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This paper reports the analysis of adenine spectra using both harmonic and anharmonic approximations to
the vibrational frequencies reported in matrix isolation studies. The harmonic approximation procedure consists
of the application of a scaled ab initio calculated harmonic force field to predict the frequencies, and infrared
intensities, of adenine. Theoretical calculations were made using Hartree-Fock density functional theory
(DFT) B3-LYP/6-31G* and GGA/DNP computational methods. The equilibrium calculated force constants
were scaled according to the method of Pulay (Pulay, P.; Fogarasi, G.; Pang, F.; Boggs, J. E.J. Am. Chem.
Soc.1979, 101, 2550-2560) and compared with the experimentally determined frequencies, and intensities,
to assess the accuracy and fit of the theoretical calculation. Good agreement is found except for the in-plane
X-H bending or stretching and the out-of-plane X-H bending or wagging modes (X) C and N) which
exhibit cubic and quartic anharmonicity, respectively. The NH2 puckering mode, is an out-of plane mode that
is poorly modeled by both DFT methods, which is most probably caused by its quartic-quadratic
anharmonicity. In this work, we document the anharmonicity and show that intermode coupling can be estimated
using harmonic shift analysis. The goal of this study is to compare various DFT approaches with the aim of
determining their limits within the harmonic approximation. We present the method of harmonic shift analysis
as a tool for the estimation of mode anharmonicity and for the determination of intermode coupling in the
DFT calculation of adenine.

Introduction

The search for accurate vibrational analysis of nucleobases
has engaged the attention of many scientists for several decades.
Although reasonable results can be achieved for heterocyclic
molecules,2-7 nucleobases have presented many anomalies that
have prevented accurate normal coordinate analysis. Uracil
presents the possible exception, as there are a number of
theoretical studies that have demonstrated reasonable agreement
with vibrational data.8-14 One can hypothesize that the difficulty
in assigning nucleobase vibrational spectra are not simply due
to the complexity of the infrared and Raman spectra but are
due to an aspect of the computational methods that does not
account for the spectral features exhibited in nucleobases. These
molecules contain interacting low-frequency modes with sig-
nificant anharmonicity, extensive hydrogen bonding, and physi-
cal properties that preclude easy spectral measurement in the
liquid or gas state. This is particularly true for the case for
exocyclic amino groups, which present a greater difficulty for
harmonic analysis than carbonyl groups. The success in model-
ing uracil spectra may be attributable to the absence of exocyclic
amino groups in this molecule. Adenine provides an interesting
test case of a molecule that contains no carbonyl groups and
one exocyclic amino group. By applying both harmonic and
anharmonic analysis to adenine, insight can be gained into the
role that these properties play in the vibrational analysis of
polynucleotides.

The present study focuses on matrix isolation data for adenine
that has been obtained previously.15,16 The analysis of purines
has received far less attention than that of pyrimidines. Adenine
has been studied intensely, by infrared and Raman spectroscopy,
in solution,17 in the solid state,18 in the gas phase,19 in an argon
matrix,20 and by neutron inelastic scattering.21 Despite numerous
vibrational analyses, the harmonic force field and its corre-
sponding normal-mode analysis has been reliably assigned only
recently using matrix isolated isotopomers.15,16This recent study
used a single scale factor, for scaling the Hessian matrix from
a B3LYP/6-31G** density functional calculation to fit the matrix
isolation data. They found reasonable agreement for some
modes, but noted discrepancies in low-frequency modes. Baker22

used a multiple scale factor scheme that is similar to the method
presented here. Their multiple scale factor method fits the matrix
isolation significantly better, but used qualitative intensity
comparisons to assess the accuracy of the intensity predictions.
The goal of developing a vibrational model that can be used to
interpret the vibrational spectra of purine nucleobases has been
stymied, by the discrepancies in modes below 1000 cm-1. The
disagreement in the low-frequency modes and the systematic
error in the harmonic approximation applied to high-frequency
modes can be addressed by a model that includes anharmonic
coupling. Such an approach is key to further advancement of
the vibrational analysis of nucleobases.

This work examines the role of anharmonic analysis via
harmonic shift calculation, redundant coordinate Pulay type
scaling and refinement (SQM scaling)1,2 and matrix isolation
measured infrared intensities in application to matrix isolation
data. Comparison of two different methods of calculation shows
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that some of the calculated vibrational modes are outside of
the expected error for quantum chemical calculations. It is shown
that the discrepancy arises due to a breakdown in the harmonic
approximation. If these anharmonic bands are too numerous,
then using normal coordinates, as a basis for modeling the
molecular vibrations would be difficult if not impossible. Thus,
it is important to establish the number of vibrational bands that
deviate from harmonic behavior. Here we show that the number
is reasonably small and that it is possible to design anharmonic
corrections that present a possible route for complete assignment
of nucleobases.

In this study, we compare the B3LYP density functional using
Gaussian98 and the GGA density functional using DMol3. Both
functionals give comparable results and both fail to fit high-
frequency modes and certain low-frequency out-of-plane modes.
Using eigenvector projections, we show that these modes are
anharmonic. Out of 39 modes, we find 11 modes that have
significant anharmonicity. We establish that modes having C-H
or N-H stretching character have large cubic and quartic
anharmonic terms and that modes with (C, N)-H and (C-N
or N-C)-H out-of-plane bending or wagging character have
large quartic anharmonic terms. In addition to exhibiting
significant mode anharmonicity, the stretching or wagging
modes are shown to have intermode coupling which involves a
hydrogen atom common to both modes. The conclusion of this

type of harmonic shift analysis points in a direction for the
development of a comprehensive approach to the interpretation
of vibrational spectra of not only nucleobases, but also all other
complex molecular systems.

Computational Methods

Molecular Geometries.Experimental frequencies and rela-
tive intensities were taken from matrix isolation experiments15,16

and are summarized in columns 10 and 11 of Table 1. The data
span the range from 200 to 3600 cm-1. A molecular structure
of adenine was constructed using crystallographic coordinates
obtained from the Cambridge Structural Database (Cambridge
Crystallographic Data Centre, Cambridge, U.K.), for adenine
trihydrate23 (Figure 1.). The optimized ground-state geometries
were obtained using both the generalized gradient approximation
(GGA) of Perdew and Wang24 as implemented in DMol325 using
a double-numeric basis with polarization functions (DNP)26 and
using the B3LYP density functional as implemented in Gauss-
ian9827 with a 6-31G* basis set. All calculations were carried
out on the SGI/Cray Origin 2000 or the IBM RS/6000 SP
supercomputers at the North Carolina Supercomputer Center
(NCSC). The geometry optimizations with no symmetry con-
straints were carried out until the energy difference was less
than 10-6 a.u. on subsequent iterations. Following geometry

TABLE 1: Calculated Frequencies and Intensities of Adenine Using the GGA/DNP Approacha

GGA unscaled GGA scaled intensity analysis experimental

mode cm-1 % diff intensity cm-1 % diff intensity QW % dev cm-1 intensity

39 3673.0 2.94 69 3561.1 0.11 69 4 19 3565 85
38 3569.5 2.00 84 3505.5 0.21 84 4 38 3498 135
37 3532.3 2.39 105 3424.9 0.67 104 4 5.5 3448 110
36 3226.3 0.65 3168.9 0.64 0
35 3144.4 2.78 22 3088.4 1.02 22 0 633 3057 3
34 1620.5 0.77 606 1600.1 2.06 559 3 25 1633 447
33 1592.3 1.24 98 1591.9 1.26 91 3 58 1612 219
32 1563.1 1.6 1529.7 32 0
31 1482.0 0.00 12 1481.2 0.05 35 3 218 1482 11
30 1465.0 0.61 48 1466.0 0.55 21 5 70 1474 71
29 1401.0 1.28 14 1412.5 0.46 13 5 73 1419 49
28 1383.7 0.38 19 1383.8 0.38 21 5 53 1389 45
27 1348.7 1.09 48 1346.1 0.90 22 3 4.8 1334 21
26 1330.7 0.20 20 1324.2 0.29 28 3 30 1328 40
25 1312.5 1.71 58 1299.5 0.73 85 5 25 1290 68
24 1246.5 0.52 31 1256.6 1.32 43 3 54 1240 28
23 1214.7 1.18 14 1215.7 1.09 14 4 7.7 1229 13
22 1118.2 0.79 20 1123.0 0.36 20 2 233 1127 6
21 1058.1 0.27 19 1062.3 0.12 19 3 46 1061 13
20 983.5 5 992.2 5.8 0
19 924.8 3.59 4.4 967.2 0.95 4.4 2 47 958 3
18 920.5 0.71 13 938.5 1.23 14 3 7.7 927 13
17 875.7 1.29 16.5 905.4 2.03 9.5 2 19 887 8
16 870.6 11 888.3 11 0
15 786.3 2.00 8.8 815.7 1.68 113 3 1155 802 9
14 710.7 1.79 3.0 794.8 12.18 0.36 1 93 698 5
13 665.2 1.53 0.41 706.8 7.33 2.9 2 52 655 6
12 656.8 1.34 4.6 668.2 3.02 0.56 1 81 648 3
11 599.1 1.82 1.3 644.8 5.40 24 1 380 610 5
10 562.2 3.70 54 608.2 4.14 58 0 41 583 99
9 525.2 0.97 607.5 1.1 0
8 517.2 2.6 549.2 0.98 0
7 506.8 1.22 4.7 528.0 2.84 2.1 4 97 513 92
6 501.1 0.38 83 519.2 3.12 4.1 1 2.5 503 4
5 288.7 1.3 292.2 0.76 0
4 265.5 3.95 13 273.2 1.02 13 2 8.3 276 12
3 220.5 2.95 0.08 224.5 4.68 0.31 0 100 214 66
2 162.3 17 170.2 28 0
1 -184.4 214 -231.6 165 0
average 1.54 2.19 IAWPE) 95.2

a Experimental data are from the matrix isolation experiments of Nowak et al.15,16 Calculated intensities in units of km/mol.
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optimization the Hessian matrix was constructed by finite
difference of the analytic gradient for DMol3 and the Hessian
was found by analytic second derivative methods as imple-
mented in Gaussian98. Frequency calculation results and
calculated infrared intensities from both DFT methods are
summarized in columns 2 and 4 of Tables 1 and 2, respectively.
Conversion from Cartesian to internal coordinates, automatic
generation of the redundant internal coordinates, SQM (Pulay)
scaling, least-squares refinement of scale factors, and decom-
position of the potential energy distribution (PED) were carried
out using the program FCART01, a major modification of
previous software.28

Normal Coordinate Analysis. Normal coordinate analysis
was conducted on both computational models using FCART01
as described earlier.28 The basic procedure is outlined as
follows: The final output and coordinate files were read into
FCART01. The information in these output files consists of
Cartesian coordinates (including atom type and number se-
quencing), atomic forces, Hessian matrix, infrared dipole and
Raman polarizability intensity derivatives, and vibrational
frequencies calculated within the harmonic approximation. The
input data were then used by FCART01 to generate scaled
frequencies and calculated intensities, including the normal
coordinate potential energy distribution (PED). The calculated
frequencies can then be further refined by nonlinear least squares
on the scale factors to fit entered experimental frequencies and
intensities if necessary. The scaled frequencies and relative
intensities for both models are presented in columns 5 and 7 of
Tables 1 and 2, respectively. The potential energy distribution
for the normal coordinates can be found in the Supporting
Information along with a detailed description of scaling
procedure used and normal coordinate vector images for both
methods. All of the experimental frequencies were used in the
FCART01 treatment except the 591 and 242 cm-1 modes. In
the 591 and 583 cm-1 range, modes appear as a single intensity
and hence only one was used. The 242 cm-1 mode does not
match the calculated frequencies. The anharmonicity of low-

TABLE 2: Calculated Frequencies and Intensities of Adenine Using the B3LYP/6-31G* Approacha

GGA unscaled GGA scaled intensity analysis experimental

mode cm-1 % diff intensity cm-1 % diff intensity QW % dev cm-1 intensity

39 3743.5 4.77 53 3570.1 0.14 53 4 38 3565 85
38 3651.1 4.19 71 3502.9 0.14 72 4 47 3498 135
37 3615.9 4.64 106 3448.5 0.01 105 4 4.5 3448 110
36 3266.4 2.1 3134.1 2.1 0
35 3188.8 4.13 33 3059.5 0.08 33 0 1000 3057 3
34 1681.4 2.88 609 1621.6 0.70 626 3 40 1633 447
33 1650.1 2.31 111 1605.8 0.39 104 3 53 1612 219
32 1625.7 20 1560.0 8.3 0
31 1534.3 3.41 5.5 1488.2 0.42 18 3 64 1482 11
30 1523.0 3.22 69 1476.4 0.16 47 5 34 1474 71
29 1448.4 2.03 13 1412.9 0.43 14 5 71 1419 49
28 1432.7 3.05 14 1391.1 0.15 15 5 67 1389 45
27 1380.4 3.36 26 1339.8 0.43 19 3 9.5 1334 21
26 1371.9 3.20 40 1331.7 0.28 49 3 22.5 1328 40
25 1345.4 4.12 72 1301.9 0.91 75 5 10 1290 68
24 1277.0 2.90 30 1242.8 0.23 32 3 14 1240 28
23 1251.9 1.83 12 1217.7 0.93 13 4 0 1229 13
22 1152.6 2.22 19 1125.2 0.16 20 2 233 1127 6
21 1091.5 2.79 18 1060.5 0.05 17 3 3 1061 13
20 1014.8 3.8 987.5 3.5 0
19 973.2 1.56 1.7 961.1 0.32 1.6 2 47 958 3
18 944.4 1.84 15 929.9 0.31 16 3 23 927 13
17 900.8 1.53 13 888.3 0.15 13 2 62.5 887 8
16 842.8 2.9 829.7 4.5 0
15 809.1 0.88 15 789.4 1.60 13 3 44 802 9
14 727.8 4.09 2.9 707.9 1.40 2.75 1 45 698 5
13 687.5 4.73 1.5 668.7 2.05 1.9 2 68 655 6
12 671.1 3.44 6 655.8 1.19 0.9 1 70 648 3
11 618.1 1.31 1.2 607.9 0.35 1.0 1 80 610 5
10 578.6 0.76 57 577.2 1.00 109 0 10 583 99
9 548.5 2 541.6 0.12 0
8 531.0 3.3 524.8 2.75 0
7 519.4 1.23 3.8 524.4 2.17 38.5 4 58 513 92
6 514.4 2.22 83 514.0 2.14 3.6 1 10 503 4
5 303.0 1.0 295.0 0.81 0
4 273.5 0.91 12 271.3 1.73 12 2 0 276 12
3 219.8 2.64 0.18 214.5 0.23 0.07 0 100 214 66
2 167.2 14 163.1 15.5 0
1 -216.4 244 -226.2 243 0
average 2.48 0.77 IAWPE) 39.4

a Experimental data are from the matrix isolation experiments of Nowak et al.15,16 Calculated intensities in units of km/mol.

Figure 1. Numbering scheme as assigned by the modeling programs
for adenine used in calculations.
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frequency modes is likely to be reasonable as demonstrated in
the following.

Eigenvector Projection.The geometry optimized coordinates
were used as the starting point for the eigenvector projection
procedure. The distorted Cartesian coordinate geometries were
written as input files, in the appropriate format for calculation
of frequencies or energies by either DMol3 or Gaussian98. The
procedure for eigenvector projections uses mass-weighted
Cartesian eigenvectorsηj calculated using GGA/DNP and
B3LYP/6-31G* methods, respectively, divided by the square
root of the atomic massµj.

The Cartesian normal coordinateQj is used for the eigenvector
projections. In practice, these eigenvectors consist of the three
columns of the similarity transform matrix, obtained by matrix
diagonalization of the mass-weighted force constant matrix.

The similarity transform matrixS diagonalizes the mass-
weighted force constant matrixF. The eigenvalue matrixΛ is
a diagonal matrix consisting of 3N eigenvaluesλj ) 4π2c2νj

2

columns of eigenvectors for each of theN atoms in the molecule.
Each successive three columns of theS matrix correspond to
one eigenvector, the displacement alongx, y, andz for each of
the N atoms in the molecule. In this study, 21 uniformly
displaced geometry files for each of the eigenvectors were
generated over the range(0.5 in the normal coordinate units
defined by eq 1. The frequencies or energies are then extracted
and plotted against the displaced normal coordinate.

Potential Energy Surface: Determination of Single-Mode
Anharmonicity. The SCF energy was calculated for each of
the 21 distorted geometries. Potential energy surface (PES) plots
of each eigenvector were then fitted to a fourth-order poly-
nomial. In principle, the linear term (column 2 of Table 3)
should be zero. The cubic and quartic anharmonic terms are
reported in columns 4 and 5 of Table 3. Column 6 of Table 3
shows the calculated harmonic frequency based on the quadratic
term using the formula

appropriate to the coordinate system as used in eq 1 for a
potential energy surface plotted in cm-1. The frequencies
determined by eq 3 agree quite well with the original calculated
values obtained from the GGA/DNP as implemented by Dmol3.
For those potential energy surfaces that show significant cubic
and quartic terms, the eigenvalues and eigenfunctions can be
determined using the Numerov-Cooley method for numerical
calculation of the wave function.29 The computational code used
for the Numerov-Cooley procedure was adapted from program
no. 407, titled “Systems for the Numerical Solution of the Radial
Schroedinger Equation” which was obtained from Quantum
Chemistry Program Exchange (QCPE).30 For PESs that are
nearly harmonic the Numerov-Cooley eigenvalues are in good
agreement(2% with the density functional determined frequen-
cies obtained from the DMol3 calculation. The numeric genera-
tion of eigenfunctions and eigenvalues for an arbitrary potential
energy surface provides an estimate for anharmonic corrections
to harmonic eigenvalues. This procedure even gave a well-

defined value for the eigenfunctions of mode 1, which has a
negative eigenvalue (i.e., an imaginary frequency).

Harmonic Shift Analysis: Determination of Multimode
Anharmonicity. Harmonic shift analysis (HSA) is a procedure
that consists of calculation of frequencies at the same distorted
geometries used in single-mode anharmonicity analysis. In the
harmonic approximation, eigenvectors are an orthonormal basis
and therefore projection along any eigenvector by definition
should not affect the eigenvalues or frequencies of any other
harmonic mode. The harmonic assumption can be tested, by
performing a vibrational frequency calculation on a geometry
distortion along a particular eigenvector. Any mode that has a
frequency shift is not orthogonal to the distorted eigenvector
and is therefore anharmonically coupled to it. This simple
procedure provides a test for the relative strength of intermode
coupling or multimode anharmonicity in large or small mol-
ecules. This procedure was used to determine the anharmonic
multimode coupling and consisted of a vibrational frequency
calculation for a series of distorted geometries that corresponded
to an eigenvector projection along mode 1 of adenine. The
frequencies where then extracted and plotted against the
displaced normal coordinate.

Qj )
ηj

xµj

(1)

S-1FS ) Λ (2)

ν̃(cm-1) ) x67.95A

(The quadratic parameterA has units of cm-1/amu/Å2) (3)

TABLE 3: Based on GGA/DNP DFT Calculationa

polynomial coefficients

mode linear quadratic cubic quartic (ν) cm-1

GGA/DNP
calculated
frequencies

39 52.3 198900.0 -51684.0 389990.0 3666.6 3673.0
38 -293.1 188820.0 441310.0 678940.0 3572.5 3569.5
37 -427.3 184670.0 291070.0 335440.0 3533.0 3532.3
36 -211.2 152980.0 317740.0 417840.0 3215.6 3226.3
35 167.2 145060.0-306370.0 409940.0 3131.3 3144.4
34 -30.3 38882.0 2116.4 4855.0 1621.2 1620.5
33 140.9 37460.0 -5540.2 854.0 1591.2 1592.3
32 58.9 36194.0 -2228.2 874.9 1564.1 1563.1
31 -57.2 32463.0 -9724.1 -6548.2 1481.3 1482.0
30 7.4 31528.0 1362.7 -1050.9 1459.8 1465.0
29 89.5 29099.0 -920.2 700.0 1402.5 1401.0
28 -3.2 28304.0 -868.7 -75.3 1383.2 1383.7
27 34.5 26911.0 2871.3 1509.0 1348.7 1348.7
26 -42.6 26226.0 4616.6 352.7 1331.4 1330.7
25 -19.9 25500.0 4878.7 -420.6 1312.9 1312.5
24 -25.5 23012.0 560.9 -6116.2 1247.2 1246.5
23 -5.6 21861.0 -893.8 1286.4 1215.6 1214.7
22 27.9 18526.0 -1761.6 177.6 1119.0 1118.2
21 84.1 16548.0 -6137.7 6627.6 1057.6 1058.1
20 -99.4 14370.0 1030.9 3553.5 985.5 983.5
19 0 13129.0 0 17543.0 942.0 924.8
18 -26.7 12565.0 1170.1 223.3 921.6 920.5
17 0.2 10171.0 -7.4 -8318.4 829.1 875.7
16 23.9 11241.0 -104.9 750.5 871.7 870.6
15 0 9203.1 0 217.4 788.7 786.3
14 117.2 7479.3 -806.4 131.4 711.0 710.7
13 0 6574.0 0 352.5 666.6 665.2
12 0 6395.0 0 -351.0 657.5 656.8
11 42.6 5324.5 -205.5 261.7 599.9 599.1
10 0.2 4724.9 -10.4 1058.9 565.1 562.2
9 0 4351.2 0 16495.0 542.3 525.2
8 -10.1 3965.9 43.5 -53.2 517.7 517.2
7 31.1 3822.3 46.3 183.5 508.3 506.8
6 0.1 3856.8 2.75 21540.0 510.6 501.1
5 0.2 1246.1 -7.4 334.4 290.2 288.7
4 17.0 1056.7 46.3 500.9 267.3 265.5
3 0 735.6 0 104.2 223.0 220.5
2 0 389.7 0 455.2 162.3 162.3
1 -0.3 -146.0 3.2 29400.0 -184.4

a Wavenumberν values in the table were obtained from the quadratic
term (column 3) of fitting to the potential energy surface to a quartic
polynomial using eq 1. No frequencyν is listed in column 6 for mode
1 since it is not possible to calculate a real harmonic frequency withL
in eq 2 being negative.
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There are a number of possible methods for interpreting the
HSA output. In this study, we determine an average frequency
shift by averaging over the nuclear probability in the distorted
mode using the wave function obtained from the Numerov-
Cooley method, above. The shifted frequency is fit to a
polynomial. The harmonic frequency shift is then calculated
by integrating the product of the frequency function and the
square of the nuclear wave function in the first vibrational state
(V ) 1) minus that of the ground vibrational state (V ) 0). Only
the even powers of the shifted harmonic frequency will
contribute to the integral. For simplicity, we use harmonic wave
functions that are fit to the exact wave functions as determined
by the Numerov-Cooley procedure:

If the form of the shift is

then the formulas used for theV ) 0 andV ) 1 vibrational
states are

and

respectively. The limitλ is determined by the extent of the
polynomial fit to the frequency shift or potential energy surface
used. The harmonic shift terms are then given by

The above integrals provide analytic solutions, for the general
case of an arbitraryλ. These can be integrated analytically to
obtain

TABLE 4: Frequency Results of GGA/DNP Model, Forced Fitting the Displaced Eigenvectors (HSA), a Fixed Distorted
Geometry GGA/DNP Model, and the FCART01 Scaling of the GGA/DNP Model Compared to the Results of the Matrix
Isolation Experimental Data15,16

frequencies (cm-1) % difference from data

mode data GGA/DNP model HSA fixed distorted scaled GGA/DNP model HSA fixed distorteda scaled

39 3565.0 3673.0 3637.8 3610.5 3561.1 2.94 2.00 1.26 0.11
38 3498.0 3569.5 3569.5 3569.4 3505.5 2.00 2.00 2.00 0.21
37 3448.0 3532.3 3503.5 3475.1 3424.9 2.39 1.58 0.78 0.67
36 3226.3 3226.3 3226.3 3168.9
35 3057.0 3144.4 3144.4 3144.4 3088.4 2.78 2.78 2.78 1.02
34 1633.0 1620.5 1623.6 1625.4 1600.1 0.77 0.58 0.47 2.06
33 1612.0 1592.3 1592.4 1592.6 1591.9 1.24 1.23 1.22 1.26
32 1563.1 1570.9 1571.0 1529.7
31 1482.0 1482.0 1482.6 1482.7 1481.2 0.00 0.04 0.05 0.05
30 1474.0 1465.0 1466.0 1465.9 1466.0 0.61 0.55 0.55 0.55
29 1419.0 1401.0 1401.0 1401.4 1412.5 1.28 1.28 1.26 0.46
28 1389.0 1383.7 1383.7 1383.8 1383.8 0.38 0.38 0.38 0.38
27 1334.0 1348.7 1348.7 1348.7 1346.1 1.09 1.09 1.09 0.90
26 1328.0 1330.7 1330.7 1330.9 1324.2 0.20 0.20 0.22 0.29
25 1290.0 1312.5 1312.5 1312.4 1299.5 1.71 1.71 1.71 0.73
24 1240.0 1246.5 1246.5 1246.5 1256.6 0.52 0.52 0.52 1.32
23 1229.0 1214.7 1216.7 1219.4 1215.7 1.18 1.01 0.79 1.09
22 1127.0 1118.2 1118.5 1119.0 1123.0 0.79 0.76 0.71 0.36
21 1061.0 1058.1 1058.1 1058.1 1062.3 0.27 0.27 0.27 0.12
20 1005.0 983.5 996.8 998.7 992.2 2.19 0.82 0.63 1.29
19 958.0 924.8 924.8 924.9 967.2 3.59 3.59 3.58 0.95
18 927.0 920.5 920.5 920.6 938.5 0.71 0.71 0.70 1.23
17 887.0 875.7 875.7 875.9 905.4 1.29 1.29 1.27 2.03
16 869.0 870.6 870.6 870.9 888.3 0.18 0.18 0.22 2.17
15 802.0 786.3 786.3 786.5 815.7 2.00 2.00 1.97 1.68
14 698.0 710.7 710.7 711.5 794.8 1.79 1.79 1.90 12.18
13 655.0 665.2 665.2 665.4 706.8 1.53 1.53 1.56 7.33
12 648.0 656.8 656.8 657.3 668.2 1.34 1.34 1.41 3.02
11 610.0 599.1 600.9 601.9 644.8 1.82 1.52 1.35 5.40
10 583.0 562.2 562.2 562.4 608.2 3.70 3.70 3.66 4.14
9 525.2 555.1 554.6 607.5
8 517.2 517.2 517.6 549.2
7 513.0 506.8 509.1 509.4 528.0 1.22 0.76 0.71 2.84
6 503.0 501.1 501.1 501.7 519.2 0.38 0.38 0.26 3.12
5 288.7 288.7 289.6 292.2
4 276.0 265.5 272.3 276.6 273.2 3.95 1.35 0.22 1.02
3 214.0 220.5 221.8 259.8 224.5 2.95 3.51 4.68
2 162.3 162.3 217.2 170.2 1.47
1 -184.4 -184.4 158.0 -231.6

Average 1.63 1.42 1.15 2.02

a Modes three and two were switched in the experimental data see text for a full explanation.

〈ν̃〉0 )
〈0|ν̃|0〉
〈0|0〉

ν̃0{1 +
∫-λ

λ
exp{-Rη2}δη2 dη

∫-λ

λ
exp{-Rη2} dη } (6)

〈ν̃〉1 )
〈1|ν̃|1〉
〈1|1〉

)
ν̃0∫-λ

λ
exp{-Rη2}2Rη2(1 + δη2) dη

∫-λ

λ
exp{-Rη2}2Rη2 dη

(7)

∆ν̃ ) 〈ν̃〉1 - 〈ν̃〉0 (8)

|0〉 ) (Rπ)1/4
exp{-RQ2/2}

|1〉 ) 1
2(Rπ)1/4 xR exp{-RQ2/2} (4)

ν̃ ) ν̃0(1 + δQ2) (5)
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For λ ) infinity the integrals are

The calculated harmonic shift depends on the magnitude ofλ.
It is not practical to numerically extend the procedure to
λ ) ∞, since normal modes have a finite possible extent of
displacement. Thus, the procedure consists of carrying out the
calculation at various values ofλ to ascertain that the shift from
the harmonic frequency is consistent. Ideally, the harmonic shift
will converge as calculations are carried out with larger and
larger values ofλ.

Results and Discussion

Harmonic Frequencies.The frequencies obtained from the
harmonic approximation are presented in Tables 1 and 2 for
both GGA/DNP (DMol3) and B3LYP/6-31G* (Gaussian98)
calculations. In column 2 of Tables 1 and 2 the harmonic
frequencies are reported for the DMol3 and Gaussian98 calcula-
tions, respectively. Column 5 in each table lists respective scaled
frequency obtained using FCART01. The GGA/DNP calculated
frequencies fit the experimental data remarkably well even
before scaling is applied; the average percent difference was
found to be 1.54%, with only six modes having a percent
difference greater than 2.5%. Scaling the GGA/DNP frequencies
did not improve the agreement. The average percent difference
increased to 2.19% due to a poorer correspondence between
the lower frequency modes (mode 14 and below) and the
experimental data. For the B3LYP/6-31G* calculation, the
unscaled frequencies deviated by 2.48% but the scaled frequen-
cies differed by only 0.77%. The B3LYP/6-31G* unscaled
frequencies have a greater deviation in the higher modes than
those of the GGA/DNP method, with almost all modes, above
mode 21 having a percent difference greater than 2.5%. Scaling
the B3LYP/6-31G* frequencies improves the fit to the lower
modes, with only three modes having a percent difference
greater than 2.0%. It should be noted that the scaling factors
used on the B3LYP/6-31G* method had been refined using a
larger number of molecules, than those used on the GGA/DNP
method. Overall the agreement for both methods is encouraging,
however, specific mode classes, e.g., high-frequency C-H and
N-H stretching modes, all show significantly poorer agreement
than the average, suggests that the origin of discrepancies arises
from a breakdown in the harmonic approximation.

There are several trends seen with both DFT methods.
Generally, the agreement between experimental frequencies and
the unscaled frequencies is poor for the C-H and N-H
stretching region (3100-3700 cm-1), but is correctable with
scaling. Modes involving C-C and C-N stretching (600-1700

cm-1) generally fit well before scaling and only improve slightly
upon scaling. However, all of the out-of-plane C-H and N-H
wags in the 500-1000 cm-1 region show strong anharmonicity
(see Single-Mode Anharmonicity). The lower frequency modes
(<600 cm-1) are fitted poorly in both models with five modes
out of 10 not even being observed. The DFT assignments of
modes above 800 cm-1 are reasonably reliable, whereas for
modes below 800 cm-1 the correspondence between calculated
and observed frequencies is less reliable. Thus, in the absence
of isotopomer studies, DFT assignment of modes below 800
cm-1 should be done with caution.

The comparison shown in Tables 1 and 2 indicate that both
DFT calculations have similar shortcomings. They are accurate
in the mid-frequency region and show similar frequency and
intensity discrepancies with the experimental data. The large
IAWPE reported for the GGA/DNP calculation results from a
number of modes (e.g., modes 35, 31, 22, 15, and 11) that are
predicted to have significant IR intensity but are hardly observed
in the spectrum. The B3LYP/6-31G* IAWPE value of 39.4
compares favorably with the average planar IAWPE of 22 and
nonplanar IAWPE of 72 reported for gas-phase IR spectra of
heterobicyclics.2 It can be concluded that both the frequencies
and IR intensities of matrix isolation spectra of adenine are
reasonably well modeled by the gas-phase calculations carried
out here. The modes involved are similar in both calculations.
The FCART01 scale factors used for scaling the GGA/DNP
and the B3LYP/6-31G* calculations are quite different from
each other for C-C/N-H bending and C-C-C-H waging
coordinates which suggests that there is a systematic error in
the calculation (see Supporting Information for the scale factors
used in each method). In the following, we show that the
discrepancies are due to a failure of the harmonic approximation
rather than a failure of the either of DFT methods. The
consideration of anharmonic contributions is divided into a
single-mode and a intermode coupling or multimode contribu-
tion.

Single-Mode Anharmonicity. Adenine has 39 normal modes
of vibration: nominally 27 are in the molecular plane and 12
are out of the molecular plane. Single-mode anharmonicity is
distinguishable by large cubic and quartic terms, obtained from
fitting each modes potential energy surface as described in the
Computational Methods, the results of which are reported in
columns 4 and 5 of Table 3. The N-H and C-H stretching
vibrations (modes 35-39) exhibit significant cubic anharmo-
nicities (column 4 of Table 3). This is important since the
unscaled frequencies deviate substantially; for example, mode
39, is calculated as 108 and 178.5 cm-1, higher than the
experimental frequencies, for the GGA/DNP and B3LYP/6-
31G* calculations, respectively. Modes 19, 17, 9, 6, and 1 have
the largest quartic anharmonicity values. These modes all
involve out-of-plane wagging of hydrogen atoms in C-H or
N-H bonds. Mode 1 involves N10-H14 and H15 puckering,
mode 6 involves N9-H12 wagging, mode 9 involves N10-
H14 and H15 twisting, mode 17 involves C8-H13 wagging,
and mode 19 involves C2-H11 wagging. Modes 34, 31, 24,
21, and 20, also exhibit quartic anharmonicities. These modes

〈1|ν̃|1〉
〈1|1〉

) ν̃0

R{4λRxR - 2xπerf(λxR)}exp(λxR) + δ{4λ3RxR + 6λxR - 3xπerf(λxR)exp(λ2xR)}

2R{2λxR - xπerf(λxR)exp(λ2xR)}
(9)

and

〈0|ν̃|0〉
〈0|0〉

) ν̃0

R{2xπerf(λxR)}exp(λxR) + δ{xπerf(λxR) - 2λxRexp(-λ2xR)}

2xπerf(λxR)
(10)

〈0|ν̃|0〉
〈0|0〉

) ν̃0(1 + δ
2R)

〈1|ν̃|1〉
〈1|1〉

) ν̃1(1 + 3δ
2R)

〈ν̃〉1 - 〈ν̃〉0 ) δ
R

(11)
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all involve in-plane bending or stretching motions, of C-C-H
or C-N-H internal coordinates. Mode 20 involves N10-H14
and H15 rocking, mode 21 involves N9-C8-H13 and C8-
N9-H12 bending, mode 24 involves C8-H13 bending, mode
31 involves N7-C8-H13 stretching, and mode 34 involves
C6-N10 stretching and N10-H14 and H15 scissoring. All of
these modes (34, 31, 24, 21, 20, 19, 17, 9, 6, and 1) consist of
relatively isolated movements. An analysis of the preceding
results indicates that there is a correlation between specific
classes of normal modes and the magnitude of there anharmonic
terms. This is significant since it suggests that there are a limited
number and type of normal modes that need to be examined in
order to provide a better understanding of where anharmonicity
is important in nucleic acids and other important biological
molecules.

Mode 1 is of particular interest for it is the C6-N10-H14
and H15 puckering mode that involves concerted out-of-plane
motion of H14 and H15 and the smaller motion of N10 in the
opposite sense relative to the plane of the adenine ring. We
refer to this mode as the NH2 puckering mode in the following.
The NH2 puckering mode is a classic example of a quartic-
quadratic potential surface (Figure 2A,B). Both the GGA/DNP
and the B3LYP/6-31G* calculations result in a negative
frequency (i.e. imaginary eigenvalue) for this mode. This
corresponds to the fact that the mode oscillates about a local
maximum rather than a local minimum as shown in Figure 2B.
Figure 2A shows the PES of the NH2 puckering mode with the

first five Numerov-Cooley wave functions. The displacements
represent the eigenvalues determined by the procedure. The
exocyclic NH2 puckering mode frequency can be estimated from
the 0f1 transition as calculated by the Numerov-Cooley
procedure and was found to be 420.0 cm-1. The amino group
of adenine (N10-H14 and H15) is directly involved in six of
the fifteen single-mode anharmonicities (1, 9, 20, 34, 37, and
39) and all 10 of the multimode anharmonicities (4, 7, 11, 20,
22, 23, 37, and 39). In summary, there is strong correlation
between the type of motion for a given normal mode and the
magnitude of its anharmonicity. This correlation affects five
high-frequency stretching modes, five low-frequency out-of-
plane wagging modes, and five low-frequency in-plane bending
modes, which have cubic, large quartic and moderate quartic
anharmonicities, respectively.

Anharmonic Multimode Coupling. The single-mode an-
harmonicities given in Table 3 do not report on intermode
anharmonic coupling. To ascertain whether there is strong
intermode coupling, we implemented the harmonic shift analysis
(HSA) procedure as described in the methods section. Within
the harmonic approximation, all normal coordinates are or-
thogonal, and therefore, in theory, a distortion along one normal
coordinate does not affect frequencies of the other normal
coordinates. The observation of a frequency shift for a projected
geometry is evidence that a normal mode is coupled anhar-
monically to other modes. The determination of intermode
anharmonic coupling for all of the normal modes in a molecule
would require that an eigenvector displacement and a subsequent
frequency calculation be performed each mode, but this would
be computationally expensive process. Therefore, we choose
to perform an eigenvector displacement only on the NH2

puckering mode, for this mode results in a negative frequency
(i.e. imaginary eigenvalue). Moreover, Table 3 indicates that
only certain classes of modes are likely to have strong intermode
coupling, and furthermore that these motions are relatively
isolated. Thus, the HSA method can be applied to a subsystem
of a complicated molecule.

The HSA procedure was implemented for the NH2 pucker
mode of adenine. The results are shown in Figures 3A-E for
modes 2-39. In Figures 3A-E those modes that are flat show
no shift for displacements along the NH2 puckering mode
eigenvector and behave as expected for the harmonic ap-
proximation. On the other hand, those modes In Figure 3 that
have curvature show a harmonic shift. HSA reveals that there
are 11 modes out of a total of 38 that should be considered in
intermode anharmonic coupling that involves the-NH2 pucker-
ing mode. The remaining 27 modes have negligible coupling
to mode 1. It is not surprising that all of the 11 modes have
motions that include the exocyclic-NH2 group. Three modes
stand out as strongly coupled to the NH2 puckering mode. Mode
9, Figure 3D, which has a very unusual pattern, that being a
triple minimum, and modes 37 and 39 Figure 3A, that have
very large negative shifts. Modes 4, 7, 11, 20, 22, 23, 32, and
34 are coupled weakly and they exhibit moderate shifts over
the range of nuclear coordinate space sampled.

There are two methods for evaluating the relative magnitude
of the anharmonicity. The first method is the approach described
above in 4-10, which involves averaging over the nuclear
displacement of mode 1 using the empirically determined
Numerov-Cooley wave function as the probability distribution
function for the nuclei. The results of this method are presented
in Column 4 of Table 4 labeled HSA. Since this HSA correction
involves the contribution of only a single mode it is not expected
to completely fit the data. However, there is an improvement

Figure 2. A. The potential energy surface for mode 1 including the
first five wave functions, as determined by the Numerov-Cooley
method.29 The notable feature is a lack of a well-defined minimum in
this modes potential energy surface. B. An expanded scale view of the
potential energy surface for mode 1. The curvature is negative at the
equilibrium position giving rise to a small barrier (<0.5 cm-1).
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in the agreement of all of the modes in adenine that are
anharmonically coupled to the NH2 puckering mode. The second
method is a fixed geometry calculation, Column 5 of Table 4,
which compares the frequencies as calculated at an eigenvector
projection corresponding to one of the minima in the PES,
Figure 2B. When the-NH2 group was forced into this

configuration there were no longer any negative eigenvalues.
The significance of this calculation is that a modest change in
environment (e.g., hydrogen bonding to either a nucleotide or
water) can produce a similar geometry distortion of the-NH2

group out of the plane. For example, the X-ray structure of
adenine trihydrate23 indicates that there is an out-of-plane

Figure 3. A. Representation of modes 35-39 for a(0.5 displacement along the eigenvector of mode 1 after eigenvector mapping was performed.
Note that the dependence of modes 35, 36 and 38 on the projection displacement is very weak. By contrast, modes 37 and 39 show a very strong
dependence, where mode 39 crosses modes 35, 36, and 38 and where mode 37 crosses modes 35 and 36, but neither mode 37 nor mode 39 cross
each other. B. Representation of modes 25-34 for a(0.5 displacement along the eigenvector of mode 1 after eigenvector mapping was performed.
Note that the dependence of modes 25-31 and 33 on the projection displacement is very weak. By contrast, modes 32 and 34 show a strong
dependence. C. Representation of modes 15-25 for a(0.5 displacement along the eigenvector of mode 1 after eigenvector mapping was performed.
Note that the dependence of modes 15-19, 21, 22, and 24 on the projection displacement is very weak. By contrast, modes 20 and 23 show a
strong dependence. D. Representation of modes 6-14 for a(0.5 displacement along the eigenvector of mode 1 after eigenvector mapping was
performed. Note that the dependence of modes 6, 8, 10, 12, 13, and 14 on the projection displacement is very weak. By contrast, mode 9 shows
a very strong dependence, that being a triple minimum. E. Representation of modes 2-5 for a (0.5 displacement along the eigenvector of mode
1 after eigenvector mapping was performed. Note that the dependence of modes 2, 3, and 5 on the projection displacement is very weak. By
contrast, mode 4 shows a strong dependence. The distortion in mode 2 results from an restriction of its motion by mode 1 and does not show any
dependency on mode 1 via intermode coupling.
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geometry distortion of the-NH2 group. The frequencies and
percent differences from the experimental data are reported in
Table 4 for the GGA/DNP, HSA, fixed distorted, and scaled
GGA/DNP models. Considering even a single mode, the NH2

puckering mode, HSA provides an overall improvement in the
agreement with experiment (column 7, Table 4). The fixed
distorted geometry model (column 8, Table 4) also improves
the agreement with experiment in cases where there is more
than one stable equilibrium conformation as is the case for the
NH2 pucker mode (Figure 2).

The application of the HSA method provides insight into the
exocyclic amino group of adenine. The large discrepancy
between the calculated and experimental values of the N-H
symmetric (mode 37) and asymmetric (mode 39) modes is due
in large part to the intermode coupling with the lowest frequency
NH2 puckering mode. The NH2 scissoring mode (mode 34) has
a higher experimental frequency 1633 cm-1 than that calculated
by the GGA/DNP method within the harmonic approximation
(1620 cm-1) consistent with an increase in frequency of+13
cm-1 due to anharmonic intermode coupling to mode 1 (Table
4). Anharmonic intermode coupling to mode 9 (the amino twist
mode) provides a substantial increase in the frequency compared
to the harmonic frequency moving this mode closer to the
observed pair of modes at 583/592 cm-1. The frequency of the
NH2 pucker mode itself is estimated to be∼420 cm-1 based
on the single-mode anharmonicity. However, HSA suggests that
the frequency is significantly lower and may correspond to the
mode at 242 cm-1 observed in matrix isolation data. The results
suggest that the exocyclic amino group of adenine can be treated
as a separate subsystem. The method described here provides a
conceptually simple framework for approaching the complexity
of anharmonic coupling in large molecules.

Conclusion

The HSA approach provides a new means to enhance the
computational accuracy of DFT modeling of vibrational spectra.
Matrix isolation data present a good starting point since the
complexity introduced by hydrogen bonding can be ignored.
However, there are number of challenges that remain, even for
the isolated adenine molecule. Given that normal modes of
vibration often tend to occur in clusters, an experimental
approach to the separation of harmonic and anharmonic modes
is needed. The combination of infrared and Raman spectroscopy,
including Raman polarization and depolarization ratios, provides
an experimental handle to aid in assignment of all modes since
it will help to determine the true mode ordering in a congested
region. Temperature and isotopic labeling are two other
important experimental factors that can be varied in order to
obtain information on these modes. The Pulay matrix scaling
method provides a starting point for fitting of the experimental
data. However, an approach that includes anharmonic multimode
coupling reveals that low-frequency modes are not expected to
be well-represented by the harmonic approximation. The scaled
quantum mechanical (SQM) approach will never satisfactorily
calculate these modes since they are not harmonic. The
important result from the present study is that modes can be
treated as subsystems that are anharmonically coupled. For
example, the asymmetric and symmetric N-H stretching modes
of the exocyclic amino group are coupled to the NH2 pucker
mode. Multimode coupling accounts for a significant amount
of the discrepancy observed between the calculated values and
experimental data for N-H stretching modes. The low-
frequency pucker mode is not determined at all within the
harmonic approximation. By contrast, the approach taken here

using the Numerov-Cooley method provides an estimate for its
frequency for the first time. However, multimode coupling will
be important for this mode and will probably lower the
calculated frequency. The future goal is to combine the HSA
method with matrix scaling by using the fact that only certain
modes are anharmonically coupled while other modes obey the
harmonic approximation. The key application for this approach
is interpretation of vibrational spectra in DNA, RNA, and
complexes of polynucleotides with drugs and proteins.
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