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The finite wavelength instability generates trigger and packet waves in an extended three-variable Brusselator-
type model. The trigger waves account for experimentally observed stacking (shock) structures and acceleration
of oncoming waves before collision observed in the Belousov-Zhabotinsky system. Packet waves exhibit
specular reflection from surfaces. The mouth of a narrow tube connected to a broader region acts as a
semitransparent mirror for packet waves leaving the tube, with a coefficient of transparency that depends on
the tube radius.

1. Introduction

Recent discoveries of antispirals, standing waves, accelerating
waves, and packet waves in the Belousov-Zhabotinsky (BZ)
system dispersed in water droplets of water-in-oil AOT
microemulsions1-3 (BZ-AOT system) attract attention to the
properties of waves arising from the finite wavelength instability,
for which the linearized equations possess a complex conjugate
pair of eigenvalues with a positive real part at a characteristic
nonzero wavenumberk0. Unlike the Hopf instability, Re(λ) may
be negative at zero wavenumber (k ) 0), in which case the
homogeneous steady state is stable.

We have shown earlier3 that the finite wavelength instability
with a negative derivative dω/dk at k ) k0 gives rise to
antispirals. The finite wavelength instability can also produce
standing waves4 and packet waves,3 which are composed of
phase waves. However, it is not clear whether it is possible to
obtain trigger waves from a pure finite wavelength instability
(“pure” in this case implies that Re(λ) < 0 atk ) 0, so there is
no Hopf instability). If trigger waves can also arise in such a
situation, what is the fundamental difference between trigger
and packet waves?

In this paper we analyze trigger waves produced by a pure
finite wavelength instability in a Brusselator-like reaction-
diffusion model and compare these simulated results with our
experimental results on accelerating waves in the BZ-AOT
system, and with Hamik et al.’s experiments5 on stacking or
shock structures in the aqueous 1,4-cyclohexanedione BZ
system.6

Although the Brusselator does not precisely mimic the
chemistry of the actual BZ reaction, it is dynamically similar
and computationally tractable and has been used in numerous
studies of chemical oscillators. For example, both oscillatory
cluster patterns in a BZ system subject to periodic perturbation7

and competition between Turing and Hopf modes in the
chlorite-iodide-malonic acid reaction8 have been successfully
analyzed with the aid of the Brusselator. We employ a modified
Brusselator model, in which time scale factors9 bring the model
closer to the Oregonator model of the BZ reaction, with different

time scales for the activator and the inhibitor, and with an
additional variable, a fast diffusing unreactive form of the
activator.10-12 We also demonstrate new reflection properties
of packet waves and a dependence of their behavior on the radius
of a thin tube from which packet waves enter a broader region.

2. Model and Methods

Our model starts from the standard Brusselator,13 with u as
the activator andV as the inhibitor. We supplement this model
of the aqueous phase chemistry with two additional features:
(a) a time-scale factorε1, 1, which allows the Brusselator
model to sustain traveling waves;9 and (b) a third, rapidly
diffusing variablew (Dw . DV ) Du). The new variablew
represents an unreactive form ofu, analogous to BrO2• in the
oil phase of the BZ-AOT system. The term “unreactive” means
that speciesw does not take part in any chemical reactions in
the oil phase other than interconversion withu in the aqueous
phase, where it can react with other water-soluble molecules.
Speciesw diffuses more rapidly, because it diffuses as single
molecules in the oil phase, whereasu and V diffuse as entire
water droplets in water-in-oil microemulsions.1-3 The only
“reactions” of w are exchange between the two phases,
characterized by rate constantsc and d and by an additional
time-scale factorε2. The resulting system is described by eqs
1-3, and the unmodified Brusselator is given by eqs 1 and 2
with c ) d ) 0 andε1 ) 1. It has been shown previously that
both a modified three-variable Brusselator model10,11and model
eqs 1-312 with ε1 ) ε2 ) 1 generate a finite wavelength

instability. Combining all these properties, we have found a set
of parameters that produces a pure finite wavelength instability
supporting either trigger or packet waves with the same
parametersa, b, c, d andε1, but differentε2. Dispersion curves
(Figure 1) obtained by linear stability analysis demonstrate that
the major difference between the two cases is that max(Re(λ))
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du/dt ) (a - (1 + b)u + u2V - cu + dw)/ε1 + Du∆u (1)

dV/dt ) bu - u2V + DV∆V (2)

dw/dt ) (cu - dw)/ε2 + Dw∆w (3)
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for trigger waves (=2.67) is much greater than the corresponding
value (=0.038) for packet waves.

We integrated the partial differential equations (1)-(3) using
FlexPDE,14 in which a Newton-Raphson iteration process is
used with a variable time step and mesh. FlexPDE refines the
triangular finite element mesh until the estimated error in any
variable is less than a specified tolerance, which we chose as
10-4, at every cell of the mesh. Calculations were performed
with different geometrical shapes of a working area. The initial
conditions are the homogeneous steady-stateuSS ) a, VSS )
b/a, andwSS) ca/dplus some chosen small local perturbation.
Zero-flux boundary conditions are used.

3. 1-D Simulation. Packet Waves

First, we examine the behavior of system (1)-(3) for ε2 )
0.61 (when packet waves are obtained) in one spatial dimension
(Figure 2). The homogeneous steady state was initially (att )
0) perturbed at the right boundary. The perturbation grew into
a Gaussian wave packet (see also the Gaussian envelope in
Figure 4b, which fits a wave packet over several orders of
magnitude from 10-8 to nearly 10-4) moving to the left with
group velocityVgr ) 1.93 (measured as the displacement of
the maximum amplitude of the packet). The group velocity is
nearly equal to dω/dk ()2.00) atk ) k0 ()0.955). In simulations
of packet waves with other parameters, we have found that the
simulated group velocity is always very close to the calculated
dω/dk at k ) k0. The phase velocity,Vp, of individual waves in

a packet is given byω0/k0, whereω0 is Im(λ) at k ) k0. In the
present case,Vp ) 36.67. Upon collision, two Gaussian wave
packets pass through each other4,12 without annihilation, in
contrast to the behavior of trigger waves.

In general, the shape of the wave packet depends on both
the real and the imaginary parts of the eigenvalueλ(k), i.e., on
the dispersion curve. Wave packets with nearly square envelopes
were also obtained at other system parameters. The behavior
of Gaussian wave packets is well-known in optics and quantum
mechanics.15-17 A wave packet propagates with a group velocity,
Vgr ) ∂ω/∂k at k ) k0, and spreads in time in such a way that
the width,σ, of the Gaussian envelope [exp(-(x - x0)2/2σ2)]
grows in time asσ ) σ0(1 + (t/τ)2)1/2, whereτ is a constant,
andσ0 ) σ at time t ) 0.

4. 1-D Simulation. From Packet to Trigger Waves

Trigger waves are obtained atε2 ) 0.2. We used two types
of initial perturbation. In this section we describe a soft
perturbation. A segment of lengthL is divided into two zones
with ε2 ) 0.61 for 0< x < Lt andε2 ) 0.2 forLt < x < L. All
other parameters and the steady state are the same in both zones.
The segment is perturbed atx ) 0. After the perturbation, a
packet of waves emerges at the left border and moves to the
right (Figure 3a). After some time, a new packet of waves
becomes visible in the right zone withε2 ) 0.2 (Figure 3b).
The amplitude of the waves in the right packet grows rapidly
(Figures 3b,c) and exponentially (Figure 4a) with an exponent
(=2.7) close to max(Re(λ)) ) 2.67. The packet moves with
group velocityVgr = 7.1, approximately equal to dω/dk ) 7.15
at k ) k0.

At about t ) 9 (Figure 3d), the growth rate of the largest
peak exceeds the exponential growth rate (see Figure 4a), and
the amplitude of the middle wave in the packet reaches a large
value around 30-40 (the steady-stateuSS ) 3.1). This is the
moment of transition (analogous to a first-order equilibrium
phase transition) from packet waves to trigger waves. Im-
mediately after this (Figure 3e,f), the amplitudes of other waves
in the packet also reach large values, and a competition among
the trigger waves begins. Waves in the center of the packet die,
and waves closer to the ends of the packet survive (Figure 3f,g).
Due to the oscillatory character of the instability atk ) k0, new
waves emerge (Figure 3h), and a new wavelength is established.

Figure 1. Dispersion curves for system (1)-(3) at ε2 ) (1) 0.61 and
(2) 0.2. Solid curves are Re(λ); dotted lines “ω1/10” and “ω2/10” are
one-tenth of the imaginary partsω of eigenvaluesλ for cases (1) and
(2), respectively. Parameters:a ) 3.1, b ) 3.2, c ) 2, d ) 1.5, ε1 )
0.02,Du ) DV ) 1, Dw ) 20.

Figure 2. Gaussian wave packet (recorded for variableu) at t ) 100
with initial perturbation att ) 0: u ) uSS + 0.2 for 299< x < 300.
All parameters are as in Figure 1,ε2 ) 0.61. The arrow shows the
direction of the wave packet’s propagation. The Gaussian envelopeuSS

+ A0/(σ(2π)1/2) exp(-(x - x0)2/(2σ2)) has parametersx0 ) 106, σ )
30, andA0 ) 8.2.

Figure 3. Transformation of packet waves into trigger waves (recorded
for variableu). All parameters are as in Figure 1,ε2 ) 0.61 for 0< x
< Lt, andε2 ) 0.2 for Lt e x < 400;Lt ) 50; t ) (a) 5.6, (b) 7.0, (c)
8.0, (d) 9.0, (e) 9.1, (f) 9.2, (g) 10.4, (h)10.46. Initial small perturbation
at t ) 0 andx ) 0.
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Finally, we obtain two sets of trigger waves moving in opposite
directions. The properties of these trigger waves are examined
in sections 5-7.

Here we focus on the emergence of the second wave packet
in the right zone, atx > Lt. Backward extrapolation from the
position and velocity of the packet at later times suggests that
this wave packet emerges att = 0 andx ) Lt with an extremely
small amplitude. Significant amplification confirms the existence
of this very small amplitude wave packet in the earliest stages
(Figure 4b). Variation ofLt between 10 and 200 (the wavelength
of the packet waves is 2π/k0 = 6.1) does not reveal any
dependence of the time of packet emergence onLt. In all cases,
the wave packet emerged att = 0. Thus, its initiation has no
relation to the phase or group velocity of the left wave packet.
Presumably, its emergence att = 0 andx ) Lt originates from
an “infinite” rate of spreading of the initial perturbation due to
diffusion. Simulations of system (1)-(3) with a ) b ) 0 and
with the initial perturbationu0 ) 1 at 0< x < 1 andu0 ) 0
elsewhere reveal that the spatial distribution ofu at very early
times (t ) 0.02, for example) can be described by a Gaussian-
like function. For this reason,u exceeds the steady-state value
uSS everywhere, including atx ) Lt for t = 0, leading to the
essentially instantaneous emergence of the second wave packet
in the presence of a finite wavelength instability.

5. 1-D Simulation. Trigger Waves

To simulate a “strong” perturbation, we used a homogeneous
segment withε2 ) 0.2 and letu0 ) 15 (close to the amplitude
of the developed trigger waves shown in Figure 3e-h) for 0 <
x < 1 and t ) 0. In this case, trigger waves emerge without
intermediate packet waves and start to move to the right
immediately. New waves periodically emerge atx ) 0 with a
period T ) 2π/ω0, but not all waves survive. Typical wave
patterns are presented in Figure 5. Two groups of waves with
different wavelength,λ, velocity,V, and amplitude,A, are seen

in Figure 5b. For the leading group (at the right, group 1),λ1 =
9.3, V1 = 34.6, andA1 = 25, and for the second group,λ2 =
24,V2 = 54, andA2 ) 35-40. Note thatω0/k0 ) 29.5 andλ )
2π/k0 ) 6.1. Thus, the velocity of the trigger waves is larger
than the phase velocityω0/k0, and the wavelength exceeds 2π/
k0. “Fast” waves from the second group are transformed into
“slow” waves of the leading group at the boundary between
the first and the second groups of waves, the “shock point”.5

Hamik at al.5 observed analogous behavior, which they called
(after Howard and Kopell18) stacking or shock structures, in
the BZ reaction with 1,4-cyclohexanedione as substrate. Until
now, there have been no reaction-diffusion models that generate
shock structures in autonomous systems. Horikawa has found
shock structures in the Fitzhugh-Nagumo model periodically
perturbed with external impulses.19 The velocity of the shock
point may be expressed by the following simple kinematic
relation:18,20

which yieldsVshock= 21.2 in our case. Direct calculation (dotted
line in Figure 5a) givesVshock = 21.

The stacking phenomenon (often seen in traffic jams) is
associated with a negative dispersion dV/dλ, the dependence of
the wave velocity on wavelength.21,22 Note that dV/dλ reflects
nonlinear interactions between two or more consecutive waves,
whereas the dispersion dω/dk obtained from linear stability
analysis reflects only the properties of the steady state.

Like the usual trigger waves found in two-variable mod-
els,10,23,24such as the Fitzhugh-Nagumo25 or the two-variable
Oregonator,26 our trigger waves annihilate upon collision with
one another or with the zero-flux boundary. This feature (among
others) distinguishes them from packet waves, which pass
through each other or reflect from the boundary.

6. 2-D Simulation. Accelerating Trigger Waves

In the previous section we saw how trigger waves can slow
if a group of “slow” waves propagates in front of them. The
opposite phenomenon can occur when individual trigger waves
collide. We observed this behavior in experiments on the BZ-
AOT system at large water droplet concentrations (above the
percolation threshold) and interpreted it as resulting from an
increase in the wave velocity with decreasing inhibitor concen-
tration.1 Later, we suggested that this behavior might arise from
acceleration of phase waves in a packet under the geometric
constraints of waves entering the region between two wave
basins.3 This latter argument, however, does not explain several
experiments in which we saw wave acceleration before collision
in the absence of special geometrical conditions.

Figure 6 shows accelerating trigger waves in model (1)-(3).
This behavior resembles that observed in experiments with the
BZ-AOT system. Because we have never seen acceleration of
approaching trigger waves in two-variable activator-inhibitor
models, we conclude that this phenomenon is connected with
the third variable, the fast diffusing unreactive form of the
activator. Fast diffusion ofw leads to depletion of the inhibitor
V between two oncoming waves, so the present results support
our earlier interpretation.

7. 2-D Simulation. Spirals and Critical Radius for
Trigger Waves

It is well-known27 that spirals emerge in an excitable (or
oscillatory) medium as the result of a trigger wave break. Open
ends of a broken wave evolve due to the dependence of the

Figure 4. (a) Dependence of maximum amplitude (u) of wave packet
on time (squares, solid line is trend line) in semilogarithmic coordinates.
(b) Wave packet att ) 5 in semilogarithmic coordinates. The dotted
line is the Gaussian envelopeA0/(σ(2π)1/2) exp(-(x - x0)2/(2σ2)) with
x0 ) Lt + Vgrt, σ ) 7.8, andA0 ) 0.000 57. All parameters are as in
Figure 3.

Figure 5. (a) Time-space plot of trigger waves (u) at ε2 ) 0.2. Data
were accumulated with time interval 0.1; movement of the shock point
is shown by the bold dotted line. (b) Two groups of trigger waves at
t ) 5.1. Initial perturbation ofuSS at t ) 0 andx ) 0, u0 ) 15.

Vshock) (V1λ2 - V2λ1)/(λ2 - λ1) (4)
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normal wave velocity,V(r), on the curvature, 1/r, according to
the relation28-30

wherec0, which is unique for a given medium, is the velocity
of a plane wave,D is the diffusion coefficient of the activator,
andh is a constant=2. We have already seen that when there
is a finite wavelength instability, trigger waves in one spatial
dimension (analogue of plane waves) may have two velocities.
In addition, we have two forms of the activator with quite
different diffusion coefficients (Du and Dw). What are the
appropriate values ofD andc0 in eq 5?

First, we wanted to be sure that “normal”, outwardly rotating
spirals (inwardly rotating “antispirals” are obtained from packet
waves2,3) can be obtained for the case of finite wavelength
instability. We used typical initial conditions for spirals in an
excitable medium: a broken wave, i.e., two neighboring narrow
segments with increased concentration of activator and decreased
concentration of inhibitor, with concentrations set at their steady-
state values elsewhere. Figure 7b shows the spiral that developed
at t ) 1.2. The wavelengthλS, velocity VS, and amplitudeAS

of the spiral wave are 13 (betweenλ1 and λ2 in the one-
dimensional simulations), 35 (very close toV1), and 30-35
(betweenA1 andA2), respectively. Because the curvature of the
outermost spiral waves (roughly the reciprocal of the distance
from a wave to the center of the spiral) is small (hD/r , c0,
even forD ) Dw ) 20), we conclude thatc0 = V1. Our working
area (radiusR ) 30) is not sufficiently large to resolve shock
structures, if they exist at all for spiral waves.

If normal spiral waves exist, then eq 5 predicts that at some
critical radiusrcr = D/c0 (for h ) 1), waves in a tube of radius
ercr cannot significantly penetrate into a wider region connected
to the tube. This prediction was confirmed experimentally in

the BZ reaction.31,32We now examine in a computer experiment
its validity for a system with a finite wavelength instability.

In Figure 7c, we show the geometry of our computer
experiment, in which a narrow tube is connected to a wider
region. A tube of lengthL and radiusr is connected to a large
(20 × 20) square. A trigger wave is excited at the left end of
the tube. Depending on the radiusr, waves can or cannot enter
the square. Whenr < rcr, the wave disappears near the right
end of the tube. Figure 7c shows a case when trigger wave
almost enters the square but finally dies (r ) 0.071). If r > rcr,
trigger waves enter the square and propagate as hemispherical
waves. We find thatrcr ) 0.078. From eq 5,hD ) V1rcr ) 2.7.
If h is about 2, thenD is close toDu ) 1, rather than toDw )
20.

8. 2-D Simulation. Packet Waves. Reflection

The experimental discovery of antispirals, which are probably
a special case of packet waves,2,3 raises the question of the
conditions under which spirals or antispirals (if dω/dk < 0 atk
) k0, phase waves in a packet propagatetoward the center of
perturbation) can occur. We therefore carried out a parallel set
of computer experiments under the same initial conditions, but
with packet waves (ε2 ) 0.61). Figure 8a-d shows that spiral
waves do not emerge in this case. Instead, two wave packets
diverge from the initially perturbed region. The left one, which
is closer to the region of initially increased activator concentra-
tion, has a larger amplitude than the right one, which is closer
to the region of initially decreased inhibitor concentration.

Upon reaching the circular boundary, the two wave packets
reflect in accordance with the rules of geometrical optics,33 i.e.,
the angle of incidence equals the angle of reflection. To our
knowledge, this is the first demonstration of specular reflection
in reaction-diffusion systems. Earlier, it was shown34 that
chemical trigger waves obey Snell’s law of refraction but do
not exhibit specular reflection. To confirm that specular reflec-
tion occurs generally for packet waves, we made further
computer experiments with several angles of incidence and
geometries (Figure 8e-h). In all cases, reflection was specular.

9. 2-D Simulation. Packet Waves. Critical Radius

The results presented in Figure 8 show that broken wave
edges (large curvature) do not lead to curling of packet waves.
Therefore, it is conceivable that eq 5 does not hold for packet

Figure 6. Acceleration of trigger waves before collision. Parameters
are as in Figure 1 (ε2 ) 0.2), excepta ) 2.9, which gives slightly
positive Re(λ) at k ) 0 (the homogeneous steady state is unstable to
temporal oscillation). Random initial conditions, size) 30 × 30, t )
(a) 1.126, (b) 1.146, (c) 1.156, (d) 1.166. Arrows show locations where
acceleration of two oncoming waves occurs. Zero-flux boundary
conditions.

V(r) ) c0 - hD/r (5)

Figure 7. (a, b) Spiral trigger waves. All parameters are as in Figure
1 (ε2 ) 0.2). Radius of circle) 30, t ) (a) 0.2, (b) 1.2. The gray stripe
in (a) marks the position of the initial decreased concentration of
inhibitor V, and black thin lines show the activator concentration. (c)
Determination of the critical radius for trigger wave transmission.
Length of tubeL is 15, and variable radiusr of tube is 0.071 for (c);
the square is 20× 20. Zero-flux boundary conditions.
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waves. To test this hypothesis, we performed computer experi-
ments with a thin tube connected to a broader region (see Figure
9 c,f). To our surprise, we found that passage of a wave packet
through the mouth of the tube depends on the tube radius,r.
We follow the wave packet by recordingu as a function of
time at several spatial points (Figure 9a,b). Att ) L/Vgr (=12.8),
the center of the wave packet reaches the right end of the tube,
as seen by the maximum inu at t ) 12 in Figure 9b (x ) L).
Then, the wave packetreflectsfrom the right end of the tube
and moves back toward the left tube end, resulting in the second
maximum in Figure 9a (x ) L/2) at t = 22. Reflection is not
total, however. A small portion of the wave packet (measured
as the ratio of the maximum amplitude of the transmitted waves
in the rectangular area atx ) 5L/4 to the maximum amplitude
of the incident wave packet in the tube atx ) 3L/4) passes
through the tube end and enters the large rectangular area. The
effect of the right tube end resembles that of a semitransparent
mirror in a laser tube. The “coefficient of transparency” of this
“mirror” depends on the tube radius,r. For larger, the major
part of the wave packet enters the rectangular area (Figure 9f).
The largerr, the larger the coefficient of transparency (Figure

10). The critical radius,rcr, may be defined for packet waves
as the tube radius at which the coefficient of transparency equals
50%. With our parameters and with wave amplitudes measured
at x ) L/2 and atx ) L ( L/4, rcr ) 1.6-1.7. Because the
amplitudes of the reflected and transmitted waves may change
with time in the active medium, the result is slightly dependent
on the spatial points where the measurements of wave amplitude
are made. For the same reason, the sum of the amplitudes of
the reflected and transmitted waves is not exactly equal to the
initial wave amplitude.

Whenr < rcr, the wave packet reflects from the ends of the
tube many times and a wave pattern similar to standing waves
is established in the tube (Figure 9d,e) and continues to emit
waves into the rectangular region.

Figure 8. Reflection of packet waves. All parameters are as in Figure
1 (ε2 ) 0.61). Time after initial perturbation:t ) (a) 0.1, (b) 8, (c) 22,
(d) 32, (e, g) 12, (f) 26, (h) 34. The radius of the circle (a-d) is 30.
The total size of the rectangle (e-h) is 100× 60, the damping right-
sideband has width 10 (in this band,ε1 ) 0.025, which gives negative
Re(λ) for any wavenumber and prevents reflection from right boundary),
and the excluded left top right triangle has sides 40 and 40 for (e, f)
and 40 and 20 for (g, h). Zero-flux boundary conditions.

Figure 9. Packet waves in a tube with radiusr ) 0.5 (a-e) andr )
2.5 (f). (a, b) Activator concentrationu at x ) (a) L/2, (b)L. Length of
tube,L ) 26.3 ()4λ). (c, f) Snapshots att ) (c) 12, (f) 20. The stripe
around the rectangular area of size (50- L) × 20 has width 6;ε1 )
0.025 in this stripe. (d) Profiles along the middle of the tube and
rectangular area att ) 200.42 andt ) 200.51 (half a period of
oscillation). (e) Space-time plot, cross section along the middle of
the tube and rectangular area; data accumulated with time interval 0.03.
All parameters are as in Figure 1 (ε2 ) 0.61). Zero-flux boundary
conditions.

Figure 10. Dependence of coefficient of transparency on the tube
radius determined by two different methods. (1) Ratio of the maximum
amplitude of transmitted waves atx ) L + L/4 to a maximum amplitude
of the wave packet in the tube atx ) L - L/4. (2) 1- the ratio of the
maximum amplitude of reflected waves to the maximum amplitude of
the incident wave packet atx ) L/2.
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10. Conclusion

We have considered two limiting cases of wave behavior,
pure packet waves and pure trigger waves, and have found new
properties of each. Trigger waves can produce shock structures
and exhibit acceleration of oncoming waves before collision.
Packet waves undergo specular reflection at zero-flux bound-
aries. A “semitransparent mirror” can be constructed under
special geometrical conditions for packet waves. Several ques-
tions remain. We still do not know why packet waves form
spirals (when dω/dk > 0 atk ) k0) or antispirals (when dω/dk
< 0 atk ) k0), if eq 5 is not applicable to packet waves. What
is the characteristic feature that transforms packet waves into
trigger waves? What are the properties of hybrid trigger wave-
packet wave patterns? At present, we can only report that, when
0.3 < ε2 < 0.6, complex wave behavior arises, with multiple
wavelengths and internal reflection of waves of shorter wave-
length from neighboring waves of longer wavelength within a
single wave packet. Complexity increases asε2 decreases, and
chaotic behavior (in one spatial dimension, analyzed only by
Fourier spectra at this stage) is found at aboutε2 ) 0.4.
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