).

The analytical and numerical solutions forA(t), B(t), andC(t),
as given by eq 37 and eqs 45-47 and 55-56 versus direct
numerical integration of eqs 39, respectively, match nearly
perfectly17 (Figure 4).

Thus, analytical expressions derived by us for the filtering
ratio and other signal-processing parameters (eqs 49-51 and
58-60) give an accurate representation of the filter profile
(Figure 5) as well as the overall band-pass properties of the
system.

This further demonstrates that the approximate solution
derived here is in excellent agreement with the exact solution
and is sufficient to capture the characteristic features of the
system such as the transition from exponential to oscillatory
behavior and the position of the control points of the band-
pass filter. We have also established here that, at least for this
type of nonlinear network element, only the amplitude of the
outflowing species, and not their basal level, depends on the
frequency of the inflow oscillations. This means that these types
of units may be considered to be separate elements of the
network with an analogue of an alternating current passing
through them.

IV.A.7. Multifrequency Signal Filtering. In the case of a
linear first-order network, discussed above, the result of
substitution of multi- for single-frequency input

results in the manifestation of a superposition principle (i.e.,
the result of the sum of modes is the same as the sum of the
single-mode results given in eqs 32-35). However, no such
statement can be made about the nonlinear networks. This is
primarily due to the interference of the multiple modes with
each other because of cross terms between variables of the
system. In the bimolecular case, there are quadratic terms that
lead to the appearance of cross terms of the type sin(ωit)sin(ωjt).
Such terms lead to interference between the two frequency
components.

sin(ωt) f ∑
i)1

n 1

n
sin(ωit) (63)

ωc )
γk1

2ν
)

γk1

xk1
2(A0 - B0)

2 + 4k1P
(61)

ω > k2: Rc ) 1
2

2ν

xω2 + (2ν)2
(62)
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Nevertheless, the substitution of eq 63 withn modes into the
second-order network (eq 36) does not result in any dramatic
difference in behavior from the cumulative behavior ofn single-
mode networks with the same spectrum of frequencies, super-
imposed on each other. As may be seen from Figure 6, the
Fourier transform of the numerical solution of the network with
multifrequency input displays peaks at the input frequencies,
exactly where they are in a single mode or linear case, that
completely dominate the interference peaks around them. This
is to be expected because Amp(sin2(ωit)) > Amp(sin (ωit)
sin(ωit)), in general for eq 38, and the main modes dominate
the interference modes.

This result implies that there is no “swamping” of the input
signal within the network. Each frequency component of the
input signal, transmitted in the multifrequency regime, is still
clearly distinguishable in the output signal, despite the appear-
ance of some noise due to interference of the various modes
within the network element due to nonlinearity.

IV.B. Excitable System.The last two sections considered
first- and second-order reactions. Formally, nearly all chemical
mechanisms can be decomposed into first- and second-order

elementary reaction steps. However, when there is a large
separation of time scales among the reactions, it is often a good
approximation to reduce a number of bimolecular and unimo-
lecular elementary reaction steps to a single reaction step of a
higher (and possibly nonintegral) order. Such approximations
are routinely valid when considering the kinetics of nonlinear
and enzymatic reactions: quasi-equilibrium and steady-state
assumptions are the basis of Michaelis-Menten-type kinetics.25

In this final section, we study a particular case of a periodically
driven reaction system that has already been shown to exhibit
strong excitation response.

For early work on frequency filtering in excitable systems,
see Hahn et al.26 We choose for our discussion a set of equations

that represent a popular version of the Oregonator description
for the Belousov-Zhabotinsky (BZ) reaction27-29 and are also
related to an excitable system regenerating cAMP inDictyo-
stelium discoideum.30 Both systems have previously been shown
numerically and experimentally to exhibit strong oscillatory
band-pass signal-filtering properties.31,32

IV.B.1. Analytical Framework. The standard method for
analyzing nonlinear system excitations around the system steady
state is to consider the behavior of small time-dependent
perturbations induced by the external driver. By assuming that
low-order derivatives of such perturbations are also small, we
can then linearize the system description in terms of these
perturbations around the system steady state. If the linearized
equations are solvable, then the behavior of the system can be

Figure 4. (a) Comparison plot of the concentration of species C vs time given by the analytical solution, eqs 45-47, (s) and numerical integration
of eq 39 (- - -) in the low-frequency regime,ω/k2 ) 0.01. (b) Comparison plot of the concentration of species C vs time given by the analytical
solution, eq 56, (s) and numerical integration of eq 39 (- - -) in the high-frequency regime,ω/k2 ) 5.0. (The system mechanism is as given by
Scheme 5 withP ) RB ) 1.0, A0 - B0 ) 0.0, γ ) 0.05,k1 ) 0.01, andk2 ) 1.0). Note: The quality of the approximation makes the two lines
hard to distinguish from one another. Given that the quality is even better for species A and B, we have neglected to include their comparison plots
here.

Figure 5. Plot of the overall nonlinear filter profile,Rr vs ω, specified
by eqs 60 and 61. The system mechanism is given by Scheme 5 with
P ) RB ) 1.0, A0 - B0 ) 0.0, γ ) 0.05,k1 ) 0.01, andk2)1.0.

Figure 6. (a) Plot of the Fourier transform of the multifrequency input signalγ ∑i)1
6 sin ωit vs ω, whereω ) (0.01, 0.1, 1.0, 2.0, 5.0, 10.0). (b)

Plot of the Fourier transform of the multifrequency output signalk2C vs ω for the same frequency set. The frequencies are sharply resolved with
fringe peaks clearly subdominant.

εx̆ ) x(1 - x) + f
(q - x)

(q + x)
z - γ sin(ωt)

z̆ ) mx- z (64)
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studied by analyzing the time-dependent behavior of the
perturbations thus obtained.

Applying the method described above to the system in eq
64, we perform the expansion around the steady state of the
system by setting

where{zs, xs} is the stationary state of the system and{η(t),
ê(t)} are the respective perturbations. (Note that because the
system possesses a single nonzero stationary state, as will be
shown later, this is also a general solution.) The values for the
stationary-state concentrations are found via the stationary-state
conditions for the system in eq 64.

These equations can be solved to obtain the unique nonzero
positive stationary solution

Substitute eq 65 into 64, ignoring terms of second and higher
orders in{η(t), ê(t)}, we obtain the next two equations:

where the second of these equations may be solved forη in
terms ofê and its derivative. Substituting this expression into
the first equation above and using identities in eq 66 to simplify
the expression, we obtain a linearized differential equation for
ê,

where

With a bit of algebra, it can then be shown thatω0
2 > 0 if f

> 0; no such general statement can be made aboutλ. Equation
69 has a simple analytical solution

whereB(ω) ) A/(x(ω0
2 - ω2)2+4λ2ω2), tan ∆ ) 2λω/(ω2 -

ω0
2), and{C1, C2} are determined from the initial conditions on

{η(t), ê(t)}. Substituting this equation into the expression forη
in eq 68 and utilizing the stationary-state condition eq 66, we
obtain

where tanæ ) ω.
IV.B.2. Single-Frequency Signal Filtering.From eqs 71 and

72, we can note that ifλ > 0, then the exponential components
die out and the long-term behavior of the excited system is
oscillatory, which is the case we are interested in studying for
its frequency-modulated signal-filtering properties. (The alterna-
tive corresponds to the case of an unstable stationary state with
exponentially growing perturbations.) Under this condition, the
long-term behavior of the system becomes, from eqs 65, 71,
and 72,

In the long-term limit,z always lagsx with a constant, but
frequency-dependent, time delay ofτxz ) {(arctanω)/ω)}.

We again evaluate the signal-processing behavior of the
system by considering its frequency-filtering properties as
manifested through the filtering ratio

because the outflow rate ofz is z from eq 65. The expression
for the filtering ratio thus obtained has extrema atω ∈ {0, ∞}
and a resonance peak (eq I) at

Thus, we have determined that this excitable BZ/cAMPD.
discoideumsystem behaves as a band-pass filter with signal
throughput resonance atω* if ω0

2 > 2λ2 and as a low-pass
filter otherwise.

This also confirms our prior observation that chemical
systems in general behave as a low-pass filter in theω f ∞
limit. It can be also shown that the parameter region over which
the inequality holds (and in which the band filter is present) is
very narrow, which means that the mere observation of a band-
pass filter in the system puts strong restrictions on the values
of the intrinsic system constants.

Another issue worth noting is that, unlike the second-order
nonlinear system considered previously, the excitable system
filtering ratio has a nonnegligible zero intercept:

x(t) ) xs + η(t)

z(t) ) zs + ê(t) (65)

0 ) xs(1 - xs) + f
(q - xs)

(q + xs)
zs

0 ) mxs - zs (66)

xs ) 1
2
(1 - q - fm + x(1 - q - fm)2 + 4q(fm + 1))

zs ) mxs (67)

εη̆ ) xs(1 - xs) + f
q - xs

q + xs
zs +

[1 - 2xs - f
zs

q + xs
- f

(q - xs)zs

(q + xs)
2]η + f

q - xs

q + xs
ê - γ sin ωt

ê̇ ) (mxs - zs) + mη - ê S η ) 1
m

(ê̇ + ê) - 1
m

(mxs - zs)
(68)

ê̈ + 2λê̇ + ω0
2ê ) A sin ωt (69)

λ ) 1
2(1 - 1

ε [1 - 2xs + 2
qxs(1 - xs)

q2 - xs
2 ])

ω0
2 )

xs

ε (1 - 2
q(1 - xs)

q2 - xs
2 )

A ) γ m
ε

(70)

ê(t) ) Re[C1 exp(-λt + xλ2 - ω0
2t) +

C2 exp(-λt - xλ2 - ω0
2t)] + B sin(ωt + ∆) (71)

η(t) )

Re[C1

m
(-λt + xλ2 - ω0

2 t + 1) exp(-λt + xλ2 - ω0
2 t) +

C2

m
(-λt - xλ2 - ω0

2 t + 1) exp(-λt - xλ2 - ω0
2 t)] +

B
m

xω2 + 1 sin(ωt + ∆ + æ) (72)

z(t)98
tf∞

zs + B(ω) sin(ωt + ∆)

x(t)98
tf∞

xs +
B(ω)

m
xω2 + 1 sin(ωt + ∆ + æ) (73)

Rzx
r )

Amp(z)
γ/ε

) m

x(ω0
2 - ω2)2 + 4λ2ω2

(74)

ω* ) xω0
2 - 2λ2 (75)
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The measurements of the value of zero intercept and resonant
frequencyω* combined with observations of the stationary-
state concentrations{zs, xs} provide a complete set of data
necessary to determine the four intrinsic parameters and the rate
constants of the system{ε, q, f, m} via eqs 66, 75, and 76.

IV.B.3. Analogy with Electrical Circuits. Unlike prior cases,
the similarities between electrical AC circuits and thez portion
of the excitable system are most complete and straightforward.
Equation 69 is identical to the differential equation describing
time-dependent charge variations in an RCL circuit. As such,
the concentration filtering ratio forz species is essentially
identical to the one for the charge in the RCL case:

with ω0
2 ) 1/LC andλ ) R/2L.

Unfortunately, the analogy is not present for thex species. It
is mainly due to the fact that the differential equation forx̆
contains the nonlinear terms. The concentration frequency-
filtering ratio for x is

from eq 73.
IV.B.4. Example. For numerical analysis, we consider an

example of a system in eq 64 withγ ) 0.1,ε ) 0.25,f ) 0.5,
q ) 0.0001, andm ) 1. For this system,ω0

2 > 2λ2, so it acts as
a band-pass frequency filter with the band centered atω* )
1.22442. The overall filter profile is given in Figure 7 and
appears to be in generally good qualitative agreement with the
experimental results cited earlier.

IV.B.5. Multifrequency Signal Filtering. Because eq 69 is
linear, the superposition principle discussed previously in
relation to eq 34 will hold here as well. That is, at least to the
degree of this representation, the multifrequency signal input
into this system will produce the response, which will be just
the sum of respective single-frequency inputs. Thus, its signal-
filtering properties in relation to the properties for the single-
frequency input may be treated analogously to the linear system
case discussed in section III.E.

V. Discussion

As the complexity of a chemical system increases, more
complex responses to periodic perturbations become possible,
and, in fact, there is a large body of literature on forced chemical
systems. First- and second-order reactions are the fundamental
elementary units of any such reaction network. We have shown
here that even these simple chemical systems can exhibit both
low-pass and band-signal filtering behavior. With a single
oscillatory input, first-order reactions always behave as low-
pass filters, whereas with two or more oscillatory inputs, they
can behave as low-pass or band filters but never as a high-pass
filter. And, although it is impossible to solve a general second-
order system, the two basic examples we have analyzed in detail
show that these systems can behave both as low-pass and band-
pass filters. Thus, an organism that is exposed to or uses periodic
signals to govern its behavior and development does not need
to evolve complicated biochemical networks to respond differ-

entially to specific external signals. All that is required is an
oscillatory carrier wave, which encodes multiple signals through
frequency modulation and a set of basic signal filters sensitive
to respective frequency ranges of the carrier species. Thus,
simple combinations of networked first-order (and in the case
of a single oscillatory input, single second-order or other
nonlinear/enzymatic) reactions can provide a spectrum of
complex overall filtering profiles without the chemical system
having any exotic autonomous behavior. In this way, such
chemical networks are like electronic computers: they can be
viewed as networks of simple modular devices that can be
linked, analogously to electrical circuits, to form circuitry
capable of sophisticated signal processing in the frequency
domain.

From an engineering standpoint, it is relatively simple to
design complex chemical frequency-filtering circuits for signal
processing using only the small chemical networks discussed
above. Once one has a low-pass filter (such as that described
for the first-order linear system) and a band-pass filter (such as
that described for the second order or excitable systems), nearly
any filtering profile may be constructed by connecting these
systems to one another in series and in parallel (even if only
one single-frequency input driver is available). Figure 8a, for
example, shows two configurations of the systems that are
examples of such circuits, with filter profiles designed directly
from the solutions derived in eqs 11, 24, 30, 60, and 74 (Figure
8b). Because of the particular kinetic constants chosen for these
examples, as well as the modes of chemical coupling, we have
been able to link our chemical modules in much the same way
that an electrical engineer can link together electrical modules
composed of capacitors and resistors. In fact, chemical reaction
networks can formally be mapped into resistor/capacitor
networks.33-35 Just as in electrical circuits, however, there are
a number of circuit design points that must be addressed when
such modular units are linked together. Here, we briefly consider
two such points: (1) the role of noise both as a driving signal
and a fundamental characteristic of circuit function and (2) the
conditions under which a set of chemical reactions can be
considered to be a “computational element” or module.

Noise is present in any physical processschemical or
electronic. Noise is often characterized by its frequency distribu-
tion, its amplitude, and the physical mechanism responsible for
its generation. Above, we have touched on how our example
mechanisms filter driving signals containing multiple frequency
components (such as noise). As a direct result of the superposi-
tion principle, linear systems are low pass for single or low/
band filters for multiple input noise signals (sections III.C. and

Rzx
r (ω ) 0) ) m

ω0
2

(76)

Rzx
c )

Amp(z)

γ/(εω)
) m

ω

x(ω0
2 - ω2)2 + 4λ2ω2

(77)

Rxx
c )

Amp(x)

γ/(εω)
) ωxω2 + 1

x(ω0
2 - ω2)2 + 4λ2ω2

(78)

Figure 7. Plot of the filtering ratio (eq 74) for the excitable system
given in eq 64. System parameters areγ ) 0.1,ε ) 0.25,f ) 0.5,q )
0.0001,m ) 1, andωc ) 1.22442.
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III.E.). In nonlinear systems, no such principle exists, thus mode
mixing becomes possible, and the output of the system is, in
general, no longer merely an amplitude-phase modulation of
the input signal components. For example, in the bimolecular
case discussed above, very small “sideband” modes appear in
the output at frequencies that are not present in the input signal
(see section IV.A.7 and Figure 6). However, the excitable system
shows no such sidebands, as confirmed by our analytical
approach within the scope of the approximation, making it a
much more pure band-pass filter (section IV.B.5).

Noise in the input signal is not the only source of random
fluctuations in a chemical network. There is always thermal
noise in the chemical reaction rates. When the rates are fast
and the concentrations of intermediates are high, this noise is a
small fraction of the average concentrations of the system and
may often be neglected. However, when concentrations are low
and reaction rates are slow, the discrete nature of chemical
reactions becomes apparent. (A rule of thumb is that, in most
cases, thermal fluctuations in a chemical concentration scale in
amplitude likexN/N, whereN is the number of molecules of
a given chemical species.) In the analysis above, we have
assumed that there is no such intrinsic noise in the chemical
frequency-modulated signal filter. To analyze how these systems
would behave when there is internal noise, we would have to
go back to the chemical master equation, a formulation of

chemical kinetics that neglects neither the discrete molecular
nature of chemical reactions nor the thermal fluctuations in these
reactions.17,36-39

With our function-based approach to chemical-reaction
network analysis, it would be advantageous to be able to separate
large reaction networks into smaller groups of reactions, which
function as independent “modules” within. The ability to
consider a subset of chemical reactions as a module can be a
great boon for the analysis of large chemical networks such as
those commonly found in biology because by allowing us to
focus on functional units instead of reactions we can greatly
reduce the complexity of a problem. It would be much easier
to understand biological circuit function if it were possible to
categorize groups of reactions functionally as, for example,
switches, filters, wires, or oscillators without being concerned
about the nature of underlying chemicals. To clarify, it is
virtually impossible to understand the design of a computer
when every transistor is included on the diagram (i.e., if these
transistors are not grouped into logic gates, logic gates not
grouped into chips, chips into boards, and so on). Previous work
has identified a number of such modules and regulatory motifs
that can be classified by their particular (sometimes computa-
tional) functions and dynamics.40,41They are classified by their
dynamical behavior (and reaction structure) rather than by the
particular chemicals involved in the mechanism. In biological

Figure 8. (a) Schematic diagram for two different filters of a single signal. The top and bottom systems show different behavior in different
frequency regimes. (b) Filtering behaviors of the activity of E1 and E2 as a function of the input frequency as calculated from eqs 11, 24, 30, 60,
and 74. Note: Notch filtering behavior is in effect over only a limited range of frequencies because for chemical systems we haveR f 0 asω f
∞.
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systems, it is found that the motifs used to achieve certain
functions such as genetic feedback loops and futile cycles are
evolutionarily conserved (i.e., they are found repeatedly within
a single organism and across many types of organisms). Thus,
these motifs might serve as templates to which newly determined
partial biochemical mechanisms can be compared in order to
predict network function and structure in much the same way
that new DNA sequences are compared to database sequence
motifs to predict protein structure and function. If a chemical
reaction network is to be modular in the aforementioned way,
then the kinetic behavior of a subnetwork module must be
somehow separable from its upstream inputs and downstream
targets. This concept is related to the engineering concept of
“load”. In electronics, the output of one device (the emitter)
serves as input for the next (the receiver). The receiver is a
load on the emitter. A load is simply a device that drains a
certain amount of current passed by the emitter. The smaller
the input (receiver) impedance, the more the input device seems
to be a wire attached to ground and the more the emitter’s signal
is attenuated. Thus, in most circuit designs, the input impedance
is set to be much higher than the resistance to preserve the
integrity (resonance signal amplitude vs baseline) of the input
signal. When a given emitter drives many receivers, then even
when each receiver’s input impedance is high, the parallel
impedance of the receivers may be low (just as the resistance
of parallel resistors is lower than the resistance of any of the
individual resistors). Thus, the emitter can drive only a finite
number of receivers before its signal is too attenuated to be
propagated. This problem is called the fan-out problem. Both
the load problem and the fan-out problem are problems for
chemical modules as well. For example, when the output of a
simple linear chemical low pass serves as the input to a
bimolecular band pass, the input species is consumed by the
reaction. If it is consumed much faster than it is produced, then
the signal is driven toward zero and the combined circuit will
fail to function as expected. This fast consumption of an input
signal is equivalent to a low receiver impedance. The chain of
linear reactions (Scheme 4) provides just such an example. As
the consumption rate,kn, of thenth species increases, so does
the load exerted upon it by the downstream species; thus both
the average concentration and amplitude of oscillation decreases.
However, if the consumption reaction is slow compared to the
oscillation frequency or the signal molecule is not consumed
by the downstream reaction (for example, when it is a catalyst
for a fast downstream reaction), then the impedance is high and
the behavior of the chemical module (emitter) is relatively
unaffected by the dynamics of the receiver system. However,
if there are many downstream reactions of this sort, then the
fraction of emitter molecule consumed or bound up in the
catalyst/substrate state per unit of time becomes large compared
to production and the fan-out causes a failure of the circuit. In
the linear chain, for example, consider the case when more than
one first-order reaction consumes speciesAn: the solution for
An(t) is identical to eq 27 in whichkn is replaced by the sum of
the rate constants for each of the consuming reactions.

In the end, all chemical mechanisms will frequency filter any
signal sent into them to some degree. The type of filtering that
a mechanism applies to an input signal depends on both the
details of the mechanism and the signal’s points of entry to
and exit from that mechanism. Thus, the frequency response of
a chemical network is a signature of its mechanism. In a number
of the cases discussed above, analysis of the filtering ratio gives
a direct estimate of the value of specific elementary rate
constants. When such direct measures are not available, the

filtering properties of an uncharacterized network of chemical
reactions may possibly be used to construct hypotheses for the
network structure. The various metric construction methods
described in Arkin, Shen, and Ross,8 Arkin and Ross,42 and
Samoilov, Arkin, and Ross,43 for example, exploit the fact that
noise input at one point in a chemical network loses coherence
with the response signal measured at another point in the
network. This loss of coherence arises because the intervening
submechanism introduces both a time delay and a filtering of
certain components of the signal. By measuring such system
response to the external perturbations and using metric construc-
tion techniques, one can recover an estimate of the original
network topology and study its overall functionality further.
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