Photoreactions on LaTiO₂N under Visible Light Irradiation

Asako Kasahara,[†] Kota Nukumizu,[†] Go Hitoki,[†] Tsuyoshi Takata,[†] Junko N. Kondo,[†] Michikazu Hara,[†] Hisayoshi Kobayashi,[‡] and Kazunari Domen^{*,†,§}

Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8503, Japan, Kurashiki University of Science and the Arts, Nishinoura 2640, Tsurajima, Kurashiki 712-8505, Japan, and Core Research for Evolutional Science and Technology (CREST), Japan Society and Technology Co. (JST)

Received: April 17, 2002

Photochemical reactions on LaTiO₂N, a perovskite-type oxynitride, were examined. Under visible-light irradiation (420 nm $< \lambda < 600$ nm), LaTiO₂N reduced H⁺ into H₂ and oxidized H₂O into O₂ in the presence of a sacrificial electron donor (methanol) or acceptor (Ag⁺) by the band gap transition (2.1 eV). Oxidation of water proceeded with little degradation of the oxynitride, whereas partial substitution of Ca²⁺ for La³⁺ of LaTiO₂N and modification by IrO₂ colloid markedly suppressed degradation of the oxynitride and increased O₂ evolution efficiency.

Introduction

Various photocatalytic reactions have been studied for application to the removal of toxic organic and inorganic materials in air or solution. Much of this research has been focused on the use of TiO₂ powder; however, a range of new photocatalysts for overall water splitting, such as La-doped NiO/ NaTaO₃ and RuO₂/CaIn₂O₄, have been reported.^{1,2} All of these photocatalysts function under ultraviolet (UV) light irradiation $(\lambda < 400 \text{ nm}).^{3-7}$ Photocatalysts that function in the visible region (400 nm $< \lambda < 800$ nm) are desirable from the viewpoint of solar energy utilization. Very recently, Asahi et al. have reported nitrogen-doped TiO₂ as a visible-light-driven photocatalyst for organic material degradation in air,8 and Arakawa et al. found that photocatalytic overall water splitting proceeds over InTaO₄ under visible light irradiation.⁹ In these photocatalysts, activation wavelengths are shorter than ca. 500 nm. The present authors have been investigating photocatalytic materials for the cleavage of water, including those activated by visible light such as RbPb₂Nb₃O₁₀, a Dion-Jacobson type layered perovskite. In the course of these studies, we found that some (oxy)nitrides and oxysulfides such as Ta₃N₅, TaON, LaTiO₂N, and Sm₂Ti₂O₅S₂ are stable materials which evolve H_2 or O_2 in the presence of appropriate sacrificial reagents. The common features of these materials based on our density functional theory (DFT) calculation of the electronic band structures are as follows: (1) The formal electronic configurations of transition metal cations are d^0 . (2) The empty d orbitals form the bottoms of the conduction bands. (3) The tops of the valence bands consist primarily of N2p or S3p orbitals hybridized with O2p orbitals.

In this paper, we report photochemical reactions on $LaTiO_2N$, a typical oxynitride of titanium, in visible light. The schematic structure of $LaTiO_2N$ is illustrated in Figure 1. This brick-red~dark brown oxynitride has the same structure as the

Figure 1. Schematic structure of LaTiO₂N.

perovskite oxide, represented ABO₃ (A, B: metal cations), and is composed of TiO_xN_y octahedral (x + y = 6).¹⁰ Under visible light irradiation (420 nm < λ < 600 nm), LaTiO₂N functioned for reduction of H⁺ into H₂ and oxidation of H₂O into O₂ in the presence of the sacrificial electron donor (methanol) and acceptor (Ag⁺), respectively.

Experimental Section

Preparation of Ti-Based Oxynitrides. LaTiO₂N was prepared by heating an oxide precursor containing stoichiometric amounts of La³⁺ and Ti⁴⁺ (La:Ti = 1:1) cations under NH₃ flow. The metal-oxide precursor was prepared by the polymerized complex (PC) method.¹¹ A total of 5.7 g of titanium tetraisopropoxide and 8.7 g of La(NO₃)₃6H₂O were dissolved in 98.8 g of ethylene glycol at room temperature. 76.4 g of anhydrous citric acid, and 102.0 g of methanol was added to the solution, and the mixture was stirred at 403 K until a transparent gel was formed. The polymer was carbonized at 623 K and calcined in air at 923 K for 2 h to remove carbon. The precursor was nitrogenized by heating at 873–1223 K in an alumina tube under NH₃ flow (1 dm³ min⁻¹). After 15 h, the sample was cooled to 773 K under NH₃ flow and then to room

^{*} To whom correspondence should be addressed. E-mail: kdomen@ res.titech.ac.jp.

[†] Tokyo Institute of Technology.

[‡] Kurashiki University of Science and the Arts.

[§] CREST.

temperature under He flow to remove adsorbed NH_3 . The powder obtained after heating for 15 h varied from orange to dark brown in color with increasing nitriding temperature.

 $Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75}$, where Ca^{2+} is partially substituted for La^{3+} in LaTiO₂N, was also prepared by nitriding of a corresponding oxide precursor containing stoichiometric amounts of Ca^{2+} , La^{3+} , and Ti^{4+} (Ca:La:Ti = 0.25:0.75:1.00) cations in a similar manner as the preparation of LaTiO₂N (15 h). The oxide precursor was synthesized from CaCO₃, titanium tetraisopropoxide and La(NO₃)₃6H₂O were synthesized by the PC method.

Modification by IrO₂ Colloid. IrO₂ colloid as an O₂ evolution catalyst was deposited onto the prepared oxynitrides. The colloid solution was prepared by hydrolysis of Na₂IrCl₆ in aqueous basic solution (pH12).^{12,13} A total of 0.3 g of LaTiO₂N or Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75} sample and 10~100 mL of the colloid solution (IrO₂: 0.5~46.9 mg) were added to vigorously stirred distilled water (50 mL). After stirring for 30 min, a transparent supernatant solution was decanted, and the IrO₂-adsorbed sample was rinsed three times in distilled water. The sample was heated at 573 K under vacuum. The amounts of colloidal IrO₂ adsorbed onto the oxynitrides were estimated by measuring the 500–700 nm absorbance of the supernatant rinse solutions.

Photochemical Reactions. The reaction was carried out in a Pyrex reaction vessel connected to a closed gas circulation and evacuation system. Photoreduction of H^+ to H_2 and photooxidation of H₂O to O₂ in the presence of a sacrificial electron donor (methanol) and acceptor (Ag⁺) were examined as test photoreactions. H₂ evolution was examined in an aqueous solution (200 mL) containing 0.20 g of the oxynitride loaded with 3 wt % Pt and 20 mL of methanol as a sacrificial electron donor. Pt was loaded by the impregnation method from [Pt(NH₃)₄]Cl₂, followed by reduction in H₂ at 573 K. In the case of typical photooxidation of water into O₂, the reaction performed in an aqueous AgNO₃ solution (0.01 mol dm^{-3} ; 200 mL) containing 0.20 g of the oxynitride and 0.20 g of La₂O₃ powder. A basic oxide, La₂O₃, was added to maintain the pH of the solution at around 8 during the reaction (see below). The reaction solution was evacuated several times to remove air followed by irradiation with a 300 W-Xe lamp equipped with cutoff filters. The evolved gas was analyzed by gas chromatography.

Quantum efficiencies (Φ) were calculated using the following equation:

$$\Phi$$
 (%) = (AR/ λ) × 100

where *A*, *R*, and *I* represent the coefficient based on the reactions (H₂ evolution, 1;¹⁴ O₂ evolution, 4), the H₂ or O₂ evolution rate (molecules h⁻¹), and the rate of absorption of incident photons (9.6 × 10²¹ photons h⁻¹ at 420 nm < λ < 600 nm), respectively. The absorption rate of incident photons was measured by a Si photodiode. We assumed that the scattering of light was negligible and that visible light at λ < 600 nm was available for the photoreactions because LaTiO₂N and Ca_{0.25}La_{0.75}-TiO_{2.25}N_{0.75} did not work at λ > 600 nm.

Results and Discussion

XRD Patterns, TEM Images and UV-vis Spectra of LaTiO₂N and Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75}. Figure 2 shows X-ray diffraction (XRD) patterns of LaTiO₂N and Ca_{0.25}La_{0.75}-TiO_{2.25}N_{0.75} prepared at 1223 K. The XRD pattern for LaTiO₂N is consistent with that of perovskite-type LaTiO₂N.¹⁰ The diffraction peaks were observed even for the sample nitrided at 973 K, and the intensity increased with nitriding temperature

Figure 2. XRD pattern of LaTiO₂N and Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75} prepared at 1223 K. A: LaTiO₂N. B: Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75}.

Figure 3. TEM images and electron diffraction pattern of LaTiO₂N (1123 K).

Figure 4. UV-vis DR spectra of LaTiO₂N. 1: Prepared LaTiO₂N. 2: After heating in air at 573 K for 24 h.

without the occurrence of impurity phases. Although there was no essential difference in XRD pattern between LaTiO₂N and Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75}, each diffraction peak of Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75} had slightly higher angles than that of LaTiO₂N. This indicates that in Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75} Ca²⁺ cations are located in La³⁺ sites of the perovskite structure and that partial substitution of Ca²⁺ for La³⁺ reduces the lattice constant of LaTiO₂N perovskite structures because Ca²⁺ (0.099 nm) has a smaller ionic radius than La³⁺ (0.106 nm). Elemental analysis (by differential thermal conductivity) revealed that N in LaTiO₂N and Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75} samples comprised about 70% of the stoichiometric amounts, suggesting that the prepared samples have a cation-defective perovskite structure, which may be similar to La_{2/3 1/3}TiO₃ (cation defect). In this paper, we refer to these samples as "LaTiO₂N" and "Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75}".

Transmission electron microscopy (TEM) images and UV– vis diffuse reflectance (DR) spectra of LaTiO₂N prepared at 1223 K are shown in Figures 3 and 4, respectively. TEM

Figure 5. O_2 evolution from LaTiO₂N under visible light irradiation ($\lambda > 420$ nm). LaTiO₂N: 0.2 g. La₂O₃: 0.2 g. 0.01 M AgNO₃ solution: 200 mL.

observation revealed that primary particles of about $30\sim70$ nm in diameter aggregate to form large secondary particles of $0.5-20 \ \mu$ m. The TEM lattice image and electron diffraction pattern indicates that well-crystallized LaTiO₂N is formed by nitriding for 15 h. The UV-vis spectrum consists of two broad bands. Heating the sample in air at 573 K for 24 h caused no change in the XRD pattern but weakened the band above 600 nm, indicating that the band in the near-infrared region is attributable to absorption due to a small amount of reduced Ti³⁺ species. Therefore, the charge-transfer band is extended to as long as ca. 600 nm, with a band gap energy of 2.1 eV. The TEM images and UV-vis DR spectrum for Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75} were similar to those of LaTiO₂N, and the band gap energy was estimated to be ca. 2 eV.

Water Oxidation or Reduction by LaTiO₂N under Visible Light Irradiation. Figure 5 shows a time course of O₂ evolution under visible light irradiation ($\lambda > 420$ nm). LaTiO₂N prepared at 1223 K was used in the following photoreactions because the sample showed the highest activity for O2 and H2 evolution under visible light irradiation. The pH of the solution before and after the reaction are also shown in the figure. No reaction took place in the dark, and O₂ evolution began with the onset of irradiation. The rate of O₂ evolution decreased with reaction time as a result of the decrease in Ag⁺ concentration, and the LaTiO₂N surfaces became covered with reduced metallic Ag, turning the sample black. The initial quantum efficiency was ca. 1.5%, and the total O_2 evolved over 43 h is estimated to be 440 μ mol. This amount corresponds to ca. 60% of the lattice oxygen in the catalyst (0.2 g of LaTiO₂N). There was no noticeable difference in the XRD pattern of the sample before and after the reaction, except for the emergence of a diffraction peak attributable to metallic Ag. The evolution of O2 is therefore attributed to the oxidation of water on LaTiO2N under visible light irradiation. Figure 4 shows that a small amount of N2 was coevolved with O₂ and is regarded as an oxidation product of LaTiO₂N, given by the reaction

$$2N^{3-} + 6h^+ \rightarrow N_2$$

From the total quantities of evolved O_2 and N_2 (O_2 , 440 μ mol; N_2 , 40 μ mol), it can be inferred that approximately 88% of photoexcited holes oxidize H_2O (or OH^-) into O_2 and the remaining 12% of holes oxidize N^{3-} (in LaTiO₂N) into N_2 . This indicates that LaTiO₂N is partially degraded under the photoreaction condition. Interestingly, at pH below 7, O_2 evolution was suppressed while N_2 evolution proceeded, indicating that the efficient oxidation of water requires a relatively high

Figure 6. H₂ evolution from LaTiO₂N under visible light irradiation ($\lambda > 420$ nm). Pt-deposited LaTiO₂N: 0.2 g, 200 mL methanol solution (distilled water, 160 mL; methanol, 40 mL).

Figure 7. Dependence of the initial rates of H_2 and O_2 on cutoff wavelength of incident light and UV-vis DR spectrum of LaTiO₂N. H_2 : Pt-deposited LaTiO₂N (0.2 g), 200 mL methanol solution (distilled water, 160 mL; methanol, 40 mL). O_2 : LaTiO₂N (0.2 g). La₂O₃: 0.2 g, 200 mL 0.01 mol dm⁻³ AgNO₃ solution. UV-vis DR spectrum: LaTiO₂N after heating in air at 573 K for 24 h.

concentration of OH^- . It is therefore concluded that in alkaline solutions $LaTiO_2N$ oxidizes water to O_2 with a little degradation of itself.

Figure 6 shows the evolution of H₂ from an aqueous methanol solution. Again, without irradiation, no reaction took place. The initial quantum efficiency for H₂ evolution in the first reaction was estimated to be about 0.15%. The rate of H₂ evolution in the second and subsequent runs with intermittent evacuation was somewhat slower than that of the first run but continued to proceed steadily. Up to 1.6 μ mol of N₂ was detected in the first run but was not detectable by gas chromatography after the second run. Therefore, it is concluded that the oxynitride was stable during the reaction.

The relationship between the H_2 and O_2 evolution rates and the cutoff wavelength of incident light is shown in Figure 7. The initial rate of H_2 and O_2 evolution decreases with increasing cutoff wavelength, and the longest wavelength available for either photoreaction was estimated to be ca. 600 nm, corresponding to the absorption edge for LaTiO₂N. These photoreactions proceed via the band gap transition.

Oxidation of Water by IrO_2 -Adsorbed $Ca_{0.25}La_{0.75}$ -Ti $O_{2.25}N_{0.75}$. It is worth noting that when we partially substituted Ca^{2+} for La^{3+} and modified the material using IrO_2 colloid (i.e., $IrO_2/Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75}$), the O_2 evolution rate increased with suppression of degradation of the material. To improve activity for oxidation of water and prevent degradation during water oxidation, the absorption of IrO_2 colloid on the oxynitrides was examined. Although the IrO_2 colloid was not adsorbed by $LaTiO_2N$, $Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75}$ absorbed considerable amounts of IrO_2 colloid as an O_2 evolution catalyst. The maximum amount of loaded IrO_2 colloid was estimated to be 11 wt %.

Figure 8. TEM images of 2 wt % $IrO_2/Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75}$ (1223 K).

Figure 9. O₂ evolution from $Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75}$ and 2 wt % $IrO_2/Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75}$ under visible light irradiation ($\lambda > 420$ nm). (a) $Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75}$ (b) 2 wt % $IrO_2/Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75}$. Ca_{0.25}-La_{0.75}TiO_{2.25}N_{0.75}, 2 wt % $IrO_2/Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75}$. Ca_{0.25}-La_{0.75}TiO_{2.25}N_{0.75}, 2 wt % $IrO_2/Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75}LaTiO_2N$: 0.2 g. La₂O₃: 0.2 g. 0.01 M AgNO₃ solution: 200 mL.

Figure 8 shows TEM images of Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75} loaded with 2 wt % IrO₂ colloid (2 wt % IrO₂/Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75}). IrO₂ colloid particles of several nanometers in diameter are deposited on Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75} surfaces. Figure 9 shows time courses of O₂ evolution on Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75} and 2 wt % IrO₂/Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75} under visible light irradiation ($\lambda > 420$ nm). Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75} was prepared at 1223 K. There was no noticeable difference in O₂ evolution between LaTiO₂N and Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75}. However, IrO₂/ Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75} showed a higher activity for O₂ evolution than LaTiO₂N and Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75}, and the initial quantum efficiency reached ca. 5%. Furthermore, N₂ evolution was markedly suppressed using this alternative material. With the evolution of 500 μ mol of O₂ (5 h irradiation), only 4 μ mol of N₂ was produced; that is, 99% of the holes were used for water oxidation. This result clearly demonstrates that with the appropriate modification of LaTiO₂N or and Ca_{0.25}La_{0.75}-TiO_{2.25}N_{0.75} it is possible to stabilize this system by kinetic control with respect to degradation of the oxynitride. In IrO₂/Ca_{0.25}La_{0.75}TiO_{2.25}N_{0.75}, the rate of O₂ evolution increased with increasing loaded IrO₂ colloid, reaching a maximum at 2 wt %. Further adsorption of IrO₂ colloid beyond 2 wt % decreased O₂ evolution rate.

To summarize the results, $LaTiO_2N$ under visible light irradiation oxidizes water into O_2 or reduces H^+ into H_2 in the presence of appropriate sacrificial reagents by the band gap transition. This indicates that $LaTiO_2N$ is a visible-light driven material with sufficient reduction and oxidation potentials. Although a part of $LaTiO_2N$ is degraded during photooxidation of water, it is possible to suppress this degradation by appropriately modifying the catalytic system.

As yet we have not successfully achieved overall water splitting using LaTiO₂N-based material. Compared with the efficiency of O₂ evolution, the H₂ evolution efficiency, ca. 0.15%, is still low. This appears to be due to poor dispersion of loaded Pt, resulting in low efficiency of electron transfer to H⁺. Appropriate surface modification by H₂ evolution catalyst might improve H₂ evolution efficiency. This possibility is currently under investigation.

Acknowledgment. This work was supported by the Core Research for Evolutional Science and Technology (CREST) program of the Japan Science and Technology Co. (JST).

References and Notes

(1) Kato, H.; Kudo J. Phys. Chem. B 2001, 105, 4285.

(2) Sato, N.; Nishiyama, H.; Inoue, Y. J. Phys. Chem. B 2001, 105, 6061.

(3) Schiavello, M. Heterogeneous Photocatalysis; John Wiley & Sons: London, 1997.

(4) Domen, K.; Naito, S.; Onishi, T.; Tamaru, K.; Soma, M. J. Phys. Chem. 1982, 86, 3657.

(5) Kudo, A.; Domen, K.; Tanaka, A.; Maruya, K.; Aika, K.; Onishi, T. *J. Catal.* **1988**, *111*, 67. Takata, T.; Furumi, Y.; Shinohara, K.; Tanaka,

A.; Hara, M.; Nomura, J. K.; Domen, K. Chem. Mater. 1997, 9, 1063.

(6) Sayama, K.; Arakawa, H. J. Phys. Chem. 1993, 97, 531.

(7) Kudo, A.; Kato, H.; Nakagawa, S. J. Phys. Chem. B 2000, 104, 571.

(8) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269.

 (9) Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Nature 2001, 414, 625.
(10) Gendre, L. L.; Marchand, R.; Piriou, B. Eur. J. Solid State Inorg. Chem. 1997, 34, 973.

(11) Kakihana, M. J. Sol-Gel Sci. **1996**, 5, 7.

(12) Harriman, A.; Thomas, J. M.; Millward, G. R. New J. Chem. 1987, 11, 757.

(13) Harriman, A.; Pickering, I. J.; Thomas, J. M.; Christensen, P. A. J. Chem. Soc., Faraday Trans. 1 1988, 84, 2795.

(14) In the case of methanol, we assume that one photon forms a H_2 molecule because of current doubling effect.