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We measured the proton-transfer rate constant from a strong and a weak photoacid to water as a function of
temperature. We found that the proton-transfer rate constant for the strong photoacid at high temperatures,T
> 300 K, is almost temperature-independent, whereas at low temperatures,T < 300 K, the rate constant
exhibits a strong temperature dependence. For the weak photoacid, the rate constant also exhibits a relatively
large activation energy in the high-temperature region. Previously, we found that the temperature dependence
of the proton-transfer rate constant to alcohols is explained as a continuous transition from nonadiabatic to
solvent-controlled limits. The model we used to calculate the proton-transfer rate constant is based on the
diffusive propagation of the solvent configuration along a generalized solvent coordinate from the reactant
potential surface toward the crossing point with the product potential surface. The proton transfer occurs at
the crossing point, and the rate is calculated by a sink term placed at the crossing point. The sink term
includes the solvent velocity and the Landau-Zener transmission coefficient. Both the diffusion constant
and the Landau-Zener transmission coefficient depend on the dielectric relaxation of the solvent. The
calculations are compared with the experimental data and an interpolation expression that bridges the
nonadiabatic limit and the solvent-controlled limit.

Introduction

In their excited states, photoacids and photobases are stronger
acids or bases, respectively. Excitation of these compounds in
a solution of protic solvents enables the study of the dynamics
of the proton-transfer reactions of acids and bases in solution.1-6

In recent papers,7-10 we described our experimental results
of an unusual temperature dependence of excited-state proton
transfer from a super photoacid (5,8 dicyano-2-naphthol, DCN2)
to several monols, diols, and a glycerol. At relatively high
temperatures, the rate of proton transfer is almost temperature-
independent, whereas at relatively low temperatures, the rate
exhibits great temperature dependence, and the rate-constant
value is similar to the inverse of the dielectric relaxation time.
We proposed a simple stepwise model to describe and calculate
the temperature dependence of the proton transfer to the solvent.
The model accounts for the large differences in the temperature
dependence and the proton transfer rate at high and low
temperatures.

The temperature dependence of the rate constant for proton
transfer to the protic solvent is explained as a continuous
transition from nonadiabatic (high temperature) to solvent-
controlled (low temperature) proton transfer. This phenomenon
can be described by the Landau-Zener curve-crossing equa-
tion11,12 for the proton-transfer rate constant.

The theoretical analysis for the solution-phase proton-transfer
reaction was undertaken by Dogonadze, Kuznetzov, Ulstrup,
and co-workers13-17 and then extended by Borgis and Hynes,18-20

Cukier,21,22 and Voth.23,24 These theories suggest that, when a
potential energy barrier is present in the proton-reaction
coordinate, the reaction pathway involves tunneling through the

barrier, as opposed to passage over the barrier. The proton
transfer can be described as quantum tunneling between two
wells formed by two interacting electronic states. The transfer
of the proton from one well to the other is associated with a
change in the electronic state of the system. The crossover
between the electronic states can occur only when the proton
tunnels through the barrier.

Conventional Landau-Zener (LZ) theory11,12 provides an
accurate description of the process in the absence of interaction
with the environment. It is applicable if the motion in the vicinity
of the crossing point is nearly uniform (ballistic).25,26 The
interaction of the particle with the environment causes compli-
cations. The curve-crossing problem in the presence of dissipa-
tion has been studied extensively.27-35 Expressions for the
transition rate of various physical limits has been derived. When
the coupling,V, between the diabatic terms is the smallest
parameter of the system, the dynamics in the crossing region
in this nonadiabaticlimit is fast, the tunneling rate is the rate-
limiting step, and the reaction rate is given by the Fermi Golden
Rule expression. When the coupling between the diabatic states
is larger thankBT, the adiabatic representation of the coupled
potential energy surfaces is adequate, the upper adiabatic
potential surface plays a negligible role, and the rate expression
is given by the standard transition-state theory (TST) equation.
Another physical limit is realized whenV e kBT and the
interaction with the environment is strong enough. In this
solvent-controlled limit, the rate is inversely proportional to the
solvent relaxation time (friction) and is independent of the
couplingV.

In this study, we measure the temperature dependence of the
proton transfer from two photoacids to water. We chose two
photoacids that differ in their acidity in the excited state, pK*,
and their proton-transfer rate constants. The temperature de-
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pendence of the stronger photoacid (2-naphthol-6,8-disulfonate,
2N68DS, pK* ) 0.4) in water has similar behavior to that which
we found for DCN2 for several alcohols. At relatively high
temperatures, the rate of proton transfer is almost temperature-
independent, whereas at relatively low temperatures, the rate
exhibits great temperature dependence. The temperature depen-
dence of the proton-transfer rate constant of the weaker
photoacid, 2-naphthol (pK* ) 2.7), exhibits different behavior.
The activation energy of the proton-transfer process is about
12 kJ/mol at high temperatures. At low temperatures,T < 300
K, the activation energy increases and reaches∆G q ) 20 kJ/
mol at 250 K.

Experimental Section

Time-resolved fluorescence was measured using the time-
correlated single-photon counting (TCSPC) technique. As an
excitation source, we used a CW mode-locked Nd:YAG-pumped
dye laser (Coherent Nd:YAG Antares and a 702 dye laser)
providing a high repetition rate (>1 MHz) of short pulses (2 ps
at full width at half-maximum, fwhm). The (TCSPC) detection
system is based on a Hamamatsu 3809U photomultiplier,
Tennelec 864 TAC, Tennelec 454 discriminator, and personal
computer-based multichannel analyzer (nucleus PCA-II). The
overall instrumental response was about 50 ps (fwhm). Mea-
surements were taken at 10-nm spectral widths. Steady-state
fluorescence spectra were taken using an SLM AMINCO-
Bowman-2 spectrofluoremeter.

2-Naphthol-6,8-disulfonate (2N68DS) was purchased from
Eastman Kodak, and 2-naphthol (2N), from Riedel-De Haen
(Hanover). The sample concentrations were between 2× 10 -4

and 2× 10 -5 M. Deionized water had a resistance>10 MΩ.
The solution’s pH was about 6.

The photoacids’ fluorescence spectrum consists of two
structureless broad bands (∼40 nm fwhm). The emission-band
maximum of the acidic form (ROH*) emits at higher energies
than the emission-band maximum of the alkaline form (RO-*).
At the ROH* emission-band maximum, the overlap of the two
luminescence bands is rather small, and the contribution of the
RO-* band to the total intensity is about 0.5%. In addition, we
find that a fluorescent impurity in the compounds increases the
fluorescence intensity at long times to the level of 0.1-0.5%
of the peak intensity. Therefore, in the time-resolved analysis,
we add to the calculated signal an additional exponential decay
of about 10 ns with an amplitude in the range of 0.1-0.5% to
compensate for the impurity fluorescence.

The temperature of the irradiated sample was controlled by
placing the sample in an oven or a liquid N2 cryostat with
thermal stability of approximately(1 K.

Modeling

Proton Dissociation and Geminate Recombination in the
Liquid Phase. Experimental and theoretical studies of ESPT
processes in solution have led to the development of a two-
step model36,37 (Scheme 1).

The first step is described by back-reaction boundary condi-
tions with intrinsic rate constantskd andkr. This is followed by
a diffusional second step in which the hydrated proton is
removed from the parent molecule. This latter step is described

by the Debye-Smoluchowski equation (DSE). In the continu-
ous-diffusion approach, one describes the photoacid dissociation
reaction by the spherically symmetric diffusion equation (DSE)38

in three dimensions.36,37 The boundary conditions atr ) a are
those of the back reaction (Scheme 1).kd and kr are the
“intrinsic” dissociation and recombination rate constants, re-
spectively, at the contact-sphere radiusa. Quantitative agreement
was obtained between theory and experiment,36,37and as a result,
it was possible to make a more detailed study of the ESPT
process itself as well as of the dynamic and static properties of
the solvent.

An important parameter in our model is the mutual diffusion
coefficientD ) DH

+ + DRO
-. The temperature dependence of

the proton diffusion constant,DH
+, in water was deduced from

the proton conductance measurements as a function ofT.39,40

The anion diffusion constant,DRO
-, as a function ofT was

estimated from the solvent viscosity data.41,42 The temperature
dependence of the dielectric constant and the dielectric relaxation
of water data were taken from refs 39, 43, 44, and 45. Using
Scheme 1 and the numerical solution of the DSE, we fitted the
experimental data and extracted both the intrinsic proton
dissociation and recombination (kd andkr) rate constants. Typical
chi-squares of the fit range from 1.2 to 2. We determined the
proton-transfer rate constant,kd, from the fit to the initial fast
decay of the ROH* fluorescence. The initial fast component of
the fluorescence decay is mainly determined by the deproto-
nation process and is nearly insensitive to the geminate
recombination process. The long-time behavior (the fluorescence
tail) seen in the ROH* time-resolved emission is a consequence
of the repopulation of the ROH* species by the reversible
recombination of RO-* with the geminate proton. The repro-
tonation is an adiabatic process, and therefore the excited ROH*
can undergo a second cycle of deprotonation. The overall effect
is a nonexponential fluorescence tail.

The comparison of the numerical solution with the experi-
mental results involves several parameters. Some are adjustable
parameters, such askd andkr, and others, such the contact radius
a, have acceptable literature values.36,37 We are facing a
multiparameter problem in adjusting a solution of a partial
differential equation to fit the experimental data.

The asymptotic expression (the long-time behavior) for the
fluorescence of ROH*(t) is given by46

In the above equation,τ is the excited-state lifetime, andRD is
the Debye radius given by

where z1 and z2 are the charges of the proton and anion,
respectively,ε is the static dielectric constant of the solvent,
and T is the absolute temperature.e is the electronic charge,
andkB is Boltzmann’s constant. We estimate that the error in
the determination ofkd is 5%. The error in the determination
of kd is due to (1) the signal-to-noise ratio of the experimental
signal, which affects the fluorescence curve at longer times and
(2) the interplay betweenkd andkr (see eq 1) at longer times.
The uncertainty in the determination ofkr is estimated to be
much larger,∼20%. The relatively large uncertainty in the
values ofkr arises from the complex relation between the above-
mentioned parameters that determine the ROH* fluorescence

SCHEME 1

I L
ROH* exp(t/τ) = π

2
a2 exp(RD/a)

kr

kd(πD)3/2
t -3/2 (1)

RD )
|z1z2|e2

εkBT
(2)
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tail and the large background due to the fluorescence of the
impurity in the sample.

Modeling of the Proton Transfer to Water

General Considerations.The reaction of proton transfer to
the solvent can be described schematically:

The reactant is an intermolecular hydrogen-bonded complex
between an excited photoacid, AH*, and a water molecule, SB.
SB serves as a base, characterized by a hydrogen bond to the
photoacid and also to other solvent molecules. In water, this
specific water molecule, SB, has three hydrogen bonds to three
water molecules. To form the product A-* ‚ ‚ ‚HSB

+ in water,
one hydrogen bond of SB to a water molecule must be broken.
Thus, a relatively long-range reorganization of the hydrogen
bond network takes place upon proton transfer to the solvent.
This complex rearrangement, to accommodate the product, is
probably the reason for the slow solvent-generalized configu-
ration motion that corresponds to a low-frequency component
in the solvent dielectric spectrum. Its time constant is close to
the slow component of the dielectric relaxation time. According
to Kuznetsov and co-workers,13-17 Borgis and Hynes,18-20

Bernstein and co-workers,47 and Syage,48 a second important
coordinate should be taken into account. This second coordinate
is the distance between the two heavy atoms, OsH‚‚‚O in our
case. This distance is modulated by a low-frequency vibrational
mode,Q.18,47 The proton tunnels through the barrier from the
reactant well to the product well via the assistance of the low-
frequencyQ mode whenever the solvent configuration equalizes
the energies of the reactant and the product.

Borgis and Hynes18-20 derived an expression for the proton-
transfer rate constant,k. They wrote an expression fork in a
transition-state theory form.k is expressed as the average one-
way flux along the solvent coordinate, through the crossing point
Sq of the two free-energy surfaces, with the inclusion of a
transmission coefficient,κ, giving the probability of a successful
curve crossing:

whereS is the generalized solvent coordinate,Ṡ is the solvent
velocity, andΘ(Ṡ) is the step function. The brackets denote
averaging over the classical solvent distribution normalized by
the partition function of the solvent.

To find the appropriate nonadiabatic transmission coef-
ficient,κ, for use in this equation, Borgis and Hynes18 used the
general Landau-Zener (LZ) transmission coefficient,κ, adapted
for the present problem. The LZ factor, appropriate for a positive
velocity approach to the crossing point, is

where

is the adiabaticity parameter. The expression for the transmission
coefficientκ includes multiple passage effects on the transition
probability. V is the coupling matrix element between the
reactant and the product, and∆F is the slope difference of the

diabatic potentials of mean force at the crossing point,∆F )
kS, wherekS is the parabolic potential-surface force constant.
Whenγ , 1, one obtains the nonadiabatic-limit result

leading to

in which ∆Gq is the Marcus activation free energy

The adiabaticity parameter,γ (see eq 5), depends on the
potential surfaces curvature,∆F, the coupling,|V|2, and the
velocity in the vicinity of crossing,Ṡ. |V|2 is independent of
temperature. The solvent velocity,Ṡ, however, depends strongly
on temperature. In our previous papers,7-10 we suggested that
Ṡ is related to the slow components of the solvent relaxation.
On the basis of the experimental data, we infer thatṠ ) b/τD,
whereτD is the solvent dielectric relaxation time andb is an
empirical factor, dependent on the specific protic solvent, whose
value is between 1 and 4.

In the adiabatic limit (V . kBT, κ ≈ 1), the adiabatic rate
expression is

whereωS is the solvent high frequency and∆GAD
q = ∆GNA

q -
V is the free energy of activation.

Another physical limit is realized whenV e kBT and the
interaction with the environment is strong enough. In this
solvent-controlled limit, the rate is inversely proportional to the
solvent relaxation time (friction) and independent of the coupling
V. Rips and Jortner33 derived an expression for the resonant
electron-transfer rate in the solvent-controlled limit.

For the nonresonance cases, the prefactor in the rate expression
(eq 10) changes by only about 20%.τL is the longitudinal
dielectric relaxation timeτL ) (ε∞/εS)τD, whereε∞ andεS are
the high-frequency and static dielectric constants, respectively.

The preexponent depends on the solvent’s dynamical proper-
ties. At low temperatures, we found that the preexponential
factor in the solvent-controlled limit is related to the slowest
component of the dielectric relaxation time. We also found that
the temperature dependence of the proton transfer can be
explained as a continuous transition from the nonadiabatic limit
at high temperature to the solvent-controlled limit at low
temperature.

A number of attempts have been made to bridge these
physical limits. Zusman27 derived a rate expression that bridges
the nonadiabatic limit and the solvent-controlled limit. Rips and
Jortner have used a simple physical argument to obtain a rate
expression that bridges all three limits.31 They assumed that the
crossover could be described in terms of a single dimensionless
parameter, the ratio of the mean free path to the root-mean-
square displacement of the reaction coordinate.

A*H ‚ ‚ ‚SB 98 A-* ‚ ‚ ‚HSB
+

k ) 〈ṠΘ(Ṡ) δ(S- S*) κ(Ṡ, S*)〉R (3)

κ ) [1 - 1/2 exp(- γ)]-1[1 - exp(-γ)] (4)

γ ) 2π|V|2
p∆FṠ

) 2π|V|2
pkSṠ

(5)

κ = 2γ (6)

kNA ) 2π
p

|V|2( â
4πES

)1/2
exp(- â∆GNA

* ) (7)

∆GNA
* ) 1

4ES
(ES + ∆G)2 (8)

kAD ) (ωs/2π) exp(-â∆GAD
q ) (9)

kSC
ET ) 1

τL
( ES

16πkBT)1/2

exp(- â∆GNA
* ) (10)

Unusual Temperature Dependence of Proton Transfer J. Phys. Chem. A, Vol. 106, No. 46, 200211117



In our previous papers,7-10 we used the mean-first-passage
expression to bridge between the nonadiabatic limit and the
solvent-controlled limit to obtain the rate expression

wherekPT is the overall rate andkNA andkSC are given by eqs
7 and 10.

Numerical Calculation of the Proton-Transfer Rate. We
use two crossing parabolic potential surfaces representing the
free energy of the reactant and product along the solvent
coordinate. For numerical calculation purposes, we focus our
attention on the reactant single-well parabolic potential surface
in the generalized solvent coordinate. The numerical calculation
is based on the diffusive propagation of the solvent-generalized
coordinate from the equilibrium position of the reactant well to
the crossing point. We solve the Debye-Smoluchowski equation
(DSE) for the specific problem. The probability density function,
p(S, t), to find a solvent configuration,S, along the generalized
solvent coordinate at timet obeys the DSE27,49,50

whereD is a diffusion constant andU(S) is the potential surface.
In the numerical calculation, we used

wherekS ) 2ES andS is the generalized and normalized solvent
coordinate. In this solvent coordinate, the reactant and product
equilibrium positions are atSr ) 0 andSp ) 1, respectively.ES

is the solvent reorganization energy. For both 2N and 2N68DS,
we usedES ) 0.3 eV. The calculation’s initial condition is a
thermal equilibrium of the probability density function,p(S),
of the solvent coordinate of the reactant and is given by a
Gaussian distribution centered at the minimum of the reactant
well.

where 〈S2〉 is the mean square displacement with a Gaussian
width of U(〈S2〉) ) x2ESkBT.

The diffusion constant,D, is related to the dielectric relaxation
time,τD, and the widths of the Gaussian initial distribution,49D
) 〈S2〉/2τS, τS ) τD/b, whereb is an empirical factor. ForES )
0.3 eV, 〈S2〉 = 0.16 at room temperature.

The activation energy,∆Gq, to cross between the reactant
well and the product well is determined from the experimental
activation energy measured at high temperatures (the nonadia-
batic limit). For 2N68DS, we used∆Gq ≈ 2.5 kJ/mol. The
position of the activation barrier is determined by∆Gq ) U(Sq)
andSq ) 0.21. For 2N, we used∆Gq ≈ 12 kJ/mol and calculated
Sq ) 0.37.

The next step in the calculation is based upon solving the
DSE of a single parabolic potential surface with the relevant
initial and boundary conditions. To solve it, we used a
modification of a user-friendly graphic program, SSDP (Ver.
2.61), of Krissinel and Agmon.51 The modification is based on
using the Landau-Zener transmission coefficient,κ (eq 4), in

the sink term at the crossing point between the reactant well
and the product well. The boundary condition at the crossing
point is given by

The boundary condition (eq 15) we chose has similar compo-
nents to the expression for the rate constant, expressed in a
transition-state theory form (eq 3). The average solvent velocity,
Ṡ, is proportional to 1/τD, κ appears in both expressions,k0 is a
numerical factor that is independent of temperature and is
determined by fitting the numerical solution to the experimental
proton-transfer rate constant at high temperatures.

Finally, the proton-transfer rate constant is obtained from the
slope of the plot of ln(p) versus time.

Results

2-Naphthol-6,8-disulfonate. Figure 1 shows the proton-
transfer rate constant for both 2N68DS (circles) and 2N (squares)
as a function of 1/T. The temperature dependence of the proton-
transfer rate constant,kPT, of 2N68DS is quite unusual for
chemical reactions. In general, chemical reactions obey a
constant exponential (Arrhenius) decrease of the reaction rate
constant as a function of 1/T over a large temperature range.
As described previously, the value ofkd is nearly insensitive to
the solvent temperature atT > 300 K, whereas below 300 K,
kd decreases with the decrease in the sample temperature with
a temperature-dependent activation energy.

Figure 2 shows the activation energy of the proton-transfer
rate constant of 2N68DS (circles) in water as a function ofT-1.
In the high-temperature range,T > 300 K, the activation energy
is almost constant, with an average value of about 2.5 kJ/mol,
whereas in the low-temperature region, it changes from 4 kJ/
mol at about 300 K up to 10 kJ/mol at 265 K.

Figure 3a shows the experimental results along with the
calculated results using the DSE for the proton-transfer reaction

kPT(T) )
kNA(T) kSC(T)

kNA(T) + kSC(T)
(11)

∂p(S,t)
∂t

) D
∂

∂S
e-âU(S) ∂

∂S
eâU(S) p(S, t) (12)

Ur(S) ) 1
2

kSS
2

Up(S) ) 1
2

kS(S- SP)
2 (13)

peq(S) ) 1

(2π〈S2〉)1/2
exp(- S2

2〈S2〉) (14)

Figure 1. Proton-transfer rate constant as a function of 1/T for 2N68DS
(O) and 2N (0).

∂p

∂S|
S)S*

) -k0κṠp(S*,t ) (15)
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from 2N68DS to aqueous solution as a function ofT-1. Full
circles represent the computed rates; open squares represent the
experimental rates. The solid line is from a calculation based
on the mean-first-passage expression (eq 11). The relevant
parameters for the calculation using the diffusion model are
given in Table 1.

The rate constant calculated using the interpolation equation
(eq 11) (the solid line in Figure 3a) also gives a good fit to the
experimental data. For 2N68DS, we evaluate from the high-
temperature dataV ≈ 2 cm-1. The free adjustable parameters
in the calculation areγ′, b, andk0:

We find thatγ′ ) 1.6 × 1010 s-1 from the best fit to the
experimental data for the rate of proton transfer of 2N68DS to
water and thatb ) 2.5 andk0 ) 350 Å/ns.

2-Naphthol. Figure 1 shows on a semilog scale an Arrhenius
plot of the proton-transfer rate constant for 2N (circles). The
proton-transfer rate constant from 2N (pK* ) 2.7) to water at
room temperature is relatively small (∼108 s-1), and it exhibits
a relatively strong temperature dependence even at high
temperatures,T > 300 K. This behavior is in contrast to our
findings for stronger photoacids such as 2N68DS (kPT ≈ 2 ×
1010 s-1) with pK* ≈ 0.4 and a previously studied photoacid
8-hydroxy-1,3,6-trisulfonate (HPTS) with pK* ≈ 1.7

The activation energy of 2N is not constant (see Figure 2,
squares). At high temperatures,T > 320 K, we find that∆Gq

) 10 kJ/mol, whereas at supercooled temperatures,∆Gq ≈ 18
kJ/mol. The experimental data of lnkPT versus 1/T can be fitted
with our model. Figure 3b shows the plot of the proton-transfer
rate constant,kPT, as a function ofT-1; the experimental data
(squares), the computed values (circles), and the solid line are
from the computation based on the interpolation equation (eq
11). For the adjustable parameters, we findγ ′ ) 6 × 109 s-1,
b ) 1.2, andk0 ) 320 Å/ns. Both|V|2 and the activation energy

were determined from the high-temperature data,V ≈ 1 cm-1

and∆G q ≈ 11 kJ/mol.

Discussion

In this paper, we measure and calculate the proton-transfer
rate constant from two photoacidssa weak photoacid, 2-naph-
thol with pK* ) 2.7 and a relatively strong one, 2-naphthol-
6,8-disulfonate with pK* ≈ 0.4sto water as a function of

Figure 2. Activation energy of the proton transfer rate of 2N68DS
(O) and 2N (0) as a function of 1/T.

γ ) γ′τD(T) (16)

Figure 3. Semilogarithmic plot of the proton-transfer rate constant
from photoacid to water versusT -1 for (a) 2N68DS and (b) 2N.
Experimental data (0), calculations according to our diffusive model
and LZ boundary condition (b), and the interpolation equation using
eq 11 (s).
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temperature and correlate the results with the corresponding
values of the dielectric relaxation time,τD. In our previous
studies,8-10 we found that the temperature dependence of the
proton-transfer rate constant from a superphotoacid, 5,8-dicyano-
2-naphthol (DCN2) (with pKa* ) - 4.5 in water), to alcohols
exhibits non-Arrhenius behavior. We found that, at low tem-
peratures, the proton-transfer rate constant follows the inverse
of τD (i.e., kPT ) b/τD), whereb is an empirical factor and its
value for methanol is∼2. The proton-transfer rate constant of
the strong photoacid, 2N68DS, exhibits a similar temperature
dependence. Unlike the temperature dependence of the proton-
transfer rate constant of 2N68DS from the weaker photoacid
2N, the proton-transfer rate constant also exhibits great tem-
perature dependence at high water temperature. In the current
paper, we used a similar approach to explain and calculate the
temperature dependence of both 2N68DS and 2N.

Conventional Landau-Zener (LZ) theory11,12 provides an
accurate description of the curve-crossing process if the
motion in the vicinity of the crossing point is nearly uniform
(ballistic).25,26Rips and Pollak34 showed that variational transi-
tion-state theory (VTST) allows for the identification of a
collective coordinate along which the dynamics in the curve-
crossing region is maximally separated from the remaining
solvent-induced dynamics (quasiballistic). The rate of transition
from the reactant to the product wells can then be calculated
by conventional LZ theory.

In a recent paper,52 we used the same model as used in this
paper to fit the experimental temperature dependence of the
proton transfer from DCN2 to methanol and glycerol. The model
is based on a diffusive propagation of the solvent configuration
along a generalized solvent coordinate from the reactant potential
surface toward the crossing point with the product potential
surface. The proton transfer occurs at the crossing point, and
the rate is calculated by a sink term placed at the crossing point.
The sink term includes the solvent velocity and the Landau-
Zener transmission coefficient. Both the diffusion constant and
the Landau-Zener transmission coefficient depend on the
dielectric relaxation of the solvent. Our model calculations show
that, for sufficiently strong photoacids, at high temperatures (the
nonadiabatic limit), the generalized water configuration motion
is fast, the activation energy is sufficiently low, and the proton
tunneling rate is the rate-determining step. The LZ transmission
coefficient is small and hence limits the rate of population
transfer to the product (in our model, successful crossing of
population to the product diabatic potential surface). From the
rate constant at high temperatures (the nonadiabatic limit, eq
7), we determine the preexponential factor and the activation
energy of the process.

The preexponential factor is mainly determined by the value
of the coupling matrix element. The transmission coefficient
from the reactant well to the product well at the crossing point
(at the top of the barrier) is given by the Landau-Zener

transmission coefficient (eq 4). The adiabaticity parameter,γ
(eq 7), is determined by three parameters:|V|2, ∆F, andṠ. |V|2
can be evaluated from the experimental high-temperature rate
constant. We find that the preexponential factor is 1.1× 1011

s-1 and 8× 109 s-1 for 2N68DS and 2N, respectively. From
the preexponential expression, we evaluateV to be∼2 and 1
cm-1 for 2N68DS and 2N, respectively.∆F ) kS, wherekS is
the mean force constant, which is related to the solvent
reorganization energy,kS ) 2ES. The medium reorganization
energyEs can be calculated for spherical ions.49 The charge
distributions of naphthol derivatives and naphtholate derivatives
are complex, and it is a difficult task to estimateEs. For polar
liquids, it is customary to useEs values in the range of 0.1-0.3
eV.18,53For both compounds, we used the same reorganization
energy,ES ) 0.3 eV. To evaluate the adiabaticity parameterγ
) γ′′τD quantitatively, we calculate the value of

for 2N68DS. For 2N, we findγ′′ ≈ 7 × 109 s-1.
In our previous work,52 we found the proton transfer rate from

the superphotoacid DCN2 to methanol or glycerol, and at a low
enough temperature (the solvent-controlled limit), the diffusive
propagation of the solvent configuration toward the crossing
region is slow compared to the tunneling rate. The LZ
transmission coefficient is close to 1 since the average solvent
velocity, Ṡ, is slow (eq 5) and the rate-determining step is the
transport motion of the probability density function of the
solvent configuration itself, which also appears in the sink term
(eq 15). The activation energy of the process,∆Gq, remains
small, but the diffusion constant, which is related to the average
velocity of the solvent configuration, exhibits a large tempera-
ture dependence. In the solvent-controlled-limit rate expression
(eq 10), the preexponential factor of the electron-transfer rate
constant is determined byτL. For the analysis and the data fit,
we use the average generalized solvent configuration velocity
at the crossing point,Ṡ) b/τD, whereb is an empirical factor.

From previous studies on alcohols7-10,52and also in this study,
we find that the solvent characteristic time for proton transfer,
τS ) τD/b, is in the rangeτD > τS > τL, whereτL ) (ε∞/εS)τD

is the longitudinal dielectric relaxation time. For methanol, we
found the value of the empirical factorb ≈ 2, and for 2N68DS
in water, we found a slightly larger value,b ) 2.5, whereas for
2N, this factor was significantly smaller,b ) 1.2. The values
of τL for water can be estimated from the values of the low-
and high-frequency dielectric constants of water,εS and ε∞,
which are relevant for the proton-transfer process. The static
dielectric constant of water isεS

water ) 78 at 298 K. The
description of the dielectric relaxation literature results for water
requires a superposition of two Debye processes.54-56 The
high-frequency dielectric constant of the slower process is about

TABLE 1: Relevant Parameters for Model Calculations of aEs ) 0.3 eV,b,cSr ) 0, and Sp ) 1 Å
d pK* e∆Gq [kJ/mol] f ∆Gq [kJ/mol] g Sq h kNA

PT [s-1] b,i k0 [Å/ns] j γ′ k γ′′ l V [cm-1] mb

2N 2.7 17 11.5 0.39 1.9× 108 320 6× 109 6.6× 109 0.98 1.2
2N68DS 0.4 9 2.5 0.21 1.9× 1010 350 1.6× 1010 1.8× 1010 2.3 2.5

a Solvent reorganization energy.b For calculations with the SSDP program,51 we used the solvent coordinate with a length dimension of angstroms.
c We placed the minima of the reactant and product potential surfaces at 0 and 1 Å, respectively.d Excited-state equilibrium constant.e Activation
energy as calculated from eq 8.f Activation energy obtained by the best fit to the experimental data.g Crossing-point position between the two
diabatic potential surfaces.h Experimental values of the PT rate constant at 373 K.i k0 is a numerical factor that is independent of temperature and
is determined by fitting the numerical solution to the experimental proton-transfer rate constant at high temperatures.j γ′ is a free adjustable parameter

(see eq 16).k γ′′ is the calculated value ofγ′ according toγ′′ )
2π
p

|V|2 1
∆F

1
b

. l Evaluated from the experimental high-temperature rate constant.
m Empirical factor used in the determination of the proton transfer rate.

γ′′ ) 2π
p

|V2| 1
∆F

1
b

= 1.8× 1010 s-1
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ε ) 6.5, and the dielectric relaxation times range from∼6 ps
at 310 K to 18 ps at 273 K. The faster process that contributes
the second Debye relaxation time has a duration of about 1 ps;
its high-frequency dielectric constant is about 4.5 and is almost
temperature-independent. The ratio for the slow process,εS/ε∞,
is 12, whereas we find from the fitting of the proton-transfer
process from 2N and 2N68DS much smaller values,b ) 1.2
and 2.5, respectively.τL

293K ) 0.8 ps, andτS for 2N and
2N68DS in our calculations is about 8 and 4 ps, respectively.

In the calculation of the proton-transfer rate constant, on the
basis of the Landau-Zener curve-crossing formulation, we find
that for both compounds, 2N and 2N68DS, at 373 K, the boiling
point of water, the reaction is in the nonadiabatic regime,κLZ

) 0.02. At room temperature,κLZ increases only slightly and
is about 0.07, which means that the reaction is still in the
nonadiabatic regime. The rate-limiting step is the proton motion,
whereas the dynamics of the solvent configuration is fast and
does not limit the rate of proton transfer. At 252 K, the
adiabaticity parameter increases significantly,γ ) 0.27 andκLZ

≈ 0.3. Thus, for supercooled water,T ) 252 K, the rate constant
is determined by the dynamics of both coordinates, the solvent
configuration, and the proton tunneling. As discussed above in
the case of proton transfer from DCN2 to alcohols, we were
able to observe a continuous transition from the nonadiabatic
regime,κLZ < 0.1, to the solvent-controlled limit,κLZ > 0.9,
by continuously changing the temperature from high to low. In
Figure 4, we plot the Landau-Zener transmission coefficient
as a function of 1/T for the photoacids studied, and for
comparison, we also display our previous results52 of κLZ for
the proton-transfer reaction from DCN2 to methanol (triangles).
As seen for DCN2,κLZ reaches a value of 1, the solvent-
controlled limit, at about 170 K, close to the freezing point of
methanol. The midtransition point of the Landau-Zener trans-
mission coefficient,κLZ ) 0.5, for methanol occurred at 200
K. In the current case of proton transfer from both 2N and

2N68DS to water, even under the supercooled condition of 250
K, κLZ ) 0.3, and hence the reaction-rate constant is mostly
determined by the proton tunneling rate, and the solvent
dynamics limit the reaction rate to a lesser extent.

From our calculation, it arises that at high temperatures down
to about room temperature,∼300 K, the proton-transfer rate
constant is nearly independent of the generalized solvent
configuration motion since it is faster than the tunneling rate.
Only at lower temperatures, solvent motion partially controls
the proton-transfer process, and the value of the rate constant
is influenced thereby. The experimental activation energy of
proton transfer processes from 2N68DS increases by a factor
of approximately 5 since the relevant water motion that governs
the proton transfer process strongly depends on the temperature
of supercooled water.
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