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Signal processing is one of the most important system control mechanisms across a wide variety of functional
devices and mechanisms from electronics to biology. The chemical reaction networks underlying the response
of a cell to both externally and internally generated signals comprise an extraordinary real-time multivariate
control problem. There are two phenomena that exemplify the biological importance of chemical systems’
response to oscillatory signals. One includes a number of important cases of differential cellular response to
particular frequencies of periodic chemical signals. The most widespread example of this is the encoding of
an external agonist concentration in the frequency of calcium ion concentration spiking inside certain eukaryotic
cells. The second is based on the fact that, owing to the low concentrations and slow reaction rates often
associated with, for example, the mechanisms of gene expression, a significant amount of fluctuation in protein
production rates is to be expected. Thus, mechanisms that are essential for the life of the cell must be robust
to these and other types of random noise in the environment as well as be able to filter relevant signals from
the background successfully. We analyze a number of commonly occurring chemical reaction networks,
“motifs” or “modules”, for their response to periodic single- and multifrequency signals. We find that even
very simple chemical reaction networks can be selectively responsive to specific frequency ranges of the
input signals. The main results are that first, a general system of linear reactions with a single external oscillatory
input signal always acts as a low-pass frequency filter. With more than one input at the same frequency, the
system can also be made to behave as a band-pass filter in a selected range but never as a high-pass one.
Second, a class of bimolecular reaction mechanisms can behave as a band-pass filter, but the behavior is very
sensitive to the kinetic parameters. Third, a class of excitable chemical systems can act as a robust band-pass
filter. These results also suggest methods for controlling system behavior through its response to oscillatory
inputs, for deducing chemical reaction mechanisms, and for estimating the associated rate constants from
measurements of system responses to frequency-variable perturbations.

I. Introduction able in chemical circuits are of the nonlinear analogue fyfe.
) ) Furthermore, in a cell, these devices operate in a noisy

For an organism to control its own development and respond enyironment and under the influence of multiple, time-dependent
to environmental cues, it relies on a complex network of reacting inputs, imparting upon them complex response profiles and an
and interacting molecules as well as molecular assemblies t0gffactive “fuzzy” logic behavio?”8
execute and affect the program stored in its genome. Analogous one of the methods for analyzing such systems is “signal
to electrical circuits, these chemical circuits have “devices” that processing”, which generally refers to the differential response
send signals to other “devices” on the same “network segment”, j,, 5 system to the variation of its external parameters. Through
which after an often complex signal processing sequence gjgnal processing, a system can extract information from its
consisting of signal passage and modulation from one device girect inputs as well as from other external variables to regulate
to another device, finally execute a behavioral or developmental jts functions. For periodic external inputs, these signals are
changé. The lowest-level devices are the regions of genomes yypically realized through amplitude and frequency modulation.
and molecules making up the network itself: genes, promoters, = 'ag an example of biochemical signal processing, consider
proteins, small ions, metabolites, et cetera. The signals are thepe phenomenon of hormone-induced calcium release into the
activities of each of the molecules at any given time and at ¢ytosol of an eukaryotic cell. In many eukaryotic cells, the
their sites of action. H|gher-leyel dewce§ may be identified in ¢gicium ion/inositol triphosphate (IP3) signaling cascade is a
networke_d collections of chem|c§1I reactions that form “regula- .gntral pathway in bringing signals from the outside of the cell
tory motifs” (*modules”). In previous work, for example, we {5 various points inside the célt® Here, an input device (a
showed how one motif, related to “futile cycles” of phospho- ce|| surface receptor protein) can activate another device (a
rylation and dephosphorylation of signal kinases, can implement gacond membrane-associated protein that produces IP3) upon
logic operations by analogy to digital electronic logical gates pinging of a hormone. IP3 then activates the release of calcium
such as AND and OR? However, in general, devices identifi-  jons from internal stores by signaling (binding to) another
- - - receptor. Calcium then enters the cytosol and signals a number
27250'52&5:p?gf(;r)]%ggfgggg?ma": mssamoilov@1bl.gov. Tel: (510) 495~ of targets of its presence, and depending on cell type and history,
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cell. The signal transferred by calcium is of particular interest general network of linear chemical reactions driven by oscil-
because its activity is not merely characterized by its concentra-latory inflow of one or more of the chemical species. We find
tion. In many cell types, the concentration of calcium is periodic that any network of such reactions driven by the inflow of a

in time, and a concentration of agonist (a molecule that binds single chemical species generally acts as a low-pass filter on
to the cell surface receptor) on the outside of the cell is finally the signal. However, when two or more inputs are allowed, we
translated to a frequency of calcium spiking inside the cell. More deduce a way to select a specific choice of the amplitude and
generally, a number of different receptors, responsive to different phase difference between the input signals that causes the linear
extracellular signals, can all generate signals for calcium releasenetwork to exhibit more complex filtering behavior (band-pass,

in a single cell. These signals, generally hormones, neurotrans-notch, etc.). We then analytically solve the dynamics of a simple
mitters, or growth factors, control such diverse responses asbimolecular reaction and show how it can behave as a band-
contractility and motility, cell-cycle control, gene expression, pass filter for a single input into the system. Finally, we mathe-
neuronal development, and carbohydrate metabolism. Simulta-matically analyze an excitable biochemical enzyme network that
neous action of these multiple signals can lead to complicated has previously been shown, numerically and experimentally,
temporal behavior of calcium concentration in the cell. Thus, to behave as a band-pass filter. Each of these archetypical chem-
information about many external factors is multiplexed onto a ical mechanisms behaves as a chemical device, for which we
single complex calcium signal. subsequently discuss the electrical circuit analogy.

The ability of cellular machinery to respond differentially to
limited amplitude/frequency regimes of calcium concentration ]
has been shown experimentally. For example, Hajnoczky, et 10 measure the response of the system to a particular
al.11 showed that calcium-sensitive mitochondrial dehydroge- ©Scillatory signal, we apply the well-known concept of frequency
nases (CSMD) were maximally transiently activated byGa f[lterlng. That is, we Ic_>ok at th_e response of the system output
oscillations greater than 0.5 mihand led to sustained elevated (in the case Qf chemical or b!OCthlcaI systems, the ouFﬂow
mitochondrial metabolism. Sustained or slower calcium tran- ©f Some species) to the variations in the frequency of the input
sients were ineffective at activating the CSMDs. Dolmetsch et Signal (the inflow of some signaling species, for example,
al.? showed that expression of a number of transcription factors €alCium transients). The measure of this dependence is generally
in B-lymphocytes was differentially activated within a limited ~taken to be the filtering ratioR;, which is the ratio of the
window of frequency and amplitude. Gu and Spit¢@ave also ~ amplitude of the outflow rate of thiéh species to the amplitude
observed that different patterns and frequencies of calcium Of the inflow rate of thejth control (input) species. We can
spiking and calcium waves lead to distinct outcomes in neuronal @lso define an associated concentration filtering raif,
development. In non-calcium-based systems, for example, Tangdefined analogously t&; as the ratio of inflow to outflow
and Kongsamiit have reported the stimulus-frequency-depend- concentration amplitude averaged over one signal period. If a
ent inhibition of neurotransmitter release. Lansky et*dlave pathway responds differentially to different input frequencies,
studied chemosensory transduction under a periodically chang-then these ratios themselves are functions of frequdﬁf(y;)
ing ligand concentration and have demonstrated that optimal and R-Cj(w). Through understanding of the nature of these
response was achieved only within a narrow frequency range.dependencies, we gain significant insight into the way periodic
Okamotd has shown that long-term potentiation may be input signals affect and control the underlying system behavior.
achieved by target systems that are modulated only by high- On the basis of the shape of the plot of the filtering ratio
frequency signals. There are many other oscillatory biochemical versus frequency, all systems may be divided according to their
systems, both naturally occurrifggolume oscillations in mito- filtering properties:
chondria, glycolytic oscillations in central metabolism, G-protein ~ neutral: no response to the input frequency variation.
activity oscillations, cell-cycle oscillators, and pulsatile release  low-pass: filtering ratio is monotonically decreasing with the

Il. Background: Signal Detection and Filtering

of hormones from the pituitaryand purely syntheti¢® Thus, increase in frequency.
understanding how kinetic networks are able to process these high-pass: filtering ratio is monotonically increasing with the
signals is central to understanding cellular regulation. increase in frequency.

Therefore, given that biochemical pathways appear to be able band-pass: the plot of the filtering ratio has maxima, which
to respond to particular temporal patterns of chemical concen- along with their neighborhoods are called “bands”, that is, the
trations, we ask how such target pathways recognize, demul-System exhibits a strong response to frequencies in a band
tiplex, and effect these signals. For instance, how can one ofaround some characteristic frequency, with the response to the
the previously noted systems decompose and effect a signal sucfirequencies immediately outside the band being suppressed.
as calcium oscillations into commands that tell the pathway ~ Note that this does not preclude there being another band in
either to activate or deactivate itself? To study this, we discuss SOme other frequency range with an even stronger response to
a well-known engineering concept of signal processing through the input. All we ask is that the frequencies immediately outside
frequency-modulated filtering and apply it to the general class the band be suppressed so that the stronger response region is
of linear reaction networks as well as to a couple of simple cléarly pronounced (analogously, we can define a “band-
nonlinear reaction mechanisms. We show that even relatively Suppress” filter, which has minima with bands defined around

simple chemical networks can be differentially responsive to them). . ) .
specific frequency components in a complex periodic input. In In mathematical terms, the existence of the aforementioned

the inverse problem, it may also be possible to deduce a greatband-pass/suppress filter around som_e_characteris_tic f_reque_ncy
deal of information about a given kinetic mechanism by @* can be stated as a resonance condition for the filtering ratio.

measuring its response to periodic perturbations. That is, a given system has a band filter at resonant frequency

First, we review the engineering principles of frequency- w* if and only if for some{i, j} pair

modulated signal filtering (or, simply, “frequency filtering”). d
We then mathematically solve three cases of systems of Rj(w) -0 0
increasing dynamic complexity. The first case is a completely dw

w=w*
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K
K=|-k— Zk”' i =] | = constant

i'=i

The band-pass behavior is of most interest to us because it is
this behavior that allows the usage of the same medium (e.g.
calcium) for selective signal transmission to different systems.
That is, if two pathways act as band-pass filters at different
frequencies with respect to the same signaling molecule, then

the molecule may be used to signal to each of the two pathways;g 5 constant reaction rate matrix, a@d) is a general inflow

at those respective frequencies, independently. For instance, one,. vector. The system in eq 1 has the general solution
pathway may be activated at a specific range of high frequencies

of oscillation of the signal species (say, calcium ion) and
inactived at low frequencies, whereas another independent
pathway might have the inverse behavior.

i =]

(2)

A) = At + f; ' Q) dt] @3)
whereA(to) is an initial-conditions vector and &t = [e<]~1is

the exponential matrix, namely, a matrix that is always
invertible, such that for any diagonalizable rate matixwe
have

Ill. Linear Chemical Reaction Networks

III.A. System Description. We first consider the simplest
type of chemical reaction network: one composed entirely of
first-order chemical reactions. This might be obtained in a
network of proteins following MichaelisMenten kinetics
wherein the substrates for all the enzymes are present at
concentrations far less than the Michaelis constafor this
case, itis possible to derive analytically and analyze the response
of the most general network of linear chemical reactions to the

K= A @PAL

(€, = "o, (4)

most general sinusoidal perturbations.
The system is an isothermal open reaction networkn of

. . . ki
species A, with n possible outflows of the typé, — inter-
connected byn(n — 1)/2 first-order reactions of the type

ki
A,;«—’A] In addition, there is possibly an inflow of each

spejcies into the tank. Here, we consider the case where th

where theli’s are the eigenvalues & and A is its similarity
transform matrix.

We now analyze a number of different choices for the
composition of the input vecto(t). In all casesQ(t) will be
composed of one or many sinusoidal components.

Ill.C. Single-Frequency Signal Filtering. For the following
analysis, we consider the most general linear chemical reaction

€nhetwork (see Scheme 1 and eq 1) with an input vector of the

inflow rate for each species consists of a constant component,form
the pillar P;, and an oscillatory component with amplituge
lower thenP;. A functional unit of such a network involving a

P, + vy, sin(wt +
pair of specieA andA is represented in Scheme 1. 1y sind 2

P, + y, sin(wt + ¢,)

QM) = =P+Ime”'y,] (5)

SCHEME 1: Generic Functional Unit of an Arbitrary
Linear Chemical-Reaction Network? )
P, +0, P, + y,sinfowt + ¢,)
where §,)x = 7% is the system’s phase-amplitude vector.

) This represents the most general single-frequency oscillatory
ki input of the sinusoidal form® ~ sin(wt), which is a common
choice experimentally and often a good approximation physi-
cally.10.16

The matrixK in eq 2 is nonsingular if at least one of the
outflow rate constants;, is nonzero. In additionK never has
purely imaginary eigenvalues or eigenvalues with positive real

We now show that whereas a network of first-order chemical parts because it is diagonally dominant (i, < > Kj and
reactions with an arbitrary specified set of input and internal LA
parameters generally behaves as a low-pass filter with respeck; < K; for all i). Thus, eq 3 may always be solved #ft)
to a signal inflowed to a single species and measured at thepecause the matrixidyl — K] that appears in the exponential
outflow of the same or of another species it can, under certain after substitution of the expression f@(t) is always inver-
choices of inflows into multiple species, behave as a band-passtible under these conditiot$.The general result is
suppress filter. We also provide a formula that allows one to
?educe explicitly the c_ond|t|ons requm_eq of the_lnflow dr|vers_ At) = et C, + Im[e“ (il — K)*lj—;w] —_

0 produce a band filter on a specific species at specific
frequency in such a network.

IIl.B. Analytical Framework. A linear chemical network
with n speciesn possible outflows, and inflows is determin-
istically described by a system of linear first-order differential
equations of chemical kinetics, which may be written in matrix

P,+6,

2@; is a time-dependent component of the inflow of species

KPP — &) =€"C,— K Pl — &Y +
cosot Im(iwl — K) ™7 ] + sinwt Rd(iowl —K) ™7 ]
(6)

where all of the exponential terms are guaranteed to decay,

form as t—eo
_ &' — 0. This removes all of the initial condition information
dA) | - - as the time gets large (i.e. the network is “memoryless”, which
d KA® + Q1) @) is as expected for a linear system).

This solution nicely separates all of the filtering information

Whereﬂ(t) = (Aq(t), Ax(b), ..., An(t)) is the network species vector, (the w dependence of the amplitude in the-sgos terms) for
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further consideration. Equation 6 shows that the linear network [y, 2 02—t pat . _
sustains the sinusoidal form of the resulting oscillations in the | Ri(@)| = I(M(@)7 )il =7, M'(w) P(i) M(w) 7,

reacting species. Thus, it can be rewritten as (12)
At = [e*“éo]i + A(w) sin@t + §(w)) — whereP(i) is the projection matrix and
[KTP( — € (7) M(w) = (iwl — K)™
where §i(w) = arg[(iwl — K) %y,]i and A) = |l(iwl — P(i) = {0 Ot
K)~%y,)il| are simply derived from eq 6. The time independence N — Pl — pri2
of the phase allows us to rewrite the problem in the time-delay P(i) =P () = P() (13)
framework, where Now we take derivatives of the filtering ratio with respect to
. w. From eq 13, we have
ot = §i(w) — ¢i(w) € .
dM(w) oM () 2

andri(w) is the time delay between the inflow driver (see eq 5) do ~M(w) do ~iM(w) (14)
and the resulting long-term limit steady-state oscillations of the
driven specied\ (see Scheme 1). Thus, by eq 12,

Hence, in a reverse problem, if we are presented with a 4R ( ))2
situation where the concentration time series with the respective 7i\? d(Ry(w))” 2\t 2
time delays can be measured but the inflow properties and (E) do (M(@)"7,) Hi(@)M(w)"7,) (15)
system parameters (other than the assumption of its linearity)
are not known, we can determine the system and inflow \where
parameters from the time-delay measurements using eq 8 and
the definition of@i(w) from eq 7. H () = i[P(I)M_l(a)) — (M—l(w))'fpa)] =

Furthermore, if the inflow frequency can be varied, this | _
equation allows us to deduce the rate constants of the system ikiy
via the relationship betweeh(w) and rate matriX as defined 0 : 0
in eq 7. By measuring? time delayszi(w;) at different iKjg—1)
frequencies, we obtain a full set of linearly independent | . i i .
equations that allow us to determine all component of kg e Koy —20 Koty =+ k| (16)

In the long-time limit, the exponential transients decay, and iKi1+1)
we are left with 0 : 0
e . L L
At) — cost) Im[(iwl —K)" 77 ]+ |

The matrixH(w) is, by inspection, Hermitian and possesses
at most two nonzero eigenvalues, which correspond to the

] . ) growth and decay modes of the filtering ratio. Solving for the
Hence, the stationary amplitude of the outflow rate is eigenvalues of (w), we get

il — k115
Amp(k A) = Kll([iol — K] 7y )ll (10) /11,(w)=i|+(w)=—w+\/w2+72ku2
1=

Therefore, the filtering-rate ratio for a general first-order

network, which is the ratio of the outflow amplitude to the input,
is Igw) =4 (0)=-0 — , [0®+ Z K
jz

sin@t) Re(iwl —K)™5,] = K™'P (9)

Amp(k A < =) = =) =
R; =ﬁ=;n(ﬁwl —KI7)I (@D fa=ha = = A =0 @n
: : The orthonormal eigenvectors corresponding to the first two
Now we can immediately deduce the first result: (nontrivial) eigenvalues are
1
- 1o w—o K 1. 1 <12 _ g* —
R] =§j||([uwl — K] 1y¢)i||—»%||([|w|] T O X (@) =% (@) x

(||) //11( )2+ 2
|\ ;ku

That is, for large values ab, a general first-order network
acts as a low-pass filter regardless of the system and input. (K -y K1y A (), iK1y - -0 1K) (18)

We now ask whether this behavior holds for all valuesyof _
If so, thenR; is a monotonically decreasing function of fre- and the rest,(w), 3 < i < n, are the eigenvectors belonging
quency and should have no positive derivatives with respect toto the null space of the matrik(w) (i.e., 7(H)), which is
. However, if our linear chemical network can perform band orthogonal to the subspace spanned by the two nontrivial
filtering, then in some frequency range, this derivative is eigenvectors?ﬁ(w). The set of orthonormal eigenvectors
positive. To determine if such a range exists, we first rewrite {Yi(w)}i"=3 spanning.¥ is obtained via the GramSchmidt
the expression ch{J- using eq 11 in the following way: orthonormalization of the nonorthonormal eigenvectors:
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y}{*? - ;(kﬁ' 0,+,0,— kg, 0,+++,0) (19)

2 2 0.8
Vkil + Kig+1 iF1-th

wherej + 1= | (i.e., X, are real fori > 2, are independent of 5 4
w, and have ndth component8

Because eigenvectors of a Hermitian matrix form a complete
set, we can expand the vector, which enters in the quadraticg 4
form of eq 15 in the orthonormal eigenvector basis

n

2 i 0.2
M(w)“y, = Z 05 Xi (20)
J:
w
where 50 100 150 200 250 300 350
<int P Figure 1. Plot of band-pass/suppress filtering rafa; (amplitude of
o = (X1) M(w) Yo (21) species 1 rate of outflow to species 1 rate of oscillatory inflow) vs
frequency for the system given in Scheme 2. System parameteks are
from the orthonormality condition. = 150.0,k, = 0.3, ki» = 2.0, andk.; = 100.0; the choice of scale is
After substituting eq 21 into eq 20 and using the orthonor- arbitrary. The band-pass filter peak isiat= 75 with an inflow phase-
mality of the eigenvectors, we obtain from eq 15 amplitude vectory, selected as prescribed in eq 24. The pass band is
preceded by a band-suppress trough centeredda.
A RAGIO) ios Li -
A 2 lf"(w)H(y."’(w))TM(w)z,}j ||2 + SCHEME 2: Two-Species Linear Reactiof
. i i @
K da P, + 7, sin(ax + ¢,)
- <= t 2= 12
A (@)X (@) M(@)*7,11° (22) kT l
_sz

We see_that E-'j(w)_/dw has two mo_des_: a p(_)sitive one cor- A - A,
responding to the increase in the filtering ratio (becalse 12
0) and a negative one corresponding to the decrease in the T Lk,
filtering ratio (becausé™ < 0). P+, sin(ax + ¢,)

Now, using the resonance condition given in eq |, we can  ajinimal linear reaction network supporting band filtering.
explicitly derive an analytical criterion for the existence of a

band filter on a particular node of a linear chemical reaction yectors produce a band-pass/suppress filter, which is peaked at
network. That is, for a given input phase-amplitude vegtar 4, (Note: Using egs 23 and 24, it is also possible to find values
the band filter exists on nodeif and only if the equation of P andy,, such that the system exhibits only low-pass behavior
_ ~ for all possiblew, as was shown in eq Il). That is to say that
’1i+(“’*)||(Xi+(‘”*))T'\/I(“’*)zy(p'|2 + the system response to a signal will be amplified/damped the
A (@) (1% (@) TM(w*)Zg‘)(p”z =0 (23) closer it is to frequencies arourdl
Whereas eq 24 provides a general way to select the inflow

has a real, positive resonant-frequency solutign If such a rates for a system so as to induce a band filter for a chosen
solution exists, then from the results of eq Il the system exhibits species at a selected frequency, it does not a priori specify which
low-pass behavior fow > w. = max w*, with regions of species need to be driven or whether control over only a selected
various band-filtering behavior for smaller. subset of the system components might be sufficient. In

Equation 23 does not guarantee the existence of a band filterparticular, we may ask, Can a band-pass/suppress region exist
in an arbitrary linear network under an arbitrary set of inputs. if there is only one oscillatory input into the system? For
However, given a frequenay, we can always select vectdPs example, in biological signal transduction, often the only
and?y, in such a way as to guarantee the existence of a bandoscillatory input is the calcium ion concentration. It turns out,
filter on a selected node at that frequency. That is, it is possible, however, that linear networks in general cannot act as anything
given the inflow characteristics of a signal entering at one but low-pass filters when driven by a single oscillatory input.
chemical species, to design a sinusoidal inflow pattern at other Therefore, in particular, if we observe in vivo a generic chemical
chemical species that either allows or restricts the passage ofsystem with a single driver that displays band filtering, we can

the original signal to the outflow of another species. conclude that it contains a nonlinear reaction.
This result is due to the fact that for amyeq 15 is a quadratic No such general statement can be made about systems that
form and thus has, at mostJinearly independent solutions, have oscillatory inputs into multiple species. In particular,

for the zero intercept. But these solutions are simultaneously examples of purely linear systems that have band-pass/suppress
the solutions to eq 23; thus, it is possible to derive all of the properties under multiple oscillatory inputs are shown in the

solutions to eq 15, which are next section.
II1.D. Examples
T/i(i, ) =[iol — K]?- iyf@) + Ly;(@)) [11.D.1. Band Filter. To demonstrate an application of the
\/,1_i+ /|,1i—| analysis described in the last section, we consider specific
. , examples of general linear chemical reaction networks shown
7@, @) =[idl — KI*X! (24) below.

. I11.D.1.1. Two-Species System.This case is important
where thex!’s are given in eq 18 foj = {1, 2 and in eq 19 because this functional unit is the basic building block for any
for j = 3, with P; = y; = 0 for all i, j. Any of these input general linear system (see Scheme 2). As shown in Figure 1,
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SCHEME 3: Three-Species Linear Reactioh

P, +7,sin(&x +¢,) P, +7, sin(ax + ¢,)
d l
SECTEEN
o A A —L
1 T 2
'&,3 ks
R k3,
PR - A, & P +yssin(ar+ ;)

aMinimal linear reaction network supporting band filtering with the null-space eigenmode.

SCHEME 4: Delay Line—An Unbranched Linear Chemical Pathway?
P + }’Sil’l(((t) — Al kl >A'Z k2 Nees k"-2 \An__] kn—l >A

n

a Temporal behavior oA is completely determined by the behavior of spedies.

even this simple system can exhibit rather interesting and rela-can be implemented in a linear chemical network with at least
tively complex behavior under an oscillatory input. We indeed two independently driven species.
can observe band-pass/suppress filtering behavior in such linear [11.D.1.2. Three-Species SystemThis is the next simplest
systems with appropriate inputs chosen according to eq 24. case to the two-species system considered earlier, and it is the
Note that this result actually proves something stronger. lowest system size in which the null-space eigenmode of eq 24
Because this subnetwork represents a basic unit of a generals present (see Scheme 3). Figure 2a demonstrates that the
linear chemical reaction network, this shows that a band filter behavior of the null-space eigenvector solution is essentially
similar to the ones corresponding to the nontrivial eigenvalues
R and are easier to work with because null-space eigenvectors are

0.6 real and independent a@d. Figure 2b is an example of pure
’ band-pass behavior in externally driven linear systems.
0.5 IIl.D.2. Linear Chain. Finally, we analyze a signal propagat-
ing down an unbranched chemical pathway to determine both
0.4 how the signal is degraded and delayed by passage through
0.3 multiple chemical steps. As a simple model, consider a non-
’ branching chain of irreversible reactions with a periodic
0.2 sinusoidal inflow at its head (Scheme 4).
The concentration of the first nodéy, is given by the
0.1 differential equation
() 10 20 30 40 50 ¢ dA, (1) .
. —k; Ay(t) + P+ y sin(wt) (25)
R . .
0. 24 with the solution
A) =2+ Ccett+ — Y (K, sint) — w cost))
0.22 ! k, ° 0? k2
(26)
The long time limit behavior of the solution is
0-18 AD—P i+ T Ginwt+ gy
1 — sin(t + ¢
o 16 Ky «/wz-i- k12
®) k
@, = —arcco ! (27)

Figure 2. (a) Plot of band-filtering ratid?';; (as defined in eq 11) vs [ 2 2
frequency for the system given in Scheme 3. The filter suppress band "+ kl
is centered af» = 5.0 by the inflow phase-amplitude vectpi (first . . . S
and only null-space system eigenmode) selected as prescribed in EC} Th!s éxpression f_OA1 1S 9f the same form as the |n|t!al |nput_
24. The trough is followed by a subsequent peak-@6, which is unction. Thus, by induction, we get that the long time limit
where the pass band is centered. (b) Plot of band-pass filtering ratio behavior of thenth species is functionally the same, that is
R'23 vs frequency for the system given in Scheme 3. This is an example

of a pure band-pass filter, with the pass band seb at 1.0 by the t—w P, Yn i
inflow phase-amplitude vectop, selected as prescribed in eq 24. Aq() k, + > Zs'n(‘”t + @) (28)
System parameters ake= 15.0,k, = 0.3,ks = 0.05,ki> = 2.0, kiz = o+ kn

1.0,ko; = 10.0,ko3 = 3.0,ks; = 0.1, andks, = 0.5; the choice of scale
is arbitrary. where
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P,=P,._ =P, =P k=1

Kn-1 ik
Y= Vo X T =y X |_|— Y=Y
Vol +1E T o? K2
Ky n k
@n= ¢, — arccop———| = —Zarcco —
\/w2+kﬁ . Vol + ki2

po=0 (29)

Therefore, the filtering ratio for successive species is

2 4 6 8 10 o'k
R — Amp(k-Ay) — ky (30) Figure 3. Plot of the filtering ratiol{,(n,l) vs wl/k, for the case of a
n(n—1) Amp(k,_,A,_) [ 2 + 02 nonbranching chain network (Scheme 4). The plot demonstrates the
ks w characteristic low-pass filter behavior of the linear networks. This

behavior is analogous to the capacitor voltage low-pass filtering in
Note that the phase of each of the subsequent steps of thesjectrical RC circuits.

linear nonbranching chain has a larger phase shift than the N N -
previous one. This implies that each of the downstream speciesinput, eq 32, may be written at) = 3;Ai(t), whereA(t) is a

has a greater time delay than the previous one, single-frequency solution for frequeney because
Pa@)] 1 @na(@)] Ay - - d_._ - ~
Th = < = Thta (31) —_— — =— " - ; - :
w w " KA(t) — Q) dtIZA(t) K IZA(t) .Z Qi(H)
which is what we expect. dﬂi(t)
The plot ofR,,_,, versusw/k, is shown in Figure 3. This is — z[ _ KR(t) _ @(t) =0
characteristic of a low-pass filter. Moreover, the functional form —| dt '
of Ri, 1) is identical to that of an electrical RC circuit with (34)
low-pass capacitor voltage filter witk, = 1/RC. ) ) ] ]
III.E. Multifrequency Signal Filtering. We now consider ~_ 1hus, the solution of the linear system with multifrequency
a general linear multifrequency input vector (see Scheme 1) of INPUt is the sum of the individual solutions to the equations
the form —
Ao _ KA — Q(t)=0fori<i<N (35)
P+ zyli sinw;t + ¢y;) dt |
I

. with Q(t) given by eq 33. This confirms that the multifrequency
o = P, + ZVZi sin(w;t + @) (32) linear input case is just the sum of the respective single-
: frequency solutions, egs 6 and 7, with pillars properly adjusted.
Note that this means that the results we obtained in the
P,+ ZV"i sinit + ¢,) previous section regarding filtering properties of single-
T frequency input linear systems hold for multifrequency systems
as well. As was shown above, by the superposition principle,

wherew; = wj if i = j. By rewriting Q(t) as the result of a multifrequency input is the sum of individual
_ _ _ single-frequency solutiong\(t) = >;Ai(t). Because all of the
Qt,w;pB) = zQi(t,a);ﬁi) components are sinusoidal (eq 9), the overall system behavior
|

will be described by “beats” if the frequency values are close
or consist of a more complex pattefhbut with Amp(A(t)) =
SiAmMp(Ai(t)).2° Then, because a linear system generally behaves
as a low-pass filter with one single-frequency driver, its filtering
+ vy SinBowt + @) ratios and (for constant amplitude inputs, such as the ones we
are considering) species amplitudes, Afp4;5;), are mono-

P, . tonically decreasing functions of frequency (see sections Il and
Otw:f)=|N + 7z sinBiot + @) (33) I1.C and eqgs 11 and 24). Thus, the amplitude of the full multi-
frequency solution, Am@(t,w;3)), is also a monotonically
decreasing function ab, which means that the filtering ratios
of a linear chemical reaction network with a single multifre-
quency input driver are monotonically decreasing and the system
is a low-pass filter.
whereN is the number of frequency components in the input ~ So whereas we deduce that, as we demonstrated earlier, a
signal angs; = wi/lw. We can observe th)(t) is thus essentially ~ general linear system with multiple oscillatory drivers can
a shifted Fourier series. Therefore, the solution for eq 1 With  exhibit both low-pass and band-pass/suppress behavior even with
= 1is all that is needed to obtain the general solution for any single-frequency input, given a single driver, it can behave only
N. This is because linear systems must obey the superpositionas a low-pass filter, regardless of whether the driver is single
principle. That is, the solutioA(t) to eq 1 with multifrequency or multifrequency. That is, because most input functions can

where

Py

N

n

N + Vni Sin(Biwt + ¢ni)
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generally be represented via Fourier series expansion, if wewhereb; = RB= P, b, = — ki(Ay — Byp), andbs = —k;. Once

observe in vivo a generic chemical system with one external this system is solvedy is derived fromB through eq 37.

input (whether single or multifrequency), which displays band  Equations 37 and 38 are the most general reduced forms of

filtering, we can generally conclude that it contains a nonlinear the system given in eq 36. To proceed further, we need to

reaction. specify the form for the variable inflow drive®.

. . . IV.A.2. Single-Frequency Signal Filtering.In this case®

IV. Nonlinear Chemical Reaction Networks is given byy sin wt, and the system of differential equations
When a chemical mechanism contains even one nonlineardescribing the reaction mechanism becomes

reaction step, varied autonomous behavior as well as complex

responses to perturbations become possible. However, unlike dB b, ot 5

the case of the linear system, there is no general solution to a ot b, +|b, + 25 S'”27 B+b,B

set of nonlinear differential equations. Thus, we choose to

analyze a couple of basic cases that are representative of many dc _ b, — aB +kC (39)
fundamental nonlinear system elements. dt "t odt 7

IV.A. Bimolecular Reaction
IV.A.1. System Description.Nearly all chemical mechanisms
can be broken into elementary unimolecular and bimolecular

reaction steps. Here, we discuss a basic example of a bimolecula he fi X ith th dard i Kinei
reaction step formally equivalent to a heterodimerization reac- (€ firSttwo terms are consistent with the standard linear kinetics

tion. To demonstrate that even such a simple system can have?nd by themselves lead to a simple exponential profile with
complex signal-processing behavior, we choose a particular formoscnlatlons overlaid upon them, the third term gives the system

of the production kinetics for the reactants (see Scheme 5). its_ Co”_‘p'ex propert_ies. The _equation Bris of the so-called
Riccati type, for which there is no general solution unless:

wherebs = —yki.
The interesting feature, which becomes the source of all the
pubsequent nonlinearities, is seen in the equatioB.fé¢hereas

SCHEME 5: Second Order Bimolecular Reactior? 0 orbz = 0 orbs = 0. Because this is not, in general, the case
P+O— A here,. we mu§t re§ort to calculating. an approximate analytical

\ solution, outlined in the barest detail below, and checking that

ky C—k approximation against the results of numerical computations.

/ These approximations, made within an appropriate analytical

RB— B framework, then allow us to deduce accurately both the

P denotes a pillarconstant component éinflow rate, ® denotes dynamics of the system and its frequency-filtering properties,
a periodic variable component of theinflow rate, RB denotes the which is the goal of this work.
constant rate of inflow of specid IV.A.3. Analytical Framework. We first analyze the general
formal solution forC(t) in terms of B(t) because one has a
relatively simple form in terms of the other. This allows us to
reduce the task to deriving an appropriate solutiorB{oy only.
dA From eqgs 38 and 39, the differential equation@gt) in terms

The chemical kinetic equations corresponding to this system
are

ot =P+6-kAB of dB/dt is linear, so we can write the general solution &gt)
4B directly in terms of as yet unknowB(t). From eq 38, we have
e RB— kA-B b
dC Cly = o™ + M1 — e — g™ [{Belar (a0)
T ,AB — K,C (36) 2

) . . This expression gives the exact solution &ft) in terms of
_The equations foA andB can be combined and integrated B(t). However, the integral in eq 40 (which is essentially a
directly: Laplace transform) cannot, in general, be evaluated analytically.
d(A— B) An appropriate series expansion of eq 40 is thus necessary. We
———=(P—-RB+0O are ultimately interested in understanding the behavior of the
dt amplitudes ofB and C as a function of frequency, hence we
_ t , choosew as the expansion parameter. To obtain a uniform
(A=B)=A,— B+ (P—RBt+ L/E;G de - (37) expansion, we proceed to change the integration variables to
the dimensionless quantity = wt so that the expression for

For any periodic form 00, the solution to A — B) diverges C(t) in terms of B(t) becomes

in time unlessP = RB. Because we want to study frequency

filtering by such systems, we make the relevant assumption that o b, o
the system is in balance for the purposes of this analysis: Cx) = Coef( o 4 k—(l —e 2“’)X) -
2
P—RB=0 [ _ :
(1) RO dB el gy (a1)

Under this condition, eq 37, solved f8r can be substituted 0 ax

into eq 36 to reduce the number of equations describing the  Now we can immediately observe that the relevant system

system to two. We obtain scale parameter ik/w, which we will use to perform series
dB ‘ 5 expansions of the solutions for botft) andB(t) to obtain the
G Pt (b tb,J©d)B+Db,B approximation we are looking for to the required accuracy. As
we shall demonstrate, analytical approximations to the second
dc —b — dB +kC (38) order inw/k, thus derived generally provide sufficient accuracy
gt odt ? for the purposes of our analys®s.
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IV.A.3.1. Low-Frequency Regime @/k, < 1). Whenw/k; t—o t
B (t b + 2 sinf| 2| +
< 1, we can use repeated integration by parts in eq 41 to obtain t— b 2
an expression fo€(t) in terms of a convergent series:
Jom -2 d In(Q(X))
4

b
_ 7k2t Tl ket -
e = k2(1 e )+ C. (1) ‘ _,kE_
B dB| b
nZ( 1)( (—dx b k) (42) L b, b, + 22 sinz(%t)
sin(t)| 1+ (48)

k 2b

3 . 2fwt

Note that this result gives an exact formal solution @) \/ (b2 + 25 smz(?)) — 4b,b,
in terms ofB(t) (albeit in terms of an infinite series). B(t) is

periodic, then so are all of its derivatives. Therefore, in the long whereQ(t) is given in eq 46. The calculations of averages and

time limit (t — o) when B(t) actually becomes periodic, we  amplitudes are then made directly from eq 48. To the lowest
have order for the averages, we have

w7 d"B 1 b \/1( b )2 ]
—dt'=0 43 - _ = =3 2 3] _
; 43 B, T AR V| Rk )

b 2
so that from eq 42 wherev = 4/72 — byb, (49)

1 b, p
CHE=3 [ Ct)dt ==, fort—w (44) [T ()L, =0 + ol2f =P fromeqa2
TJt k, k k2 K,

N

That is, in the long term, the average@ft) is independent of ~ and for the amplitudes,

frequencyw. (This result actually holds in both the low- and
1( b 1( b3)2 _
20, v+w+\/4b2+2w b,b,

high-frequency regimes.)
b, /—

In the low-frequency regiom < kp, we obtai’ AmpB. (1)) =
wb, + by — by (w)

1+ (50)
\/(sz +b; — ba%(w))z - 4w2b1b4

1o
b4 — SII’I (

—c exr{— —ﬁ)@d"] o dInQM)|

@

where
1+cexp{——f0\/Q( ) dx ] 4
o\2 (@)=—At A*+8
o(—) (45) X 4
I(2
1 (@b, + by)* — 4o’byb,
where A= (—by) > > (51)
2) /(@b, + by — 40bjb, — wb, — b,
QX =— b sm(x) + = (b2 + 2_ sz( )) (46) Note that unlike the high-frequency bimolecular case dis-

cussed below, or a general linear case discussed in Part I, we

do not get simple linear oscillatory behavior (i.e., €0s
The value ofc is calculated from the initial conditions of the  sinusoidal) for the product of the reaction even in the long-

problem?? time limit, eq 48, which is characteristic of its nonlinear nature.
Similarly, we obtain the expression for the approximation  1V.A.3.2. High-Frequency Regime @/k, > 1). If w/k, >
for C(t) from the first term in the expansion in eq 42, 1, the series in eq 42 are divergent. Although adding the infinite

number of terms in the series gives the right answer, each term
_ et ot is greater than the preceding one, and thus no statement can be
C.()=0Cee k (1 - made about how good theterm approximation is compared
to the  — 1)-term approximation. Therefore, we need another

o [dB(X)  dB| i o expression that is more convenient for our purposes in this range
klax — ax e ”|+0 PR (47) of w. This may be accomplished analogously to the prior case,
=0 Z except by using integration instead of differentiation, which

produces a polynomial expansion ©ft) in powers ofk/w <
Then the stationary-state expressions to lowest order are 1, resulting in the renormalized convergent series
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C(t) = Cpe @ + ID—l(l —e) e &0 et —
° ko o gt

o0 k n _ _
;(—1)" (f) (B,(X) — B,(0) €'?) (52)

with
dB(;(t) = BlO ) b, + b8
B.() = [, B,y(X) dx — O B, 4(x) dX L],
By(X) = B(X) — B,(x) — B(X) — B,()CL., (53)
and
B, () = — b%tanh(ut +a) - 2b_t§4 (54)

whereRga] is determined by the initial conditions arich[c]

is equal to 0 of/, depending on the initial conditions (whether

we are starting above or below the stationary st&&hen for
the w/k; > 1 region, we obtain

14 b3
B. ()= —b—4tanh@t—|—ot)—z—b4 -

1bs(1 480 —cosp) +1+cosh@) &
w by \2 4(1+ 45%) cosH(rt + o) (1+ 48
2 2

tanhgt + o) sin(wt) — cost) | + O(gz)2 (55)

(1+48)

where& = v/lw. Then from eqs 52 and 53, we have

C.() = Ce™ + (1~ &™)~ L (F) ~ F(O) -
5 4

1bs
w 2b,
by 452 + 1+ Cosh(Zl))
—_ X

by 4(4&+1)

10

kot
e +
w 2b,

B,(0) +

b2 — kot
2—b4(1—e )—B. (1) —

k;

w

(1 — tanhgt + a) — e *(1 — tanh@))) + 0(5)2 (56)

2

w
where the functionF(t) — F(0) is a rather complicated
expressiol that approaches 1 exponentially for large

Samoilov et al.

Now we can easily deduce the quantities of interest for the
signal-processing analysis, that is, the averages

b
EB>(t)Q~m:—E—2—Ql—52—Ql (58)

P kz)z P
[C. ()L, = i + O((u i from eq 42
and amplitudes
b3 v

AmpB.)=Amp(C.)=+——=  (59)
b, oV o? + 0?
all to the lowest order.

IV.A.4. Filter Profile. As was discussed earlier, the filtering
properties of the system, which affect the attenuation of the
signals propagating through the network, are measured in terms
of the filtering ratio,R", which in the case of the system given
in Scheme 5 is the ratio of the amplitude of the rate of output
flow, koC, to the amplitude of the inflow rate of the driving
input reactants, which ig in our system. As will now be shown,
in the case of a nonlinear system, we find that a network with
the reaction elements of the considered tgjveayshas a band-
pass filter associated with it.

From eqgs 50, 51, and 59, we can write down the explicit
analytical expressions for the filtering ratio in each of the two
regions:

kv
o>k R=——2
oV + W
ok gl oy k(A B
2° 2
\/(Vkl — wky(Ay — Bo))2 + 4a)2k1P
w>or< V—kl (60)
2v
where

% ,
= A 7 A~ B+ kP

Notice thatR' is a decreasing function of the frequency in
the high-frequency regime, whereas it is an increasing function
for the low frequencies. Thus this network element always works
as a band-pass filter, passing signals in a certain frequency
spectrum and suppressing them for frequencies outside the band.

In the stationary state, long-term transients die out, and 10 i jnteresting that the position of the upper limit of the selective

the lowest order,

t—o [ 2v+b,
B>(t)—> - 2b4 -
2
1051 .
— 15— sin(wt) — coswt
wb\2 14422 ) 1+ 482 @))
te p by & 2
C.H)———— sin(wt) + cost
® k; wb4(1+4§2 ) 1+ 48 Y

(67)

pass band for this filter is controlled by a single parameter: rate
coefficientky. The width of the pass banai, k], that is, the
size of the frequency spectrum region where the filtering ratio
R is relatively flat and where all signal amplitudes are passed
through with minimal degradation, is then determined by the
nature of the ratio in the equation for the low-frequency regime.
Whereas initially { < yki/2v) the filtering ratio increases with
frequency from near zero almost linearly, it then behaves like
a square root (i.e., has an inflection of order half arougd=
yki/2v, eqs 50 and 51) and finally becomes almost flat as a
function of w for @ > yki/2v. That is, the lower limit of the
selective pass band for this filterrfs
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vk, vk, proximation in eqs 5557 is valid for o > ky (i.e., this
W= D) T T > (61) mechanism resembles an electric circuit for frequency compo-
\/ k(Ao — By)” + 4kP nents larger thaiy).

Unfortunately, for the low-frequency case, we do not get
simple linear oscillatory behavior (i.e., cesinusoidal) of the
Yeactants (egs 4548) with the shape of pulses appropriately

of tlhe inflow rate an(_1]|c_ initial condltlons of tr:je system (ah being more tangentlike. However, the constancy of the average
nonlinear system-specific property), can be used to estimate they¢ ¢ g gil| preserved in accordance with the earlier derivation
other intrinsic parameter of the systemate coefficient;—in

A so that the electrical circuit element analogy still holds, whereas
much the same way as the upper pass-band limit yields the valugy,q 5yerage oB still depends omw. Furthermore, the behavior

of ko. Thus, a measurement of the filter pass-band position yields of R in the low-frequency regime (eq 60) still looks somewhat

a measurement of th_e reaction rate coefﬁ_cnents. like the respective RC circuit. In fact, it does behave essentially
In addition to leading to an understanding of the source of o 4 «cjassic” high-pass filter in this region (as we have

the signal attenuation control, the above analytical formulas jisssed previously, chemical systems always behave as low-
allow us to make several interesting observations about the pass filters forw — ) if Ay — By = O (i.e., if the system is
pr(\)/\[;ﬁrtles of_nonrlllnear chlerlr_ucal ne;\wor!(s |°f this type. he Made memoryless like the linear RCL model of small electrical

_ Whereas in the usual linear chemical environment the ,qqations). TherR' is again exactly half of the ratio we get
memory” of the initial conditions is lost upon the system reach- ¢ . o high-pass RC circuit with R& 2v/yk; = Llwe. No such

Ing a stationary state (_e_.g., egs 6 and 9), in the case of nonlinearyjre c¢ analogy exists if we choose to start the system with some
systems, initial conditions generally affect their long-term .. <t of initial concentrations

behavior (e.g., eqs 48 and 57, where information about the initial IV.A.6. Example. For numerical analysis, we consider an

state of the system is preservedhsn and v among others). .
o : o 7 . example of the system in Scheme 5 with= RB= 1.0,A¢ —
Furthermore, as indicated in eqs 60 and 61, this information is Bo = 0.0,y = 0.05,k = 0.01, andk, = 1.0 (i.e., all time

not only explicitly retained in the filtering ratio, thus controlling . ; . . .
the filter's attenuation properties, but also affects its other constants are in umts_dx& in accordance with the canclusions
characteristics, such as the size of the pass band. This directlythat ke is the .natural time s;ale for t.he system).
demonstrates that loss of this memory is a general characteristic 1€ analytical and numerical solutions #(t), B(t), andC(t),
of linear differential equations but not of nonlinear systems. @S given by eq 37 and eqs 487 and 55-56 versus direct
IV.A.5. Analogy with Electrical Circuits. As mentioned ~ numerical integration of eqs 39, respectively, match nearly
earlier (see discussion of Figure 3), chemical reaction networks Perfectly’’ (Figure 4).
often resemble electrical networks, particularly when it comes ~ Thus, analytical expressions derived by us for the filtering
to signal processing. This analogy is particularly useful when ratio and other signal-processing parameters (egs549%nd
considering and interpreting the results of frequency filtering 58—60) give an accurate representation of the filter profile
derived in this section (eqs 4%1 and 58-61). (Figure 5) as well as the overall band-pass properties of the
First, we note that the long-term averageQqf) is invariant system.
under a periodic perturbation and is, in fact, the same as the This further demonstrates that the approximate solution
average ofC(t) with no perturbation at all (eqs 43 and 44). In derived here is in excellent agreement with the exact solution
the overall picture, this indicates that the units of the network and is sufficient to capture the characteristic features of the
downstream fromC effectively decouple from the upstream system such as the transition from exponential to oscillatory
units (that is, their basal behavior is not affected because only behavior and the position of the control points of the band-
the amplitude of the inpu in this case, and not the average pass filter. We have also established here that, at least for this
is affected by the perturbation). This is also the case for the type of nonlinear network element, only the amplitude of the
high-frequency limit of long-term averages fAft) and B(t). outflowing species, and not their basal level, depends on the
This is the same key property that allows discretization of frequency of the inflow oscillations. This means that these types
electrical circuits into sets of localized circuit elements and is of units may be considered to be separate elements of the
shown here to apply to chemical networks. network with an analogue of an alternating current passing
The second analogy arises from the fact that the behavior of through them.

R in the high-frequency regime (eq 60) looks very much like  |v.A.7. Multifrequency Signal Filtering. In the case of a
the respective capacitor region of the RC circuit discussed linear first-order network, discussed above, the result of
before. Furthermore, if we consider the ratio of the amplitudes substitution of multi- for single-frequency input

of the concentrations to be a filtering ratio (i.dx° (see

discussion preceding eq ), then we again get a relation similar n

It is again interesting that the position of the lower limit of

1
to the one found for the RC circuits: sin(t) — Z_ sin(w;t) (63)
&n
1 2v
w > Ky R=——F— (62)
2 2 [w? + (21,)2 results in the manifestation of a superposition principle (i.e.,

the result of the sum of modes is the same as the sum of the
This is exactly half of the ratio we get for a low-pass RC circuit single-mode results given in eqs-335). However, no such
with RC = 1/2. statement can be made about the nonlinear networks. This is

Additionally, for highw, the amplitudes oB andC are the primarily due to the interference of the multiple modes with

same (at least to the second order) (eq 59). Because in this caseach other because of cross terms between variables of the
the amplitude ofC is independent df,, another analogy to AC  system. In the bimolecular case, there are quadratic terms that
electrical circuits is made: the alternating chemical current lead to the appearance of cross terms of the typeg)s{n(wjt).
strength is the same throughout the circuit. The definition of Such terms lead to interference between the two frequency
high frequency is then naturally established because the ap-components.
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Figure 4. (a) Comparison plot of the concentration of species C vs time given by the analytical solution;-ets #5) and numerical integration

of eq 39 & — —) in the low-frequency regimey/k, = 0.01. (b) Comparison plot of the concentration of species C vs time given by the analytical
solution, eq 56,€) and numerical integration of eq 39-(— —) in the high-frequency regimey/k, = 5.0. (The system mechanism is as given by
Scheme 5 witlP = RB= 1.0, A; — B = 0.0,y = 0.05,k; = 0.01, andk; = 1.0). Note: The quality of the approximation makes the two lines

hard to distinguish from one another. Given that the quality is even better for species A and B, we have neglected to include their comparison plots
here.

R o I3 elementary reaction steps. However, when there is a large
0.5¢ separation of time scales among the reactions, it is often a good
0_4§, approximation to reduce a number of bimolecular and unimo-

| lecular elementary reaction steps to a single reaction step of a
03/ higher (and possibly nonintegral) order. Such approximations
02 are routinely valid when considering the kinetics of nonlinear
0.1 and enzymatic reactions: quasi-equilibrium and steady-state

\ w assumptions are the basis of Michaelldenten-type kineticg®
000010001 001 01 1 10 In this final section, we study a particular case of a periodically
Figure 5. Plot of the overall nonlinear filter profile}’ vs w, specified driven reaction system that has already been shown to exhibit

P=RB=1.0,A — By= 0.0,y = 0.05,k; = 0.01, andk,=1.0. e .
For early work on frequency filtering in excitable systems,

Nevertheless, the substitution of eq 63 witmodes into the see Hahn et & We choose for our discussion a set of equations
second-order network (eq 36) does not result in any dramatic

difference in behavior from the cumulative behavionaingle- (a—x

mode networks with the same spectrum of frequencies, super- eXx=x1-x+ f(q ) z— y sin(wt)
imposed on each other. As may be seen from Figure 6, the _ _ 64
Fourier transform of the numerical solution of the network with Z=mx—2z (64)

multifrequency input displays peaks at the input frequencies, . -
exactly where they are in a single mode or linear case, that that represent a popular version of the Oregonator description

completely dominate the interference peaks around them. Thisr the Belousov-Zhabotinsky (BZ) reactioft 2% and are also

is to be expected because Amp&int)) > Amp(sin @it) rela_ted t(_) an excitable system regenerating cAMPictyo-
sin(it)), in general for eq 38, and the main modes dominate Stelium discoideur? Both systems have previously been shown
the interference modes. numerically and experimentally to exhibit strong oscillatory

This result implies that there is no “swamping” of the input Pand-pass signal-filtering properti&s?
signal within the network. Each frequency component of the  IV.B.1. Analytical Framework. The standard method for
input signal, transmitted in the multifrequency regime, is still analyzing nonlinear system excitations around the system steady
clearly distinguishable in the output signal, despite the appear-state is to consider the behavior of small time-dependent
ance of some noise due to interference of the various modesperturbations induced by the external driver. By assuming that
within the network element due to nonlinearity. low-order derivatives of such perturbations are also small, we

IV.B. Excitable System.The last two sections considered can then linearize the system description in terms of these
first- and second-order reactions. Formally, nearly all chemical perturbations around the system steady state. If the linearized
mechanisms can be decomposed into first- and second-orderequations are solvable, then the behavior of the system can be

g g s
i |
A\
= /
5~ 5 = s \f\ J
2 2 - . J
o o ~
3 M= N‘\\J[\
S S
© 0.0001 0.01 1.0 10 e 0.0001 0.01 1.0 10
(a) w () @

Figure 6. (a) Plot of the Fourier transform of the multifrequency input siqn@?zl sin wit vs w, wherew = (0.01, 0.1, 1.0, 2.0, 5.0, 10.0). (b)
Plot of the Fourier transform of the multifrequency output signél vs w for the same frequency set. The frequencies are sharply resolved with
fringe peaks clearly subdominant.
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studied by analyzing the time-dependent behavior of the _ - 2 _
perturbations thus obtained. E(t) = RC, exp-it + 42 — wy) +

Applying the method described above to the system in eq C, expl=it — +/22 — w?)] + B sin(wt + A) (71
64, we perform the expansion around the steady state of the 2 €XPt o)l ¢ ) (71)
system by setting

whereB(w) = Al(y/ (0% — 0?)2+41%0%), tan A = 2lol(w? —

X(t) = %, + (1) wcz,), and{Cy, C;} are determined from the initial conditions on
{n(), &@t)}. Substituting this equation into the expressionsfor

Z(t) = z,+ &(t) (65) in eq 68 and utilizing the stationary-state condition eq 66, we
obtain

where{z, X¢ is the stationary state of the system gngdt), .
&(t)} are the respective perturbations. (Note that because the’7(t) -

system possesses a single nonzero stationary state, as will b % _ [r2 2 - [r2_ 2
shown later, this is also a general solution.) The values for theeR m( A+ AT = gt 1) expCAt + 47— wg" ) +

stationary-state concentrations are found via the stationary-state C,
conditions for the system in eq 64. E(—At — A2 — 0l t+ 1) expat — A2 — 0] )| +
@-x) % W2+ 1sin@t+ A+ ¢) (72)

@+x)">
where tangp = w.
0=mx—z (66) IV.B.2. Single-Frequency Signal Filtering.From egs 71 and
72, we can note that & > 0, then the exponential components
These equations can be solved to obtain the unique nonzeradie out and the long-term behavior of the excited system is

0=x(1—x)+f

positive stationary solution oscillatory, which is the case we are interested in studying for
its frequency-modulated signal-filtering properties. (The alterna-
X = 1(1 —q-—fm+ «/(1 -q- fm)2 + 4g(fm + 1)) tive corre'_sponds to the case of an unstable stationary state with
2 exponentially growing perturbations.) Under this condition, the
7= mx, (67) I;:g-;grm behavior of the system becomes, from egs 65, 71,
Substitute eq 65 into 64, ignoring terms of second and higher t—w )
orders in{7(t), &(t)}, we obtain the next two equations: Zt) — z + B(w) sin(wt + A)
_ to B(w) .
q _ Blw) 2
677=Xs(1—><s)+quz:Zs+ X(t) ——x+ = Vo' + 1sin@t+A+g) (73)
-2 f zZ f(q - XJ)Z . q- ng  sinot f In the Iogg-terrg Iirpitt,_z alv(\;aylls Ia%sx with Etl conitant, but
- - - P r ncy- ndent, tim = {(arctan .
q+ % (q+xs)2 q+x equency-depende e delay @ = {(arctanw)/w)}

We again evaluate the signal-processing behavior of the

. 1 . 1 system by considering its frequency-filtering properties as
E=mx—z)+my—E=n=—(E+E - —(Mx—2) manifested through the filtering ratio
(68)
where the second of these equations may be solveg far 28 yle

2 2y2 2 2
terms of& and its derivative. Substituting this expression into \/(‘”o — o)+ 4w
the first equation above and using identities in eq 66 to simplify

the expression, we obtain a linearized differential equation for because the outflow rate afis 2 from eq 65. The expression

£ for the filtering ratio thus obtained has extremawat {0, oo}
' and a resonance peak (eq I) at
&+ 20E + wiE = Asinwt 69 Y
where Thus, we have determined that this excitable BZ/cAMP
(1- %) discoideumsystem behaves as a band-pass filter with signal
A= 1 1— 1 1—2x+ qus— throughput resonance at* if w5 > 242 and as a low-pass
2\ e - filter otherwise.

This also confirms our prior observation that chemical

2% 1- ZQ(l =X systems in general behave as a low-pass filter inathe- «
Wo =7 q2 _ xﬁ limit. It can be also shown that the parameter region over which
the inequality holds (and in which the band filter is present) is
A=, M (70) very narrow, which means that the mere observation of a band-
Ve pass filter in the system puts strong restrictions on the values

of the intrinsic system constants.
With a bit of algebra, it can then be shown thaf > 0 if f Another issue worth noting is that, unlike the second-order
> 0; no such general statement can be made ahdequation nonlinear system considered previously, the excitable system
69 has a simple analytical solution filtering ratio has a nonnegligible zero intercept:
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R. (0 = 0)= % (76)
0

The measurements of the value of zero intercept and resonanto . 6
frequencyw* combined with observations of the stationary-
state concentrationz;,, x4 provide a complete set of data
necessary to determine the four intrinsic parameters and the rate?- 4
constants of the systef, g, f, m} via eqs 66, 75, and 76.

IV.B.3. Analogy with Electrical Circuits. Unlike prior cases,

the similarities between electrical AC circuits and gheortion -2
of the excitable system are most complete and straightforward.
Equation 69 is identical to the differential equation describing . .
time-dependent charge variations in an RCL circuit. As such, Lo, 2 3 4 S
the concentration filtering ratio foz species is essentially
identical to the one for the charge in the RCL case: Figure 7. Plot of the filtering ratio (eq 74) for the excitable system
given in eq 64. System parameters are 0.1,¢ = 0.25,f = 0.5, =
¢ _ Amp(2) —m W 77) 0.0001,m =1, andw. = 1.22442.
zX !
vlew) «/(w(z) - cuz)2 + 43%0° entially to specific external signals. All that is required is an
oscillatory carrier wave, which encodes multiple signals through
with vy = 1/LC andi = R/2L. frequency modulation and a set of basic signal filters sensitive

Unfortunately, the analogy is not present for ih&pecies. It to respective frequency ranges of the carrier species. Thus,
is mainly due to the fact that the differential equation for  simple combinations of networked first-order (and in the case
contains the nonlinear terms. The concentration frequency- of a single oscillatory input, single second-order or other
filtering ratio for x is nonlinear/enzymatic) reactions can provide a spectrum of

complex overall filtering profiles without the chemical system
RE =Amp(x) _ ovol+1 having any exotic autonomous behavior. In this way, such
o yl(ew) \/(w(z)_ 0?2+ 43707

(78)

chemical networks are like electronic computers: they can be
viewed as networks of simple modular devices that can be
linked, analogously to electrical circuits, to form circuitry
capable of sophisticated signal processing in the frequency
domain.

From an engineering standpoint, it is relatively simple to
. > design complex chemical frequency-filtering circuits for signal
a band-pass frequency filter W'Fh t_he ‘?a“d .cent.ered;*atz processing using only the small chemical networks discussed
1.22442. The overall filter profile is given in Figure 7 and 51,6 Once one has a low-pass filter (such as that described
appears to be in generally good qualitative agreement with the .y first-order linear system) and a band-pass filter (such as
experimental results cited earlier. _ that described for the second order or excitable systems), nearly
) IV.B.5. Mult|frequer?c.:y S|gqal Fllterlng. Because €q 691s . any filtering profile may be constructed by connecting these
linear, the superposition principle discussed previously in qygtems to one another in series and in parallel (even if only

relation to eq 34 will hold here as well. _That is, at Ie_ast to the Jhe single-frequency input driver is available). Figure 8a, for
degree of this representation, the multifrequency signal input oy ampje  shows two configurations of the systems that are
into this system W'," prqduce the response, which W'I,I be,JUSt examples of such circuits, with filter profiles designed directly
the sum of respective single-frequency inputs. Thus, its signal- 4 the solutions derived in eqs 11, 24, 30, 60, and 74 (Figure
filtering properties in relation to the properties for the single- gy,) Bacayse of the particular kinetic constants chosen for these
frequency Input may be.treated analogously to the linear SyStemexamples, as well as the modes of chemical coupling, we have
case discussed in section IIL.E. been able to link our chemical modules in much the same way
that an electrical engineer can link together electrical modules
composed of capacitors and resistors. In fact, chemical reaction
As the complexity of a chemical system increases, more networks can formally be mapped into resistor/capacitor
complex responses to periodic perturbations become possiblenetworks33-3% Just as in electrical circuits, however, there are
and, in fact, there is a large body of literature on forced chemical a number of circuit design points that must be addressed when
systems. First- and second-order reactions are the fundamentasuch modular units are linked together. Here, we briefly consider
elementary units of any such reaction network. We have showntwo such points: (1) the role of noise both as a driving signal
here that even these simple chemical systems can exhibit bothand a fundamental characteristic of circuit function and (2) the
low-pass and band-signal filtering behavior. With a single conditions under which a set of chemical reactions can be
oscillatory input, first-order reactions always behave as low- considered to be a “computational element” or module.
pass filters, whereas with two or more oscillatory inputs, they  Noise is present in any physical proceshemical or
can behave as low-pass or band filters but never as a high-pasglectronic. Noise is often characterized by its frequency distribu-
filter. And, although it is impossible to solve a general second- tion, its amplitude, and the physical mechanism responsible for
order system, the two basic examples we have analyzed in detaiits generation. Above, we have touched on how our example
show that these systems can behave both as low-pass and banadrechanisms filter driving signals containing multiple frequency
pass filters. Thus, an organism that is exposed to or uses periodicomponents (such as noise). As a direct result of the superposi-
signals to govern its behavior and development does not needtion principle, linear systems are low pass for single or low/
to evolve complicated biochemical networks to respond differ- band filters for multiple input noise signals (sections III.C. and

from eq 73.

IV.B.4. Example. For numerical analysis, we consider an
example of a system in eq 64 with= 0.1,¢ = 0.25,f = 0.5,
g =0.0001, andn= 1. For this systen‘wg > 22, so it acts as

V. Discussion
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Figure 8. (a) Schematic diagram for two different filters of a single signal. The top and bottom systems show different behavior in different
frequency regimes. (b) Filtering behaviors of the activity of E1 and E2 as a function of the input frequency as calculated from eqgs 11, 24, 30, 60,
and 74. Note: Notch filtering behavior is in effect over only a limited range of frequencies because for chemical systemsRve-ltaasw —

o,

IIl.LE.). In nonlinear systems, no such principle exists, thus mode chemical kinetics that neglects neither the discrete molecular
mixing becomes possible, and the output of the system is, in nature of chemical reactions nor the thermal fluctuations in these
general, no longer merely an amplitude-phase modulation of reactions.”-36-39
the input signal components. For example, in the bimolecular ~ with our function-based approach to chemical-reaction
case discussed above, very small “sideband” modes appear imetwork analysis, it would be advantageous to be able to separate
the output at frequencies that are not present in the input signallarge reaction networks into smaller groups of reactions, which
(see section IV.A.7 and Figure 6). However, the excitable systemfunction as independent “modules” within. The ability to
shows no such sidebands, as confirmed by our analytical consider a subset of chemical reactions as a module can be a
approach within the scope of the approximation, making it a great boon for the analysis of large chemical networks such as
much more pure band-pass filter (section IV.B.5). those commonly found in biology because by allowing us to
Noise in the input signal is not the only source of random focus on functional units instead of reactions we can greatly
fluctuations in a chemical network. There is always thermal reduce the complexity of a problem. It would be much easier
noise in the chemical reaction rates. When the rates are fastio understand biological circuit function if it were possible to
and the concentrations of intermediates are high, this noise is acategorize groups of reactions functionally as, for example,
small fraction of the average concentrations of the system andswitches, filters, wires, or oscillators without being concerned
may often be neglected. However, when concentrations are lowabout the nature of underlying chemicals. To clarify, it is
and reaction rates are slow, the discrete nature of chemicalvirtually impossible to understand the design of a computer
reactions becomes apparent. (A rule of thumb is that, in most when every transistor is included on the diagram (i.e., if these
cases, thermal fluctuations in a chemical concentration scale intransistors are not grouped into logic gates, logic gates not
amplitude likev/N/N, whereN is the number of molecules of grouped into chips, chips into boards, and so on). Previous work
a given chemical species.) In the analysis above, we havehas identified a number of such modules and regulatory motifs
assumed that there is no such intrinsic noise in the chemicalthat can be classified by their particular (sometimes computa-
frequency-modulated signal filter. To analyze how these systemstional) functions and dynamid8:*1 They are classified by their
would behave when there is internal noise, we would have to dynamical behavior (and reaction structure) rather than by the
go back to the chemical master equation, a formulation of particular chemicals involved in the mechanism. In biological
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systems, it is found that the motifs used to achieve certain filtering properties of an uncharacterized network of chemical
functions such as genetic feedback loops and futile cycles arereactions may possibly be used to construct hypotheses for the
evolutionarily conserved (i.e., they are found repeatedly within network structure. The various metric construction methods
a single organism and across many types of organisms). Thusdescribed in Arkin, Shen, and Rd5#rkin and Ross'? and
these motifs might serve as templates to which newly determined Samoilov, Arkin, and Ros¥ for example, exploit the fact that
partial biochemical mechanisms can be compared in order tonoise input at one point in a chemical network loses coherence
predict network function and structure in much the same way with the response signal measured at another point in the
that new DNA sequences are compared to database sequenceetwork. This loss of coherence arises because the intervening
motifs to predict protein structure and function. If a chemical submechanism introduces both a time delay and a filtering of
reaction network is to be modular in the aforementioned way, certain components of the signal. By measuring such system
then the kinetic behavior of a subnetwork module must be response to the external perturbations and using metric construc-
somehow separable from its upstream inputs and downstreantion techniques, one can recover an estimate of the original
targets. This concept is related to the engineering concept ofnetwork topology and study its overall functionality further.
“load”. In electronics, the output of one device (the emitter)
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