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Molecular connectivity indices are identified as components of the molecular accessibility. The first- and
second-order connectivity indices represent molecular accessibility areas and volumes, respectively, whereas
higher order indices represent magnitudes in higher dimensional spaces. In identifying accessibility perimeters,
we recognized the atom degrees as a measure of the accessibility perimeter of the corresponding atom. The
Randićand connectivity indices are identified as the two components of the molecular accessibility area. The
accessibility perimeter is computed here from the van der Waals and covalent radii of the atoms and the
overlapping angle between the van der Waals circumferences of bonded atoms. The description of the
accessibility area in terms of the first-order Randic´ and connectivity indices accounts for the success of these
descriptors in correlating different physicochemical and biological properties because they are a measure of
the extension of intermolecular interactions. A theoretical justification for the selection of the exponent in the
Randić invariant is provided by the relation between the valence degree and the accessibility perimeters
calculated in this work.

1. Introduction

The history of molecular connectivity indices started when
Milan Randić introduced the “molecular branching” index in
1975.1 In this seminal work Randic´ introduced a graph-
theoretical invariant (the Randic´ invariant) based on the sum
of weighted contributions from all bonds in the molecule. These
bond weights were determined as the product of vertex degrees
of the atoms defining the bond raised to the exponent-0.5.
Subsequently, in 1976 Kier, Hall, Murray, and Randic´ extended
the branching index to a series of molecular descriptors
accounting for contributions coming from paths, clusters, path-
clusters, and chains.2 The completion of the molecular con-
nectivity descriptors occurs with the introduction of heteroatom
differentiation by Kier and Hall in 1976.3

The molecular connectivity indices have been widely used
in physical chemistry4-14 as well as for predicting pharmaco-
logical and toxicological properties of organic, inorganic and
organometallic compounds.15-18 This large series of applications
of molecular connectivity indices reaffirm them as one of the
most useful set of molecular descriptors in structure-property-
activity relationship studies (QSPR and QSAR). Despite this
huge number of applications, a “physical interpretation” of the
connectivity indices has remained elusive. However, some
attempted interpretation in terms of quantum chemical concepts
have been done by Zefirov19 and Gálvez,20 and on the basis of
intermolecular encounters by Kier and Hall.21,22 On the other
hand, successful attempts to improve the quality of these
descriptors have been proposed. They include changing the
exponent in the Randic´ invariant,23-27 the variable connectivity
index introduced by Randic´,28-30 and the long-range connectivity
index introduced by Estrada.13 The most recent attempt for

improving and interpreting topological indices (TIs) was
introduced by Estrada31 as generalized TIs, which include the
Randićindex, together with several other TIs in the same graph
invariant.

This apparent divorce between the success in describing the
molecular structure and the elusive interpretation of these indices
has been the source of certain criticism for using molecular
connectivity in QSPR/QSAR studies. The current work repre-
sents an effort to solve the “mystery” of why molecular
connectivity is so successful in describing molecular structure
and consequently in predicting properties that depends on it.

2. Connectivity Index

The basis for the connectivity indices is the branching index
introduced by Randic´,1 which is defined as the sum of certain
bond contributions calculated from the vertex degrees,δi, of
the hydrogen suppressed molecular graph.

The values ofδi represent the number of skeletal neighbors
of the atomi and can be obtained as the number of electrons in
sigma orbitals,σi, minus the number of hydrogen atomshi

bonded to atomi. To account for heteroatom differentiation Kier
and Hall introduced the valence degree of an atom,δi

V.3 For
second row atoms in covalent molecules, the valence degree
for atom i is given as

whereZi
V is the number of valence electrons,πi is the number

of electrons inπ-orbitals, andni is the number of electrons in
lone pair orbitals. This is a simple counting algorithm in which
the number of electrons in different orbitals are taken into
account. Later we will give a graph-theoretical representation
for the case of lone-pair electrons in the development of the
current approach. To consider the screening effects produced
by electrons in inner shells of atoms beyond the second row of
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the periodic table, Kier and Hall proposed to calculate the
valence degree of any atom as follows:15

The bond contributions to the connectivity indices, named
Cij by Kier and Hall,32 are calculated as

These contributions can be considered as the simplest ones
coming from different subgraphs in the molecular graphs. That
is, they are contributions coming from first-order subgraphs:
graph edges or bonds. Thus, the Randic´ index, 1ø, and the
valence connectivity index,1øV, are first-order indices, which
are defined as

where the summation is carried out over alll bonds in the
molecule.

3. Extended Connectivity Indices

Molecular connectivity indices have been generalized to a
series of “higher order” or extended connectivity indices,møt

and møt
V.9 The exponentm is known as the order of the

connectivity index and represents the number of bonds in a
subgraph of type t. In this way the indices1ø and 1øV are the
simplest examples of this set of descriptors, which are calculated
for paths of length 1, i.e., bonds. For the orderm > 2 there are
several types of subgraphs: paths (t) p), clusters (t) C), path-
clusters (t) pC), and chains (t) Ch), in the terminology of
Kier and Hall. In the case of the third order, there is no path-
cluster type.

In this case the indices are calculated by defining the terms
mCk as the product of reciprocal square roots of the vertex or
valence degrees in the corresponding subgraph:

The indexi runs over them + 1 values ofδ in the subgraph
havingm bonds, except for the chain type in whichm equals
the number of atoms in the ring.

The extended connectivity indices are defined as

The summation is carried out over the total number of subgraphs
of orderm and type t in the graph.

4. Atomic Intermolecular Accessibility

Kier and Hall have recently interpreted the molecular con-
nectivity in terms of intermolecular accessibility starting from
the interpretation of the bond contributionsCij.21,22 Thus, they
have concluded that21 “the molecular connectivity index is the
contribution of one molecule to the bimolecular interactions
arising from encounters of bonds among two molecules.”

We have been inspired in the concept of intermolecular
accessibility to interpret the connectivity indices in terms of
molecular structural features. In doing so, we propose to rewrite

the first-order connectivity indices in the following equivalent
form:

For the sake of simplicity we start our interpretation by
finding the structural meaning of the termsδi

-0.5 as the most
basic structural element of the connectivity indices. Next we
extend our approach to molecules containing heteroatoms and
to higher order indices.

Here we represent molecules as molecular graphs, i.e., as
hydrogen-depleted graphs in which vertices represent atoms and
edges represent covalent bonds. The vertices of a graph are
generally represented as points in a plane. Here we will consider
that the vertices are covered by circumferences of radiusr in
such a way that adjacent circumferences overlap each other.
These circumferences have perimeters of lengthsL. If we
consider an isolated vertex (see Figure 1) for which the degree
is zero, it is trivial that the whole perimeter of the circumference
covering this vertex is in contact with the external environment.
In other words, we can say that this circumference is accessible
in the total length of its perimeter. However, a circumference
covering a vertex of degree 1 is accessible from the environment
from all points except from the place where both circumferences
are overlapped, as illustrated in Figure 1. The necessity for the
overlapping of the circumferences arises from the fact that in
case the circumferences do not overlap they are accessible from
the entire environment; that is, the vertices are isolated (discon-
nected to each other). When circumferences overlap, the
accessibility to one of these circumferences from outside is the
perimeter of the circumference minus the section overlapped
by the adjacent circumference. This accessibility is reduced if
we consider a vertex of degree 2. In this case the accessibility
to the circumference from the exterior is the perimeter of the
circumference minus the sum of overlaps of both adjacent
circumferences. If we consider a vertex of infinite degree, we
see that the accessibility from outside is null, as shown in Figure
1. We propose to call the length of the arc that is accessible
from outside the corresponding atom theatomic accessibility
perimeter.

It is straightforward to realize that the atomic accessibility
perimeter of atomi (Acc(i)) is proportional to the inverse of
the vertex degree of the corresponding atom (1/δ) (for vertices
with degree different from zero, i.e., vertices in connected
graphs). This proportionality in maintained by using the inverse
of the square root of the vertex degree, which is the term used
in the connectivity indices (see further for a theoretical justifica-
tion of this selection):

δi
V ) (Zi

V - hi)/(Zi - Zi
V - 1) (2)

Cij ) (δiδj)
-0.5 and Cij

V ) (δi
Vδj

V)-0.5 (3)

1ø ) ∑Cij ) ∑
l

(δiδj)l
-0.5 and

1øV ) ∑Cij
V ) ∑

l

(δi
Vδj

V)l
-0.5 (4)

mCk ) ∏
i

(δi)k
-0.5 and mCk

V ) ∏
i

(δi
V)k

-0.5 (5)

møt ) ∑
k

mCk and møt
V ) ∑

k

mCk
V (6)

Figure 1. Representation of the external accessibility of an atom as a
function of its vertex degree.

1ø ) ∑
l

[(δi
-0.5)(δj

-0.5)] l and

1øV ) ∑
l

[(δi
V)-0.5(δj

V)-0.5] l (7)
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whereR is a proportionality constant.
On the other hand, we can consider that this accessibility is

proportional to the portion of the perimeter that is exposed to
the environment, that is, the difference between the perimeter
of the circumference surrounding the atom,L, minus the arc,I,
which is interpenetrated with the circumference of the neighbor
atom:

whereâ is another proportionality constant, which is the atomic
accessibility when the difference between the perimeter of the
circumference and the overlap arc is exactly 1 pm. Here we
will always consider the value ofâ ) 1 in all the calculations.

The combination of eqs 8 and 9 means that the inverse of
the square root of the vertex degree can be understood as a
measure of the perimeter of an atom that is accessible from
outside when no heteroatoms or multiple bonds are taken into
account. That is, it can be considered as a component of the
relatiVe atomic accessibility perimeter(RAP). Here relative
means that it is related to the carbon atom with degree 1, i.e.,
δ-0.5 ) 1.

5. Relative Area of Molecular Accessibility

As we see in the previous section the values ofδi
-0.5, which

are the basic elements in the definition of the Randic´ index,
can be interpreted in terms of the accessible perimeter of an
atom from the environment. In this sense, the values of RAP
can be expressed in length units. We propose to call this length
unit the Randic´ (R). Thus, an atom having relative accessibility
of 1 is said to have 1 R (one Randic´) of accessibility.

If we take now the Randic´ invariant, we observe that a
summation of bond terms is carried out for a molecule, in which
the bond terms areCij ) (δi

-0.5)(δj
-0.5), according to the

nomenclature used by Kier and Hall.32 However, if we agree
that the termsδi

-0.5 are lengths of accessible perimeters, we
straightforwardly observe that the termsCij representrelatiVe
bond accessibility areas(RBA). In Figure 2 we represent in
the form of rectangles the different bonds present in alkanes
whose areas correspond to the values of the RBAs for such
bonds. These areas are expressed in squared Randic´ (R2).

In closing, the Randic´ index, which is the sum of all relative
bond accessibility areas in the molecule, is therelatiVe molecular
accessibility areawhen neither heteroatoms nor multiple bonds
are considered. In more appropriate terms we can speak about
the Randic´ index as a “contribution” to the relative molecular
accessibility area. In such a way, we represent these areas for
the isomers of pentane in Figure 3. These areas, given in R2,
represent the total areas that are accessible from the environment
surrounding the molecules. This explains why the Randic´ index
has been so successful in modeling very diverse physical and
biological properties. If we analyze, for instance, the boiling
points of alkanes, we can see that with the increment of the
value of the relative molecular accessible area, that is of the
Randić index, the number of intermolecular interactions in-
creases producing an increment in the boiling point and
explaining “physically” the correlation of this index with such
an experimental property. It also explains the success of this
index in describing solubility, partition coefficients, or the
interaction of drugs with biological receptors.

6. Molecules Containing Heteroatoms and Multiple Bonds

To understand the nature of connectivity indices in molecules
with heteroatoms, we have to provide the circumferences around
the vertices in molecular graphs with a physical meaning.
Continuing with the idea of atomic accessibility, we have to
consider different radii for the circumferences surrounding
different heteroatoms. One parameter that reflects very well
these differences is the van der Waals radius. It is established
from the contact distances between nonbonding atoms in
touching the corresponding atom. We first will analyze the
variations of this parameter in one row of the periodic table.
That is, we will consider the differences among C, N, O, and
F. According to Bondi,33 the van der Waals radii (rvdW) for these
atoms are, in pm, 170, 155, 152, and 147.34 Thus, the van der
Waals radii decrease with an increase in the number of electrons
in the valence shell. To represent the electrons in the lone pairs
in heteroatoms using a graph-theoretical approach, we will
consider graphs having loops. A loop is an edge that starts and
ends at the same vertex. Thus, a loop is doubly incident to the
corresponding vertex, which means that it increases the vertex
degree by 2. A graphical representation of the previously
considered atoms is given in Figure 4. These types of graphs
are known in graph theory as pseudographs.

If we take the van der Waals radii as the radii of the
circumferences surrounding the vertices, we have identified the
perimeter of these circumferences,L, and the length of overlap
arc, I, as

whereθ is the angle of overlap between two adjacent circumfer-
ences (see further). Thus, the atomic accessibility given by eq
9 is now as follows:

Acc(i) ) R

xδi

(8)

Acc(i) ) â(L - I) (9)

Figure 2. Relative bond areas of external accessibility for the different
bond types in alkanes.

Figure 3. Representation of the relative molecular accessibility areas
for pentane isomers.

L ) 2πrvdW and I ) θvdW (10)
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In Figure 5 we illustrate the situation in which a circumfer-
ence with van der Waals radiusrvdW and center at O is
overlapped with another circumference with center at O’. The
angleθ is formed by the points AOB. The distance OO’ is the
corresponding bond distance. Thus, the distance OP is the
covalent radius of the corresponding atom O.

The angleθ is then obtained as

When atoms in different rows are analyzed, we have to
consider the screening effect produced by the electrons in inner
shells for the valence shell electrons. This effect is considered
in the valence connectivity index by dividing by the termZi -
Zi

V - 1 in eq 2. This “correction” produces an increment in the
value of (δi

V)-0.5 as we move down in a column of the periodic
table. The same variation is observed for the van der Waals
radii.

When multiple bonds are analyzed, a similar situation occurs.
In this case the variation in the atomic accessibility is accounted
for by the change in the covalent radius of atoms supporting
multiple bonds. For instance, the covalent radius for the carbon
with sp3 hybridization, e.g., in CH3, is 77 pm, and the same for
a sp2 carbon, e.g.,dCH2, is 60 pm. This change in the covalent
radius is reflected in the values of the overlapping angle and
consequently in the values of the atomic accessibility. In the
upper part of Table 1 we give the values of the atomic
accessibility for different atoms having only one neighbor
bonded to them (same connectivity). As can be seen, the values
of the atomic accessibility for atoms with the same number of
neighbors, Acc(i) ) (L - I), change in the same direction as
the values of (δi

V)-0.5. In Figure 6 we plot the values of the
atomic accessibility versus the values of (δi

V), where we can
see the proportionality between both parameters. It can also be

observed that Acc(i) ) (L - I) depends on a negative potency
of the (δi

V) values, as can be analyzed later.
Consequently, for atomic groups having the same number of

neighbors (the same connectivity in terms of simple values of
δi) the atomic accessibility is proportional to the values of (δi

V)
raised to a negative power (here we will use the value of-0.5
as in the connectivity index and later we will analyze this value
in more detail):

A new question arises when atoms or atomic groups with
different numbers of neighbors are considered together in the
current analysis. In this case, the perimeter of the atom in
question is overlapped by more than one circumference coming
from the neighbor atoms. Consequently, the atomic accessibility
is calculated by resting to the perimeter of the atom the lengths

Figure 4. Schematic representations of some first-row atoms illustrat-
ing graph-theoretical loops and van der Waals circumferences.

Figure 5. Interpenetration of the van der Waals circumferences of
two neighbor atoms.

Acc(i) ) (L - I) ) rvdW(2π - θ) (11)

θ ) 2 cos-1[(rvdW
2 + rcov

2)/2rvdW
2] (12)

TABLE 1: Values of van der Waals and Covalent Radii,
Interpenetration Angle between van der Waals
Circumferences, Accessibility Perimeter (L - I ) and Valence
Degrees for Different Atoms

atom rvdW (pm) rcov (pm) θ (radians) L - I (pm) (δv)

sCH3 170 77 1.8481 753.9 1.000
dCH2 170 70 1.9099 743.5 2.000
tCH 170 60 1.9473 737.1 3.000
sNH2 155 75 1.8115 693.1 3.000
dNH 155 62 1.9041 678.8 4.000
tN 155 55 1.9457 672.3 5.000
sOH 152 73 1.8160 679.0 5.000
dO 152 60 1.9093 664.8 6.000
sSH 180 102 1.6986 825.2 0.556
sF 147 71 1.8127 657.2 7
sCl 175 99 1.6999 802.1 0.778
sBr 185 114 1.6190 862.9 0.259
sI 198 133 1.5177 943.6 0.156
sCH2s 170 77 1.8481 439.8 2
dCHs 170 73.5a 1.8790 429.3 3
tCs 170 68.5a 1.8977 422.9 4
dCd 170 70a 1.9099 418.8 4
sNHs 155 75 1.8115 412.3 4
dNs 155 68.5a 1.8578 397.9 5
sOs 152 73 1.8160 403.0 6
sSs 180 102 1.6986 519.5 0.667
sCH< 170 77 1.8481 125.6 3
dC< 170 74.7a 1.8790 115.2 4
sN< 155 75 1.8115 131.6 5

a Averaged values of the covalent radii for the different hybridiza-
tions in the atom.

Figure 6. Relation between the atomic accessibility perimeter and the
valence degree of different heteroatoms bound to one neighbor atom.

Acc(i) ) R′(δi
V)-0.5 (13)
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of the arcs overlapping it: Acc(i) ) (L - δI), whereδ accounts
for the number of neighbors bonded to the corresponding atom.
For instance, if we consider the-CH2- group, the value of
Acc(i) will be obtained as the difference between the perimeter
of the C atom calculated from the van der Waals radius and 2
times the length of the arcI calculated from the angle of
overlapping (eq 12).

In Table 1 we give the values of the atomic accessibilities
for atoms with different connectivities. As can be seen, the
accessibilities of atoms bonded to two or three neighbors are
significantly lower than those having only one neighbor.
However, the same kind of proportionality exists between the
atomic accessibility and the values of (δi

V) for the different
groups of atoms with connectivity one, two, or three. In Figure
7 we represent these proportionalities for atomic groups with
one and two neighbors.

This means that the atomic accessibility is composed of two
different components: one is related to the changes in acces-
sibility due to different heteroatom nature as well as hybridiza-
tion (multiple bonds), and the other component of the atomic
accessibility is related to the number of neighbors bonded to
the corresponding atom. In fact, if we consider the 24 atomic
groups in Table 1 together, we can find an excellent linear
correlation between this property and both the values of (δi

V)-0.5

and (δi)-0.5 (R ) 0.978):

This correlation is significantly improved by changing the
values of the exponent of theδ values. For instance,R) 0.9834
is obtained with-0.3 as exponent (see further analysis of the
exponent in the Randic´ invariant). The previous results mean
that the inverse of the square root of the valence degree is a
measure of the atomic accessibility when the number of
neighbors bonded to the atoms is the same and it can be
considered as in the case of the vertex degree as a component
of the relatiVe atomic accessibility.

It is now straightforward to realize, in a way similar to that
for the Randic´ index, that the valence connectivity index,1øV,
is the other component of therelatiVe accessibility areaof a
molecule. It takes into account the differences that arise from
the variations in atomic radii for different heteroatoms or due
to multiple bonds. This combination of Randic´ index and
molecular connectivity index for explaining the molecular
relative accessibility area is probably the main cause for finding

these two indices together in many QSAR/QSPR correlations,
despite the intercorrelation of both indices in many cases. That
is, they both (1ø and 1øV) are needed to account for molecular
accessibility area.

7. Interpretation of Extended Connectivity Indices

In light of the current approach, the values of the inverse
square root of the vertex degree are interpreted as the length of
the arc in the van der Waals circumference accessible from
outside. In other words, (δi)-0.5 and (δi

V)-0.5 values have length
units and the first-order connectivity indices are interpreted as
components of the accessibility molecular areas. In agreement
with this interpretation we are going to interpret the structural
meaning of the extended (“higher order”) connectivity indices.

In the following we will make all developments in terms of
the nonvalence connectivity indices. The same expressions are
applicable to the valence connectivity indices by including the
superindex V to the values ofδi and to the corresponding
indices.

The connectivity index of path type of second order,2øp is
the product of the values of (δi)-0.5 for the atoms in a path of
length 2 in the molecule. That is,

where the summation is carried out for all paths of length 2 in
the molecule.

The multiplication of these three accessibility perimeters,
Cijk ) (δi)-0.5(δj)-0.5(δk)-0.5, expressed in length units, gives as
a result a volume, expressed in cubic length units, i.e., cubic
Randić (R3). That is, this term represents the volume that is
accessible from outside to three adjacent atoms in a path of
length 2 in the molecule. Thus, the second-order connectivity
index,2øp, which is the sum of volumesCijk, is interpreted as a
component of themolecular accessibilityVolumecoming from
contributions of paths of length 2 in the molecule. These
connectivity indices can be graphically represented as cubes in
a three-dimensional space.

In a similar way we can interpret the “higher” order
connectivity indices as hypervolumes of order 4, 5, and so on
in a molecule coming from contributions of subgraphs of
different types t and lengths 3, 4, 5, etc. The main difference
between these indices and those before analyzed is that they
cannot be represented graphically as geometrical figures,
squares, and cubes, as the previous ones.

8. Exponent in the RandićInvariant

The Randic´ invariant is expressed through eq 4 in which the
exponent (-0.5) plays an important role. This exponent was
selected by Randic´ to differentiate the branching of alkanes.1

In 1988 Randic´ et al.23 studied the variation of this exponent as
a way to improve the quality of the “branching index” in
describing the boiling point of alkanes. As a result of this work
the authors show that the change of the exponent from-1/2 to
-1/3 improves significantly the linear regression model to
describe the cited property of alkanes. The change of this
exponent in this work was carried out empirically by following
as the main objective the improvement of a QSPR model.
However, in 1995 Estrada24 showed that the use of the exponent
-1/2 is not suitable for distinguishing certain pairs of isomers.
In fact, for regular graphs, i.e., those having all vertices with
the same degree, the Randic´ index is reduced toN/2, whereN
is the number of vertices (atoms) in the graph. In consequence,

Figure 7. Relation between the atomic accessibility perimeter and the
valence degree of different heteroatoms bound to one or two neighbor
atoms.

Acc(i) ) 127.7(δi
V)-0.5 + 1149.3(δi)

-0.5 - 510.6 (14)

2øp ) ∑
r

[(δi)
-0.5(δj)

-0.5(δk)
-0.5]r (15)
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cyclohexane (a 2-regular graph) and prismane (a 3-regular
graph), which have the same number of vertices, have exactly
the same value of the first-order connectivity index. The same
happens to cyclooctane and cubane and several other pairs of
isomers represented by regular graphs. The solution proposed
by Estrada in this work was simply to change the exponent from
-1/2 to -1/3.24 In more recent works, Amic´ et al.25,26 have
optimized the value of the exponent for describing different
physicochemical properties of organic compounds. In all these
studies the optimal values of the exponent in the Randic´
invariant for connectivity indices have been values of the type
-1/q. More recently, Gutman has proved that the use of an
exponent of-1 does not reflect the extent of branching of the
carbon-atom skeleton of organic molecules.27

In light of the current approach, the values of (1/δV) are
interpreted as a component of the atomic accessibility perimeter.
The values for this parameter calculated from the van der Waals
and the covalent radii are given in Table 1 for a series of atoms.
If we plot these values versus the corresponding values ofδV

as in Figure 6, we observe that the dependence of both variables
is inverse, i.e., the greater the accessibility the lower is the
valence degree of the atom. However, this dependence is not
linear but has the appearance of a model in which the valence
degrees are raised to (-1/q). We have used an optimization
algorithm for finding the value ofq in a model that relates the
accessibility to the valence degree for atoms with only one
neighbor: Acc(i) ) a(δi

V)b + c, where a, b, and c are fit
parameters. Using a least-squares algorithm we find that

with a correlation coefficient of 0.985 (the correlation is that
observed in Figure 6). The value of the exponent is exactly in
the range of optimal values found by several authors using
different empirical or mathematical approaches for improving
the quality of the connectivity indices. For instance, Amic´ et
al.26 studied the variation of the exponent in the connectivity
index from-1.5 to 0 and determined that the optimal values
for describing the solubility of aliphatic alcohols is in the range
from -0.6 to-0.2. Randic´ found the value of-1/3, which is
very close to the value of-0.272 found here, as the best for
describing alkane boiling points. Our findings not only confirm
our interpretation of the connectivity indices in terms of
accessibility molecular areas but also give a theoretical justifica-
tion to the use of exponents of the type-1/q in the Randic´
invariant.

9. Conclusions

According to Heisenberg, phenomenological physics consists
of “inventing formulas which seem to reproduce the experi-
ments”.35 This was exactly the approach used first by Randic´
and later by Kier and Hall in developing the molecular
connectivity indices.1-3 They invented a graph-theoretical
invariant based on a molecular graph that has been widely useful
in reproducing experimental physicochemical and biological
properties. However, the connectivity indices represent a
description of a physical reality: the molecular structure.
Consequently, the Randic´ invariant and connectivity indices can
be derived from a large number of different physical viewpoints
and widely different mathematical formulations.

In fact, we have made here a reformulation of the connectivity
indices by assuming a physical basis and keeping approximately
the same mathematical formulation used by the original authors.
However, we have proved that the first-order connectivity

indices can be derived from a different mathematical (matrix-
vector) formulation using a common graph-theoretical invariant
for several different topological indices.31

We have proved here that the connectivity indices represent
a good measure of the molecular area that is accessible from
outside the molecule. Accordingly, this accessibility area is of
great value in describing physicochemical properties of mol-
ecules as a measure of the extension of intermolecular interac-
tions. We think that this discovery of the physical meaning of
connectivity indices will increase the interest in the applications
of these indices to describe physical and biological properties
of molecules as well as to provide a physical place for
topological indices among the pool of molecular descriptors.

A final lesson that we have to learn from the interpretation
of connectivity indices is the following. Because molecules are
“physical” objects, i.e., objects in a real world, topological
indices are mathematical representations of a physical reality.
Consequently, they necessarily have to have a physical meaning.
That is, they are not mere mathematical objects, in a similar
way that the variation of the distance with respect to time is
not a mere mathematical object called “derivative” but a
description of a physical reality (the velocity) represented in
the language of mathematics. Here, graphs are the mathematical
objects (as derivatives in the example of velocity), molecules
are the physical reality (as the velocity), and topological indices
are the mathematical representation of this reality (as the first
derivative of distance with respect to time is to velocity). So, it
will not be surprising to find a physical basis for most of the
topological indices in the future as we found here for con-
nectivity indices.
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