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Chemical waves can travel in well-defined packets. Two types of phase wave packets, distinguished by whether
their component waves move toward or away from an initiating perturbation, are found in a reaction-diffusion
model with a finite wave instability. Their propagation, reflection, and spreading are studied numerically and
analytically. Reflection from a boundary or collision of two identical packets can result in standing waves.
When two wave packets collide, they can interact briefly and then pass through each other without modification.
The phase velocity, group velocity, and spreading velocity calculated by linear stability analysis with the
inclusion of quadratic dispersion agree well with the results of numerical simulations.

1. Introduction

Wave packets in reaction-diffusion systems are rarely seen,
even though wave packets have been intensively studied1 in
atomic, molecular, optical, and solid state physics, and also in
laser chemistry. In those fields, manipulation or measurement
of wave packet coherence is an important technique with
potential applications to exploring the boundary between
classical and quantum mechanics, controlling chemical reaction
dynamics with lasers, and storing information in quantum
computing or communication.

Wave packets in reaction-diffusion systems were first
reported by Zhabotinsky et al.2 in a model calculation, where
the wave packet arises from a wave instability. The first
experimental observation of wave packets in reaction-diffusion
systems was made in the 1,4-cyclohexanedione Belousov-
Zhabotinsky (CHD-BZ) system,3 where the behavior was
attributed to anomalous dispersion of the medium. Recently,
wave packets were found in the BZ reaction in a reverse
microemulsion (BZ-AOT) system4,5 arising from a wave
instability. Wave packets also occur in a differential flow
system6 due to convective instability.

A wave packet consists of waves whose wavenumbers lie in
a small range, the so-called “narrowband”. The packet is
characterized by a width∆x in real space, and a mean
wavenumber,k0, in momentum space. The propagation is
usually described by two velocities, the phase velocity,Vp, at
which the component waves (carrier waves) move, and the group
velocity, Vg, at which the peak of the wave packet travels. The
concept of group velocity appears to have been first enunciated
by Hamilton7 in 1839. A group velocity can be positive or
negative. A negative group velocity implies that the individual
waves move in a direction opposite to that of the packet as a
whole. Such a phenomenon was first pointed out in 1904 as a
consequence of anomalous (negative) dispersion8 and has been
of interest recently in connection with superluminal light.9

The spreading of the wave packet depends on the medium
through which it propagates. A packet, which represents the
Green function of an initially localized impulse perturbation, is

stable if it asymptotically decays in any uniformly translating
frame. Otherwise, the packet is unstable. An unstable packet is
absolutely unstable if, at any fixed location, the waves’
amplitude grows in time. It is convectively unstable if the
amplitude decays at all points in a fixed frame but grows in
some moving frame.10

In this paper, we study wave packets in a homogeneous
reaction-diffusion model. We call these chemical wave packets,
because the waves consist of concentrations varying in space
and are generated by a wave instability arising from the interplay
of chemical reaction and diffusive transport. In homogeneous
reaction-diffusion systems, traveling waves, resulting from
excitability or a Hopf bifurcation, usually occur as wave trains,
as in the case of the familiar spiral waves and target patterns.
In contrast to wave packets, which move in space and occupy
a finite region, wave trains continue indefinitely (in principle)
to emerge from a fixed source and to expand. We find that
chemical waves can travel in well-defined packets when the
wave instability is present. From an initially localized impulse
perturbation, the wave instability gives rise to packets that
always move outward, away from the initial perturbation. The
component waves, however, can propagate either outward or
inward. Outwardly propagating (OP) waves are more common;
inwardly propagating (IP) waves are rarely seen. IP wave
packets are also referred to as backward volume waves
(BVW).11 One special feature we find for these chemical wave
packets is that two packets can pass through each other like
solitons, rather than annihilating as in the case of spiral waves.

2. Phase Velocity, Group Velocity, and Speed of
Spreading of a Wave Packet

The wave instability plays an important role in pattern
formation in many systems, such as binary fluid convection,12

surface reactions,13 electrochemical reactions,14 and the BZ-AOT
system.4 When a wave instability emerges in a homogeneous
reaction-diffusion system, the symmetry of the uniform steady
state solution is broken, generating oscillatory patterns periodic
both in time (oscillatory frequencyωc * 0) and in space
(wavenumberkc * 0).12

Just above the wave bifurcation, a small perturbation can
cause the system to leave the steady state, producing waves
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with wavenumbers lying within a narrowband around the
characteristic wavenumberkc. Superposition of waves in the
narrowband results in amplitude modulation and may form wave
packets. For simplicity, we take as an example two waves with
slightly different wavenumbersk1 ) kc - ∆k and k2 ) kc +
∆k. The corresponding frequencies areω1 ) ω(kc) - ∆ω and
ω2 ) ω(kc) + ∆ω. The superposition gives

Becausekc . ∆k, the term cos(∆kcx - ∆ωt) in eq 1 can be
regarded as a modulation of the cos(kcx - ωt) (plane wave)
term. The phase velocity of the plane waves is then

and the velocity of the packet (group velocity) isVg ) ∆ω(k)/
∆k. As ∆k f 0 andk f kc, we have

The spreading of a wave packet is due to the dependence of
the phase velocity on the wavenumber.

On the basis of the sign of dVp/dk, three types of media are
possible as follows: normal dispersive (dVp/dk < 0), nondis-
persive (dVp/dk ) 0), and anomalous (dVp/dk > 0). The group
velocity describes the motion of the point of maximum
amplitude in the packet. For a quantum particle wave, it equals
the speed of the particle,15 with which the energy in the group
is transmitted. In normal media, dVp/dk < 0, which impliesVg

e Vp; in nondispersive media, for example, light in a vacuum
with constant velocityc, we haveVg ) Vp; in anomalous
dispersion,Vg > Vp. Superluminal (faster thanc) light has been
reported due to anomalous dispersion.9

A wave packet centered around the wavenumberkc can be
written as the inverse Fourier transform

whereg(k) ) ∫-∞
+∞ G(x) e-ikx dx ) (8πσ2)1/4e-k2σ2 is the Fourier

transform of the Gaussian function,G(x) ) (2πσ2)-1/4e-x2/4σ2

with a root-mean-square (rms) width∆x ) σ. A wave packet
in general involves a band of waves centered around the
characteristic wavenumberkc. We take the Taylor series
expansion ofω in the narrowband∆k ) k - kc

whereR ) dω/dk ) Vg andâ ) d2ω/dk2. For linear dispersion,
only the first two terms in the expansion are considered. Here,

we include the third term (quadratic dispersion)

At time t, the packet is centered atx(t) ) x(0) + |Vg|t, and its
rms width, from the real part of the exponential function in eq
7, is

Thus, for sufficiently long times, the rms width of the packet
increases linearly with time.

A wave packet emanating from an initial disturbance may
evolve as an isolated packet, as a wave train, or even as a
standing wave, depending upon the magnitude of the group
velocity, |Vg|. If |Vg| is large relative to the speed of packet
spreading,â/2σ, given by eq 8, an isolated packet leaves the
site of the initial pulse perturbation (the source) quickly, and
the initial perturbation dies away (Figure 1a). If|Vg| is slower
than the spreading of the packet, the packet tail moves backward,
toward the source, resulting in continued local oscillation in
the region between the source and the outermost edge of the
packet (Figure 1b). In effect, the initial perturbation remains as
a source of waves, creating a wave train rather than a wave
packet. If|Vg| ) 0, the center of the wave packet remains at the
source, producing waves of equal amplitude in both directions,
which can interact to form standing waves:

When the length of the system satisfiesL ) nπ/k, wheren is
an integer, standing waves appear with stationary nodes atx )
mπ/k, m ) 0, 1, ...,n.

3. Reaction-Diffusion Model

To study the behavior of chemical wave packets, we
constructed a reaction-diffusion model based on the following

A(x, t) ) A1(x, t) + A2(x, t) ) A0 cos[(kc - ∆k)x -
(ω - ∆ω)t] + A0 cos[(kc + ∆k)x - (ω + ∆ω)t] )

2A0 cos(kcx - ωt) cos(∆kcx - ∆ωt) (1)

Vp )
ω(k)

k
|k)kc

(2)

Vg )
dω(k)

dk
|k)kc

(3)

Vg ) Vp + k
dVp

dk
(4)

Ψ(x, t) ) ∫-∞

+∞
g(k - kc) ei(kx-ωt) dk (5)

ω ) ω0 + (k - kc)R + 1
2
(k - kc)

2â + o(k - kc)
3 (6)

Figure 1. Schematic plots showing a linearly convectively unstable
(growing amplitude) packet with a large group velocity (a) and a linearly
absolutely unstable packet with a small group velocity giving a wave
train (b).

Ψ(x, t) ) ∫-∞

+∞
g(k - kc) ei(kx-ωt) dk

) ∫-∞

+∞
(8πσ2)1/4e-k2σ2 ×

ei[(k+kc)x-ω0t-R(k-kc)t-(1/2)â(k-kc)2t] dk

) ei(kcx-ω0t)(8πσ2)1/4 [π/(σ2 + iât/2)]1/2 ×
e-(x-Rt)2/4(σ2+iât/2) (7)

∆x(t) ) xσ2 + (ât
2σ)2

(8)

A(x, t) ) A0 cos(kx - ωt) + A0 cos(kx + ωt) )
2A0 cos(kx) cos(ωt) (9)
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abstract scheme:

Reactions 10-13 constitute the well-known Brusselator model.16

The additional steps 14 and 15 describe a reversible intercon-
version between the activator (X) and an unreactive form (Z).
This interconversion may arise, for example, in the BZ-AOT
system, from transfer of the activator from one phase (aqueous)
to another (oil), where it is unreactive because of the absence
of reaction partners.5

From reactions 10-15, we obtain three partial differential
equations:

where the variablesu, V, andw are the dimensionless concentra-
tions of the activator (X), inhibitor (Y), and “inactivator” (Z),
whose corresponding diffusion coefficients areDu, DV, andDw,
respectively. The parametersc and d are rescaled17 from the
rate constantskf andkb. The Brusselator kinetics16 are given by
the functionsf andg as

The steady state of the model (16-18) is at (uss, Vss, wss) )
(a, b/a, ac/d). Linear stability analysis around this steady state
yields the characteristic equation for the eigenvaluesλ. Of the
three eigenvalues, we may have either one real and one complex
conjugate pair or three real. We are interested in the complex
pair. The finite wave instability occurs whenRe(λ) ) 0 atk )
kc * 0, andRe(λ) < 0 for all otherk. This may happen when
the diffusion coefficients are such thatDu < DV , Dw, a case
that arises in the BZ-AOT system, where nanometer-sized water
droplets are dispersed in a continuous oil phase. The droplets
carrying the activator, HBrO2, diffuse much more slowly (10-7

cm2/s level) than do small molecules such as the inactivator,
BrO2, in the oil phase (10-5 cm2/s level).4

4. Results of Simulations

A. Simulations and Calculations for an IP Wave Packet.
Figure 2 illustrates an IP wave packet. The parameters were
chosen so that the finite wave instability was close to the onset
point (Re(λ) ) 0+, atk ) kc). The system was initialized to the
homogeneous steady state. Att ) 0, we applied a narrow spike

perturbation to the variableu. The Fourier spectrum of such a
perturbation contains an abundance of wavenumbers. Because
of the finite wavelength instability, waves within a narrowband
aroundk ) kc can grow; outside of this narrowband, waves are
suppressed. A local oscillation is induced around the center of
the initial perturbation (x ) 0) but damps out because the Hopf
mode is below onset (Re(λ)< 0, atk ) 0). A wave packet then
forms in which the profile of the inner waves is sinusoidal and
the amplitude is modulated by a Gaussian-like function (Figure
2).

The wave packet slowly moves outward as new waves are
formed, while the individual waves within the packet move
much more rapidly toward the site of the original perturbation.
We measured these two speeds in our simulations. At each
moment, we fit the envelope with a Gaussian function. The
movement of the maximum point gives the group velocity|Vg|
) 0.24 (Figure 2a-c). To find the phase velocity, we recorded
snapshots and constructed space-time plots, which yieldedVp

) 10.53.
It is also possible to calculate the wave speed from the

dispersion relation. The results of our linear stability analysis
are shown in Figure 3. The real part of the most positive
eigenvalue is plotted in Figure 3a, where the finite wave
instability is seen atkc ) 0.376, which is very close to onset.
The corresponding imaginary part, which decreases monotoni-
cally, is shown in Figure 3b; its derivative appears in Figure
3c, where the group velocity is found to beVg ) -0.24 atk )
kc. The negative sign forVg implies that the component waves
propagate inward, toward the “source”. The second derivative
plotted in Figure 3d is related to the spreading of the packet
envelope (eq 8). Figure 3e showsω/k calculated from the data
in Figure 3b, enabling us to read off the phase velocity asVp )
10.53. The derivative of the phase velocity (Figure 3f) deter-
mines the dispersion of the medium through which the waves
propagate (eq 4).

From the simulation in Figure 2, we can clearly see that the
wave packet becomes broader with time. This effect results from
dispersion, i.e., from the dependence of the phase velocity on

A 98
k1

X + P (10)

B + X 98
k2

Y + D (11)

2X + Y98
k3

3X (12)

X 98
k4

E (13)

X 98
kf

Z (14)

Z 98
kb

X (15)

∂u
∂t

) Du∇2u + f(u, V) - (cu - dw) (16)

∂V
∂t

) DV∇2V + g(u, V) (17)

∂w
∂t

) Dw∇2w + (cu - dw) (18)

f(u, V) ) a - (1 + b)u + u2V (19)

g(u, V) ) bu - u2V (20)

Figure 2. One-dimensional simulation of IP wave packet. The packet
moves to the right, while individual waves propagate to the left as
shown by the arrow. Parameters (a, b) ) (3, 11.39),c ) d ) 1, D )
(0.5, 1, 20). Initial perturbation atx ) 0, t ) 0. Snapshots were taken
at t ) 500 (a), 600 (b), and 700 (c). Packet envelope was fitted by a
Gaussian function (dashed line). Center position and width arex )
121, 145, 169 andσ ) 60, 63, 70. Corresponding Fourier spectra plotted
in panels d-f have widths∆k ) 0.063, 0.058, 0.050.
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wavenumber. In our calculation in Figure 3f, we have dVp/dk
) -28.65, which results inVg ) Vp + k(dVp/dk) ) -0.24. This
negative group velocity is responsible for our IP wave packet.
As the packet’s width increases in coordinate space, its width
in momentum space shrinks according to the “uncertainty
principle” ∆x∆k g 2π (Figure 2).

B. Simulations and Calculations for an OP Wave Packet.
Simulations of OP wave packets are presented in Figure 4, and
the results of linear stability analysis are presented in Figure 5.

When an OP packet is generated by a perturbation, the
individual waves propagate outwardly, as does the packet as a
whole (Figure 4a-c). OP packets contain fewer waves than IP
packets, because the wavenumber here is smaller than in the IP
case (comparekc in Figure 3a and Figure 5a). Again, the phase
and group velocities obtained in the simulations are in excellent
agreement with the results of the linear stability analysis.

C. Reflection and Passing through of Wave Packets.When
a wave packet reaches the zero-flux boundary, reflection occurs.
The OP wave packet simulation of Figure 4 is continued in
Figure 6. Whent ) 625, the OP packet reaches the right
boundary (Figure 6a), and “bounces off” the “wall”, changing
the sign of both the phase and the group velocities. During
reflection, the incident left-moving waves interact with the
reflected right-moving waves to form transient standing waves
(Figure 6d).

Figure 6b shows another simulation in which two packets,
one from the left, the other from the right, collide att ) 310,
are reflected att ) 2 × 310, and then collide again att ) 3 ×
310. Both collision and reflection lead to the appearance of
standing waves due to interaction between waves from opposite
directions.

Figure 6b raises the question whether, when two waves meet,
they “pass through” or “bounce off” each other. If wave packets
behave as particles, they should bounce off. Because the two
packets in Figure 6b are identical except for their direction of
propagation, we cannot distinguish between these possibilities.

To answer this question, we carried out a third simulation
(Figure 6c), where one packet was initialized att ) 0 and a
second one started att ) 240. When they meet att ) 450, the
first packet is significantly wider than the second. When the
packets separate, we recognize that they pass through one
another without any apparent deformation after they separate.
We conclude that when the two identical packets in Figure 6b
collide, they, too, pass through each other unaffected by the
collision.

We also studied the collision of IP wave packets. They behave
the same as OP packets in this respect, because both IP and OP
packets consist of phase waves, and both are generated from a
wave instability.

Figure 3. Dispersion curves showing real (a) and imaginary (b) parts
of the complex eigenvalue at the homogeneous steady state of the model
(16-18) (see Figure 2 for parameters). Finite wave instability appears
in panel a, and the corresponding imaginary part decreases monotoni-
cally in panel b, resulting in negative first derivative (group velocity)
in panel c. The second derivative in panel d is related to dispersion in
velocity. Phase velocityVp ) ω/k is shown in panel e, with its first
derivative, which is related to the dispersion of the medium, in panel
f. Values atkc are marked with small circles.

Figure 4. One-dimensional simulation of OP wave packet. The packet
center and individual waves both propagate to the right as shown by
the arrow. Parameters (a, b) ) (1, 2.9), others as in Figure 2. Initial
perturbation at (x, t) ) (0, 0). Snapshots were taken att ) 140 (a),
240 (b), and 340 (c). The packet envelope was fitted by a Gaussian
function (dashed line). The center position and width arex ) 132,
228, 323 andσ ) 40, 53, 65. Corresponding Fourier spectra plotted in
panels d-f have widths∆k ) 0.085, 0.064, 0.052.

Figure 5. Dispersion curves showing real (a) and imaginary (b) parts
of the complex eigenvalue at the homogeneous steady state of the model
(16-18) (see Figure 4 for parameters). See Figure 3 for description of
panels a-f.
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D. Wave Trains and Standing Waves.Both the OP and
the IP wave packets analyzed above have relatively large
absolute group velocities,|Vg|, as compared with the speed of
packet spreading, so that we see well-defined packets moving
away from the initial perturbation or source, which soon dies
out. This situation was shown schematically in Figure 1a, where
the packet is linearly convectively unstable. If|Vg| is less than
a critical value, the tail of the packet extends backward, which
results in the local oscillation amplitude increasing everywhere.
Such a packet is linearly absolutely unstable (Figure 1b).

The simulations in Figure 7 are carried out with zero-flux
boundary conditions just above the wave instability bifurcation
line in the (a, b) parameter plane. An initial perturbation is added

at the left end, while the rest of the system is placed in the
uniform steady state. With relative large|Vg| (Figure 7a,e),
packets leave the source atx ) 0 and quickly move to the right.
At |Vg| ) 0 (Figure 7c), the center of the wave packet remains
at the source, the component waves are reflected by the left
boundary and interact with the incoming waves of the same
amplitude to form standing waves. When|Vg| is small (Figure
7b,d), we have an absolute instability. Now the component
waves reflect, but they are weaker than the incoming waves,
and the interaction results in a train of traveling waves
modulated by standing waves near the source.

5. Conclusion and Discussion

We have studied here the propagation, reflection, and
spreading of chemical wave packets. We found that chemical
wave packets behave in much the same way as physical wave
packets.

When a uniform reaction-diffusion system is subjected to a
perturbation, the pure finite wave instability (Re(λ) ) 0+ at k
) kc) can give rise to wave packets. These packets always move
outward from the perturbation, but the component waves can
propagate inward or outward, depending upon the sign of the
group velocity.

The propagation of waves in packets requires that the absolute
value of the group velocity,|Vg|, be sufficiently large as
compared with the speed of packet spreading. Standing waves
appear when|Vg| ) 0, and trains of traveling waves occur when
|Vg| is small.

The component waves of both OP and IP wave packets
resemble the phase waves seen, for example, in spatially
extended oscillating reactions in the presence of a concentration
gradientstheir amplitudes are small, and their wave profiles
are sinusoidal. These features distinguish them from trigger
waves, whose amplitudes are much larger and whose profiles
are sharp and are typically followed by a long refractory “tail”.

The generally accepted wisdom that chemical waves cannot
pass through or bounce off one another applies only to trigger
waves in excitable media and not to phase wave packets. This
is another clear difference between trigger and phase wave
packets. For trigger waves in excitable systems, when two wave
fronts meet, they annihilate due to their accompanying refractory
regions, and the refractory zone thus produced does not support
wave propagation until it has recovered its excitability. Phase
wave packets do not have such a refractory region. They can
reflect from zero-flux boundaries or pass through each other,
like solitons, after experiencing transient interference in the
region where they overlap.

One may ask why chemical wave packets are so rarely
encountered in experiments and whether there are reaction-
diffusion systems in which wave packets are likely to be found.
Although wave packets can occur in special situations involving
anomalous dispersion3 or flows,6 it appears that the most
promising source of this behavior involves the wave instability.
Systems possessing a wave instability must necessarily have a
minimum of three independent variables and a significant spread
of diffusion coefficients. These requirements are fulfilled by
the BZ-AOT system.5 Other promising classes of systems, in
which multiple species with potentially quite different diffusion
constants are involved in the dynamics, include catalytic
reactions such as the oxidation of carbon monoxide on single
crystals of platinum13 and electrochemical reactions.14 One must
take care to work under conditions where the uniform steady
state is stable to homogeneous perturbations, because if there
is also a Hopf instability, sustained oscillations will create a

Figure 6. Reflection and collision of wave packets. (a) Reflection of
single wave packet from boundary att ≈ 600. (b) Two symmetric
packets meet before and after reflection att ≈ 600. (c) Two
nonsymmetric packets meet att ≈ 400 and pass through each other.
(d) Standing waves during reflection from boundary (zoom of box in
panel a. (e) Zoom of interacting waves in box from panel c.
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wave train, destroying the packet behavior. Finally, it is
important to carry out the experiments not too far beyond the
onset of the wave bifurcation in order to avoid, on one hand,
initiation of trigger waves that may annihilate the phase wave
packets, and, on the other, having too broad a range of unstable
wavenumbers to satisfy the narrowband condition for wave
packet formation. Given these multiple constraints, it is
understandable that sightings of chemical wave packets have
been so infrequent to date.
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