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The local spin method suggested previously for defining the spin state of an atom in a molecule is applied
to model manganese complexes with three and four manganese centers. This method extracts from the wave
function a spin for the manganese centers that has been compared to the one suggested by chemical intuition.
Density functional theory (DFT) calculations with various total spin projections in the “up” direction, M, but
controlled|M| for each manganese center, gave a set of energies that were fit to the Heisenberg Hamiltonian.
The eigenvalues of this model Hamiltonian then predict the ground spin state and the preferred combinations
of spin orientations of the manganese centers. In some model complexes, changes in the wave function for
each spin solution made the Heisenberg Hamiltonian unsuitable for fitting. For a dinuclear manganese complex,
complete active space self-consistent field calculations were performed and are in reasonable agreement with
the DFT results.

Introduction

Transition metal complexes that contain multiple manganese
centers have been a source of increased interest in both the
theoretical and experimental communities.1 Much of this interest
has stemmed from the propensity of Mn aggregates to possess
a ground-state spin that is nonzero. Such “molecular magnets”
arise from either ferromagnetic interactions between some if
not all of the Mn atoms and/or spin frustration effects. The
temperature dependence of the magnetic susceptibility of these
complexes is often fit to energy levels predicted by a Heisenberg
model Hamiltonian

In this equation, it is assumed that the molecule contains a few
magnetic centers and that a family of states is to be described
by coupling these spins with no other changes in the electronic
structure. The exchange parameters,J, are specific to this one
family of states and would change for other states of the
molecule. It is assumed that each magnetic center has a well-
defined spin SA so that the eigenvalue ofSA

2 is SA(SA + 1) for
all states within this family. Usually, SA is assigned by chemical
intuition based on formal oxidation numbers.

The eigenfunctions of eq 1 may be expanded in the basis of
states formed as the antisymmetrized direct product of the
eigenstates|SAMA〉 of SA

2 andSzA associated with each center.
Each of these, in turn, may be regarded as a linear combination
of Slater determinants formed by powers of a step-down operator
acting on the single Slater determinant represented by|SASA〉.
For a molecule with four d5 S ) 5/2 transition metal centers,
the Heisenberg Hamiltonian will have a total of 64 ) 1296
eigenstates involving a total of 220 ) 1 048 576 Slater deter-
minants. Only the simplest one of these eigenstates with S and
M both equal to 10 can be expressed by a single Slater
determinant. Few electronic structure programs are capable of
doing a complete active space self-consistent field (CASSCF)

calculation for the other low-spin states in this example with
20 electrons in 20 singly occupied orbitals.

The standard theoretical approach to this problem is to follow
the example of Noodleman2 and replace eq 1 with

where the subscriptX denotes the approximate method used in
the calculation. This method uses a sequence of calculations
with single Slater determinants that are not even approximately
eigenfunctions ofS2, but are still eigenfunctions ofSz with
eigenvaluesM and are approximately eigenfunctions of all of
the SA

2 and SzA with eigenvalues SA(SA + 1) and ( SA,
respectively. Often density functional theory (DFT) energies are
used even though DFT provides only a total density and not a
wave function. If it is possible to obtain energies for a sufficient
number of suchX, with the rest of the wave function essentially
unchanged, then eq 2 can be regarded as a set of linear equations
for the exchange couplings,JAB. To solve these equations, it is
first necessary to assign values to〈SA‚SB〉X. If SA‚SB is written
in the form

then it is clear that〈SA‚SB〉X for A * B is equal toMAMB for
any wave function with well-defined values ofSA, MA, SB, and
MB. Summing these averages over allA andB gives〈S2〉 equal
to M2 + Smax, whereSmax is the maximum value ofSand is the
sum of theSA. This value of〈S2〉 will usually differ somewhat
from the actual average computed with the spin-unrestricted
Slater determinant because of spin polarization in the ap-
proximate wave function. Alternatively, when only two radical
centers are involved, it is common to replaceSA‚SB with (S2 -
SA

2 - SB
2)/2 so that

and〈S2〉 is evaluated with the same wave function as the energy.
Hence, this approach requires a method for extracting the

values of each〈SA‚SB〉X from a wave function. To do this, we
* To whom correspondence should be addressed. Email: davidson@
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EX ) E0 + ∑ JAB〈SA‚SB〉X (2)

SA‚SB ) SzASzB + (S+AS-B + S-AS+B)/2 (3)

〈SA‚SB〉 ) [〈S2〉 - SA(SA + 1) - SB(SB + 1)]/2 (4)

H ) E0 + ∑ JABSA‚SB (1)
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need to replace the phenomenological spin operatorsSA with
operators acting on the electron coordinates so that average
values from electronic wave functions can be computed.

In a previous publication,3 we suggested that a set of
Hermitian one-electron position-space projection operators,
PA(i) associated with atomic centers could be defined so that

and

In terms of these projectors, microscopic operatorsSA may be
defined as

These sum toS, commute for A * B, and obey the
commutation rules defining a spin operator. Further,SA‚SB

commutes withS2. Therefore, the local spin operators have most
of the properties assumed for the phenomenological spin
operators. We have previously discussed3 the evaluation of
average values ofSA‚SB and the related averagemA of the net
spin in thez direction associated with centerA, SzA, and the
averageNA of the operatorPA.

For the special case of a spin-unrestricted single Slater
determinant,〈SA‚SB〉 is given by

for A * B, whereas forA ) B

Here,BAB is the Wiberg-Mayer bond order,4 UAB is the density
of intrinsically delocalized spin,3 andFA is the “free valence”
(or “unpaired”) density4 on centerA. Note that ifmA

2 ) SA
2

and 1/2FA ) SA, then〈SA
2〉 will differ from SA(SA + 1) by the

additional contribution by the bonding electron pairs. Similarly,
if UAB is zero,〈SA‚SB〉 will differ from mAmB by a covalent bond
order contribution. As long as theBAB contributions remain
constant for all spin states within the family, the affect ofBAB

on the Heisenberg Hamiltonian is to changeE0 in eq 1.
In this paper, we will choosePA ) wA(r i) in eqs 5-7, where

wA is one inside a volume associated with atomA and zero
outside. These volumes are chosen to be nonoverlapping and
cover all of space. A pointr is assigned to volumeA if the
ratio rA/RA is smaller than this ratio for any other center. The
atomic radiiRA are chosen so that the atomic charges agree
closely with the charges computed by Bader’s atoms in
molecules (AIM) method.5

Previously, we considered complexes containing one and two
MnII centers.3 Those results using the AIM volumes are similar
to the results reported here for complexes with three and four
Mn centers.

Computational Method

The focus of this paper is on the method for the spin and
Heisenberg Hamiltonian analysis and not the exact results.
Consequently, we examine simple model “butterfly” clusters
that contain tetrahedral Mn centers. The energies and orbitals

were computed with the unrestricted B3LYP density functional
(UB3LYP) method6 as implemented in Gaussian 98.7 The
LANL2 pseudopotential and the LANL2DZ basis set were used
for Mn.8 For the complex with three metal centers,A, the
6-31G* basis9 was used for O and H. For the complexes with
four metal centers,B andC, the 6-31G* basis was used only
for the twoµ3 bridging oxygens, and all other atoms had only
a 6-31G basis.9 For the purpose of this paper, the DFT Kohn-
Sham orbitals were used to form a Slater determinant that was
then treated as an approximate wave function.

The local projectors were defined using the following atomic
radii: 0.97 Å for O, 0.44 Å for H, and 0.99 Å for Mn. This
radius for Mn generally results in populations that agree with
the AIM populations for charges on the Mn between+2 and
+3, because the volume around the Mn that originally contained
the 4s orbital is assigned exclusively to the ligands, whereas
the 3d region is assigned exclusively to the metal. In previous
work,3 we found that the choice of the metal radius had a large
effect on the computed net charge but only a small effect on
the local spin properties.

Energies and Kohn-Sham determinants were computed with
all singly occupied orbitals having “spin-up”. The number of
orbitals to be singly occupied were chosen by chemical intuition
to match the expected result for high-spin Mn centers with the
nominal oxidation number (i.e., MnII S ) 5/2 with five singly
occupied d orbitals or MnIII S) 2 with four singly occupied d
orbitals). Convergence to the high M spin state was generally
easy. The geometry was optimized for this situation, and then
all other energies were computed as “vertical” energy differences
for this fixed structure. The Mn d orbitals from the high M
calculation were localized, and those on selected metal centers
had their spins reversed to generate initial guesses for states
with some metal centers having “spin-down”. With some effort,
we were finally able to get converged energies and Kohn-Sham
determinants corresponding to situations where each metal atom
hadMA ) (SA to a good approximation, but the actual signs of
MA spanned all possible combinations.

For each of these Kohn-Sham determinants we computed
the expectation values in eqs 8 and 9 with the MELD suite of
programs.10 Then eq 2 was solved for theJ couplings using
both the computed averages〈SA‚SB〉X and the nominal values
MAMB with idealized values ofMA. A similar methodology,
using idealized〈SA‚SB〉X, has been previously employed by
Kortus and co-workers, as well as Raghu and co-workers.11

We also optimized the structure of a complex with only two
manganese centers, (µ2-OH)2Mn2H2O(OH)3 (M ) 9/2) with the
same DFT functionals and basis sets as the other three
manganese complexes. A single pointM ) 1/2 DFT calculation
was also performed. Subsequent 9 electron, 10 orbital CASSCF
calculations for theS) 9/2 and the lowest energyS) 1/2 state
were then performed with the same pseudopotential and basis
sets using HONDO99 at the DFTS) 9/2 geometry.12 The active
space was composed of the 10 d orbitals of the two Mn centers,
nine of which were singly occupied.

Results

The first complex considered, Mn3O(OH)4(H2O)4 which we
label A in Figure 1, had three MnII centers with oneµ3-O, a
µ2-OH group bridging Mn1 and Mn2, one additional OH ligand
on each Mn, and enough H2O ligands to make each Mn
tetrahedral. The formal oxidation states are5/3 for Mn3 and13/6
for Mn1 and Mn2. The ground state of this system has five
singly occupied d orbitals on each Mn with all five electrons
coupled as high-spinS) 5/2. UB3LYP calculations were done

PAPB ) δABPA (5)

∑PA ) 1 (6)

SA ) ∑
i)1

N

S(i)PA(i) (7)

〈SA‚SB〉 ) -3
8
BAB + mAmB + 1

2
UAB (8)

〈SA
2〉 )

3

8
∑
A*B

BAB + mA
2 +

1

2
FA (9)
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with all 15 singly occupied orbitals having “spin-up”, and with
all of the spins on one atom opposite to the other two atoms
(hence, three different calculations). The energies given in Table
1 show that having the spin on Mn3 reversed from the other
two gave the lowest single Slater determinant energy.

Table 1 also shows that the total〈S2〉X is very close to the
nominal values of 63.75 and 13.75 expected for these calcula-
tions. Table 2 presents〈SA‚SB〉 and 〈SA

2〉 for the M ) 15/2 and
5/2 calculations. For the variousM values, the average〈SA

2〉
changed by less than 0.1, whereas the average〈SA‚SB〉 changed
sign but had little change in magnitude. The absolute value of
〈SzA〉X also changed by no more than 0.01 and remained close
to the expected value of5/2. The calculated charge,q, on the
metal centers was nearly unchanged between the differentM
calculations but is considerably smaller than the formal oxidation
number for each Mn. Thus, aside from differences in the sign
of 〈SA‚SB〉, the rest of the wave function remains unchanged

for this set of calculations and the conditions for use of the
Heisenberg Hamiltonian are satisfied.

The source of the splitting in energy with the spin orientation
on the atoms is not a through space interaction. Rather, coupling
through the bridging oxygens is apparent in the observed
changes in〈SMn‚SO〉 and in the extent of spin-polarization of
these oxygens: for example,mO2 is 0.17 whenM is 15/2. For
the case with all Mn “spins-up”, the productmMn2mO2 contrib-
utes+0.39 to〈SMn2‚SO2〉, whereas the bond order term in eq 9
contributes-0.18, which corresponds to a net bond order of
0.5. Although the〈SMn2‚SO2〉 average becomes negative when
one Mn is “spin-down”, the bond orders change very little. From
Table 2, we observe that the totalm contribution from all the
ligand atoms is 0.55 whenM ) 15/2, but only 0.18 whenM is
5/2. We can then deduce that spin frustration of the Mn leads to
spin polarization influences of opposite sign at theµ3-O, which
cancel each other and lead to more delocalization of the unpaired

Figure 1. Numbering scheme for model complexes Mn3O(OH)4(H2O)4 (A), Mn4O2(OH)4(H2O)6 (B), and Mn4O2(OH)6(H2O)4 (C).

TABLE 1: Energies of Compounds A, B, and C Calculated by UB3LYP, with the LANL2 Pseudopotential and LANL2DZ
Basis Set on Mna

A

MnII1 MnII2 MnII3 energy ∆E(cm-1) 〈S2〉 Mn-Mn Mn-X X-X

v v v -996.3028157 0 63.8 56.9 4.2 2.7
V v v -996.3052545 -535 13.7 13.9 -2.5 2.3
v V v -996.3052545 -535 13.7 13.9 -2.5 2.3
v v V -996.3055161 -593 13.7 13.9 -2.4 2.2

B
MnII1 MnII2 MnII3 MnII4 energy ∆E(cm-1) 〈S2〉 Mn-Mn Mn-X X-X

v v v v -1328.266152 0 110.0 97.6 8.6 3.8
V v v v -1328.273667 -1649 34.9 32.9 -1.1 3.1
v V v v -1328.273746 -1667 34.9 33.0 -1.2 3.1
v v V v -1328.272486 -1390 35.0 32.9 -1.1 3.1
v v v V -1328.270301 -911 35.0 33.1 -1.2 3.1
V V v v -1328.275865 -2132 9.9 11.4 -4.4 2.9
V v V v 1328.273835 -1686 9.9 11.4 -4.3 2.8
V v v V -1328.273813 -1681 9.9 11.4 -4.4 2.9

C
MnIII1 MnIII2 MnII3 MnII4 energy ∆E(cm-1) 〈S2〉 Mn-Mn Mn-X X-X

v v v v -1327.112538 0 90.1 81.7 4.1 4.2
V v v v -1327.116924 -963 34.0 32.4 -2.2 3.8
v V v v -1327.117456 -1079 34.0 32.9 -2.7 3.8
v v V v -1327.113359 -180 25.0 25.2 -3.8 3.6
v v v V -1327.114002 -321 25.0 25.0 -3.7 3.7
V V v v -1327.115199 -584 10.0 11.8 -5.4 3.6
V v V v -1327.116495 -868 9.0 11.0 -5.6 3.6
V v v V -1327.117572 -1105 9.0 11.0 -5.5 3.5

a A utilized the 6-31G* basis set on O and H, whereasB andC only used the 6-31G* basis set on the bridging O’s and the 6-31G basis on all
other atoms.
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spins between Mn and O. The latter is indicated by a small
increase in the magnitude of Mn-(µ3-O) coupling, which in
turn may be responsible for the slightly lower energy of the M
of 5/2 state than for theM of 15/2 state.

The local spin properties ofA are further examined in Table
1. There, column eight sums the〈SA‚SB〉X terms between each
set of Mn centers,∑A)Mn∑B)Mn〈SA‚SB〉. In the high spinM )
15/2 calculation, this value is ferromagnetic and contributes 90%
to the total〈S2〉 of 63.8. Column nine, which sums the interaction
with each Mn and every other atom except the remaining two
Mn centers,∑A)Mn∑B*Mn〈SA‚SB〉, and column ten, which sums
the spin coupling between every atom (excluding Mn) with
every other atom (excluding Mn),∑A)Mn∑B*Mn〈SA‚SB〉, yield
values that are net ferromagnetic and contribute 6.6% and 4.2%,
respectively, to the total〈S2〉 whenM ) 15/2. When one Mn is
“spin-down” the spin coupling between Mn and the ligand atoms
[dominated by〈SMn‚SO1,O2〉] becomes negative which in turn
causes a decrease in the Mn-Mn coupling to 13.9, whereas
the ligand-ligand spin coupling remains unchanged.

Two sets ofJ values were computed forA and are given in
Table 3. One set ofJ couplings was derived assuming〈SA‚SB〉X

had the ideal value of(6.25, whereas the other set (in
parentheses) used the computed values near(5.3. This choice
results approximately in a simple scaling of theJ value. When
used in the Heisenberg Hamiltonian with idealized values of
the atomic spins, it seems more consistent to use theJ obtained

from the idealized〈SA‚SB〉X because it is implicitly assumed that
〈SA‚SB〉X has its ideal value in computing the matrix elements
in the basis|S1,M1,S2,M2,S3,M3〉. Figure 2 shows the distribution
of resulting spin states, with a ground state ofS) 1/2. As shown
in Table 4, the dominant term (which only accounts for 13%
of the wave function) hasM ) 3/2 for Mn1 and Mn2 andM )
-5/2 for Mn3. TheM ) 3/2 spin function forS) 5/2 is a linear
combination with equal coefficients of the five Slater determi-
nants that can be formed by flipping the spin of one of the five
singly occupied d orbitals. Hence, this one term in the ground
S ) 1/2 state is already a linear combination of 52 ) 25 Slater
determinants with equal coefficients.

The second model complex, Mn4O2(OH)4(H2O)6 which we
label B in Figure 1, was generated by replacing the H of the
bridging OH group by Mn(OH)(OH2)2 and reoptimizing the
structure. Hydrogen bonding between ligands on different
centers causesB to have no symmetry. This “butterfly” complex
then has wingtip Mn3 and Mn4 centers with formal charges of
5/3 and backbone Mn1 and Mn2 with formal charges of7/3. Here,
the lowest energy calculation still has five singly occupied d
orbitals of the same spin on each Mn. Table 1 shows the eight
possible energies for this structure having (a) all unpaired spins
parallel soM ) 10, (b) four ways to reverse the spin of one
Mn soM ) 5, and (c) three ways to have the spins of two Mn
opposite to the other two soM ) 0. All calculations give〈S2〉X

close to the ideal value ofM2 + 10. Table 5 gives the average
values of〈SA‚SB〉X for the M ) 10 calculation and the lowest
energyM ) 0 calculation.

For B, there are seven parameters in eq 1, so we have fit eq
2 to seven of the energies in Table 1. Table 3 presents the
resultingJ values computed with both the idealized values of
〈SA‚SB〉X and the computed values (in parentheses). Again, the
average values〈SA‚SB〉X vary little in absolute value between
the different spin combinations, so the results are merely scaled.

TABLE 2: Local Spin Results for Compound A, Obtained
from UB3LYP with the LANL2 Pseudopotential and the
LANL2DZ Basis Set on Mn and the 6-31G* Basis set on O
and H

MnII1 MnII2 MnII3 µ3-O µ2-OH

〈Sz〉 2.32 2.32 2.31 0.17 0.06
q 1.32 1.32 1.34 -1.23 -1.36
〈SA‚SB〉
MnII1 8.25 5.37 5.36 0.21 0.05
MnII2 8.25 5.36 0.21 0.05
MnII3 8.21 0.24 0.14

〈Sz〉 2.31 2.31 -2.30 0.07 0.06
〈SA‚SB〉
MnII1 8.20 5.33 -5.32 0.00 0.04
MnII2 8.20 -5.32 0.00 0.04
MnII3 8.13 -0.33 -0.13

〈Sz〉 -2.30 2.31 2.31 0.04 0.00
〈SA‚SB〉
MnII1 8.12 -5.31 -5.30 -0.27 -0.09
MnII2 8.19 5.32 -0.09 -0.09
MnII3 8.18 -0.06 0.00

TABLE 3: Calculated J Values from Eq 2 from the
UB3LYP Results for Compounds A, B, and C, Using the
LANL2 Pseudopotential and LANL2DZ Basis Set on Mna

J Mn1 Mn2 Mn3

A
MnII2 19(22)
MnII3 24(28) 24(28)

B
MnII2 47(56)
MnII3 54(63) 50(58)
MnII4 30(35) 36(42) 7(8)

C
MnIII2 92(105)
MnII3 14(16) 8(9)
MnII4 9(10) 27(30) -3(-4)

a A utilized the 6-31G* basis set on O and H, whereasB and C
only used the 6-31G* basis set on the bridging O’s and the 6-31G
basis on all other atoms.

Figure 2. Distribution of spin states for compoundA from the
Heisenberg Hamiltonian using idealized〈SA‚SB〉X.

TABLE 4: Coefficients, C, for the Dominant Terms in the S
) 1/2 Ground State of Compound A Expanded in the
|m1m2m3〉 States of the Atoms

MnII1 MnII2 MnII3 C

-3/2 5/2 -1/2 0.25
-1/2 5/2 -3/2 -0.31

1/2 1/2 -1/2 -0.23
1/2 5/2 -5/2 0.28
3/2 3/2 -5/2 -0.36
5/2 -3/2 -1/2 0.25
5/2 -1/2 -3/2 -0.31
5/2 1/2 -5/2 0.28
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The J values from the idealized values of〈SA‚SB〉X were used
to compute the spectrum of the Heisenberg Hamiltonian. The
results displayed pictorially in Figure 3 show that the ground
state isS) 3 even though M) 0 for the best single determinant.
Table 6 shows the dominant terms in this complicatedS ) 3
wave function for the case thatM ) 3. Using step-down
operators on theS ) 3 function, one can generate theM ) 2,
1, ...,-2, -3 wave functions, all with equal energy. The single
configuration with all “spin-up” on Mn2 and Mn3 and all “spin-
down” on Mn3 and Mn4 constitutes less than 0.05% of theS
) 3, M ) 0 wave function.

In the final example, Mn4O2(OH)6(H2O)4 which we labelC
in Figure 1, the H2O ligand on Mn1 and Mn2 was replaced by
an OH. This changed Mn1 and Mn2 to MnIII with four singly
occupied d orbitals to yield twoS ) 2 centers, each with a
formal charge of10/3. The energies and total spin for this
complex are shown in Table 1. InC, the average〈S2〉X differ
by up to 1 from the ideal values of 90, 35, 26, 10, and 9, which
indicates that the electronic structure changes somewhat for each
spin solution and that this a poorer candidate for fitting by the
Heisenberg Hamiltonian. Because of the nominally empty d
orbital on the MnIII center, it was possible that each spin

calculation could have a different orbital vacant. We verified
that this did not happen and that the only change in the wave
function was to flip all the spins using nearly the same orbitals.
The calculated charges shown in Table 7 are slightly larger for
the MnIII centers than for the MnII. Interestingly, both the MnIII

and MnII charges inC are larger than the MnII charges inB as
shown in Table 5. Further, the charges on theµ3-O’s are less
negative inC which illustrates the difficulty in supporting such
a large formal charge on MnIII by donating electrons to the
bridging oxygens. Similar toB, the energy variation in the
different spin solutions ofC is related a slight increase in the
delocalization of unpaired spin density and cancellation of the
spin polarization at the bridging oxygens. It is interesting to
note that inC for M ) 9 the sum of the contributions to〈S2〉
from the Mn-Mn spin coupling (column eight) is only 81.7
out of the total of 90.1 so that nearly 10% comes from the Mn-X
(column nine) and X-X (column ten) spin interactions. For the
next solution in Table 1, the sum over the Mn atoms in column
eight is 32.4 so that only∼5% comes from the other spin
couplings.

Table 3 gives theJ values computed with both idealized and
computed values (in parentheses) of〈SA‚SB〉X. The energy levels
from the idealizedJ values are shown in Figure 4. Here, there
is a slight preference for an intermediate spin ground state with
totalSof 3. Table 8 gives the wave function from the Heisenberg
Hamiltonian forS) 3 andM ) 3. The slightly dominant term
in this expansion hasM ) 2 and-2 on the Mn1 and Mn2, but
M ) 5/2 and 1/2 on the wingtips centers, Mn3 and Mn4. This
agrees with the figure that is sometimes drawn for molecules

Figure 3. Distribution of spin states for compoundB from the
Heisenberg Hamiltonian using idealized〈SA‚SB〉X.

TABLE 5: Local Spin Results for Compound B, Obtained
from UB3LYP with the LANL2 Pseudopotential and
LANL2DZ Basis Set on Mn, the 6-31G* Basis Set on the
µ3-O’s, and the 6-31G Basis Set on All Other Atoms

MnII1 MnII2 MnII3 MnII4 µ3-O(1) µ3-O(2)

〈Sz〉 2.32 2.32 2.33 2.32 0.17 0.13
q 1.29 1.28 1.35 1.35 -1.23 -1.35
MnII1 8.26 5.37 5.40 5.37 0.22 0.18
MnII2 8.26 5.40 5.37 0.20 0.18
MnII3 8.29 5.39 0.23 0.29
MnII4 8.22 0.39 0.12

〈Sz〉 -2.31 -2.31 2.31 2.31 0.07 0.03
〈SA‚SB〉
MnII1 8.19 5.31 -5.33 -5.32 -0.01 -0.05
MnII2 8.20 -5.33 -5.32 -0.03 -0.04
MnII3 8.18 5.32 -0.33 -0.07
MnII4 8.18 -0.16 -0.24

TABLE 6: Coefficients, C, for the Dominant Terms in the S
) 3 Ground State of Compound B Expanded in|m1m2m3m4〉
States of the Atoms

Mn1 Mn2 Mn3 Mn4 C

-1/2 -3/2 5/2 5/2 0.21
1/2 -5/2 5/2 5/2 -0.33
3/2 -5/2 3/2 5/2 0.49
5/2 -5/2 1/2 5/2 -0.46
5/2 -3/2 -1/2 5/2 0.32

Figure 4. Distribution of spin states for compoundC from the
Heisenberg Hamiltonian using idealized〈SA‚SB〉X.

TABLE 7: Local Spin Results for Compound C Obtained
from UB3LYP with the LANL2 Pseudopotential and
LANL2DZ Basis Set on Mn, the 6-31G* Basis Set onµ3-O,
and the 6-31G Basis Set on All Other Atoms

MnIII1 MnIII2 MnII3 MnII4 µ3-O(1) µ3-O(2)

〈Sz〉 1.91 1.88 2.30 2.31 0.08 0.08
q 1.56 1.55 1.40 1.38 -1.09 -1.09
〈SA‚SB〉
MnIII1 6.39 3.59 4.41 4.42 -0.07 -0.07
MnIII2 6.23 4.32 4.33 -0.07 -0.08
MnII3 8.13 5.32 0.08 0.18
MnII4 8.17 0.19 0.07

〈Sz〉 1.88 -1.86 -2.30 2.31 -0.02 0.01
〈SA‚SB〉
MnIII1 6.26 -3.52 -4.35 4.35 -0.26 -0.19
MnIII2 6.15 4.28 -4.30 -0.19 -0.25
MnII3 8.13 -5.32 -0.07 -0.03
MnII4 8.17 -0.04 -0.08
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of this type showing one of the spins pointing sideways rather
than up or down.

Manganese Calculations with Multi Determinant Meth-
ods.For the case of a complex with only two transition metal
centers, it is possible to perform CASSCF calculations of the
eigenstates ofSandM. For our purposes, we chose the mixed
valent(µ2-OH)2Mn2H2O(OH)3 complex, with one MnII and one
MnIII center. Here, we used an arbitraryJ value to solve the
Heisenberg Hamiltonian and predict the wave function of each
spin solution, because the relative energy of each solution is
scaled linearly withJ. This result was then compared with the
CASSCF wave function to assess whether the Heisenberg
assumption is valid for this model complex.

The 9 electron, 10 orbital CASSCF single-point calculation
of theS) 9/2 wave function is almost entirely described (∼99%)
by a single Slater determinant composed of nine singly occupied
orbitals on both Mn centers that are coupled as high spin. This
is the same wave function as the one predicted by the Heisenberg
Hamiltonian and DFT.

In contrast to theS) 9/2 state, the lowest energyS) 1/2, M
) 1/2 state from the Heisenberg Hamiltonian is a linear
combination of 126 Slater determinants, each with nine singly
occupied orbitals. The single determinant with the largest
coefficient (∼25%) in the model wave function hasM ) 5/2 on
MnII and M ) -2 on MnIII . This determinant becomes the
lowest energyM ) 1/2 solution in DFT, lying 139.9 cm-1 above
the UB3LYP S ) 9/2 spin state. The CAS wave function for
the lowest energyS) 1/2 state is composed primarily (∼94%)
of determinants within the spin family that contains nine singly
occupied orbitals. These determinants differ in which particular
orbitals are “spin-up” and “spin-down”. Importantly, determi-
nants that are not part of this spin family, e.g., those that doubly
occupy the metal d orbitals or those that change which d orbital
is singly occupied, do not contribute significantly to the CAS
wave function. However, CAS and DFT do predict different
orders for theS) 9/2 and1/2 states. The CAS results place the
S ) 1/2 state 5.4 cm-1 lower in energy than theS ) 9/2 state.

Conclusion

The local spin quantities,〈SA
2〉 and 〈SA‚SB〉, obtained from

the Kohn-Sham Slater determinant of model manganese
complexes differ from those suggested by chemical intuition
by a bond order contribution. Using eq 2 to solve for the
Heisenberg coupling constantJ, we observe that the difference
in ideal and calculated spin quantities merely results in a scaling
of J. These quantities are also useful tools in assessing changes
in a wave function for a variety of spin states, which makes it
easier to assess whether the Heisenberg Hamiltonian approxima-
tion is valid for a model complex and approximate wave

function. It should always be recalled that the Heisenberg
Hamiltonian models a family of states related by spin flipping,
assuming no other changes in the wave function. It may well
happen that the lowest energy low spin state is not related to
the lowest energy high spin state by such a simple spin flipping
relation.

Our DFT results indicate that some mixed valent metal
complexes may experience small changes in the wave function
for each single determinant spin solution, which would make
them poorer candidates for fitting by the Heisenberg Hamilto-
nian. However, it is comforting that the CAS and DFT results
are in reasonable agreement for the dinuclear Mn complex
examined here.
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TABLE 8: Coefficients, C, for the Dominant Terms in the S
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States of the Atoms

MnIII1 MnIII2 MnII3 MnII 4 C
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1 -1 1/2 5/2 -0.24
1 -1 3/2 3/2 0.26
2 -2 1/2 5/2 0.35
2 -2 3/2 3/2 -0.23
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