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The classical phase space structure of a spectroscopic Hamiltonian for two coupled vibrational modes is
analyzed using bifurcation theory, classified on catastrophe maps, for a variety of higher order resonances
(3:2,4:2,5:2,6:2 and 4:4, 5:4, 6:4), cases not considered in previous work. A type of bifurcation not encountered
for lower resonance orders, basedaerlap of separatricesather than change in behavior of fixed points,

is analyzed, and a procedure is developed to augment the catastrophe map. Energy level patterns are associated
with the new resonances, in analogy with the patterns of adjacent level spacings considered earlier for the 2:1
resonance.

I. Introduction Hamiltonian of given resonance order. Examination of the 3:2

The fitting and interpretation of molecular vibrational spectra resonance shows that this treatment is not quite complete: an

often requires resonance coupling terms in the spectroscopica]dedgfﬁ:\llig:fgﬁﬁg%zn';;gg;gatlhrigggsesbzstrad'reclt;y "?XOlve
Hamiltonian, in addition to terms diagonal in the number of ’ ppIng

quanta in the zero-order normal modes. These coupling termsOf separatricesA procedure is given to augment the catastrophe

. . ap to include this new bifurcation. Explicit catastrophe maps
mlx_the zero-order modes o] th_at the eigenstates are no longegnreppresented for the 3:2, 4:2, 5:2, 6:2 and 4:4, 5:2, and 2:4
assignable, at least in a dynamically meaningful way, in terms L - . .
of quantum numbers of the zero-order modes. Instead, ney €sonances, with discussion of spectral patterns associated with
assignments of the number of quanta in modes that reflect thethese systems.
resonant dynam|c$ are more properly used. Systems w_here th|§|_ Semiclassical Resonance Hamiltonian
has been accomplished include local stretch médessulting
from a 2:2 Darling-Dennison resonance, and stretdiend A spectroscopic fitting Hamiltonian to second order in the
resonant modestesulting from a 2:1 Fermi resonance. Thisis gquantum numbers with a singhe n resonance coupling is given
done using tools of nonlinear dynamics including bifurcation by
and catastrophe map analy&i§. Observable patterns in the
spectra that reflect the changes in the dynamics have been Hin = Ho + Vi 1)
predicted’, and these patterns have been exploited in analysis . . .
of spectra of isomerizing systerhdjighly excited spectra of whereHy is the diagonal term up to second order in the normal

CS,,? and spectra of chaotic bending dynamics of acetytéae., ~ modes

In this paper, our previous analyses of the 2:2 and 2:1 d d d
resonance systems is generalized to higher-order resonance _ | B ST | e
Hamiltonians withm:n = m:2 andm:4. There are several reasons Ho Zw' N +2 +ZJZ|X'I N +2 : +2 ’ @)

for doing this. These resonances may arise by accident in

arbitrary molecular spectra. They are known to be very relevant g/2 is the zero point energy

to the system of two coupled Morse oscillators, a frequently

used model for a pair of coupled stretch vibratid#i$8 As the d= { 1 for stretches

coupling is varied between zero and infinity, the system tunes i~ |2 for degenerate bends

through a series of strong resonances of these &p&sThe

coupled Morse oscillator model is directly relevant to the

dynamics of the stretching normal modes of £2@d CS, where

the frequency ratios of the modes imply a 4:2 resonance in CO

and a %;2 regonance in €S i 3 Vm:n = km:n((alT)m(az)n + (az’r)n(al)m) (3)
We begin by introducing the spectroscopic fitting Hamiltonian . . -

and con\gllertir)llg it to a gorresp[))onding s%miclasgsical form in USing the Heisenberg correspondence principiéhe quantum

action-angle variables. Then, we discuss the fundamental modesSpe(‘ftrOSCQp'C Hamiltonian is transformed to the following

of the classical system, that is, the low-energy normal modes Semiclassical form

and Vpp is the resonance coupling term between two modes
labeled 1 and 2

and the new modes, born in bifurcations, that define the large- Ho =H.+V

scale phase space structure. We use the catastrophe map to mn 0~ “mn

classify all types of dynamics possible for a spectroscopic Ho= zwih + szijlilj
I

)=l
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The modes not coupled by the resonance can be regarded astates that have the same polyad number, is giverPpyH 1
“spectator modes” because the number of quanta in these modesvhere k] is the largest integer such that < x.
is preserved; equivalently, the classical actions associated with
these modes are constants of the motion. In the following
analysis, we consider only cases with two explicit modes, but
the values of the parameters given below in eq 7 can easily be
adjusted for the existence of spectator modes.

The existence of a global constant of motion, later referred
to as the polyad number, can be demonstrated for the cIassicaE
Hamiltonian with the help of some simple canonical transforma-

lll. Polyad Phase Spheres

With the trivial dependence of the dynamics on the fast angle
variabled of eq 5, the dynamical arena for a fixed value of the
olyad numberP is a reduced phase space, the surface of a
phere of radius,>422:23with canonical variablek, v of eq 5.

By projecting out the conserved polyad number and its conjugate

tions angle, one gets a semiclassical representation on the sphere of
. each energy level of a polyad. Didactic presentations can be

oY = My — N, found in refs 24,25. To plot the dynamics on the sphere, it is
convenient to change to coordinatesy, wherey is as before

06 = mg; + ng, and serves as the azimuthal angle, @i the longitudinal
angle, defined as

21, = O(ﬁ _ |_2) cos? = /I 9

m n

We usey andy, which as dynamical variables are noncanonical,
(|1 |2) only for plotting the phase spheres, but retain the canohical

2l =o|l—-+— 1 when performing the bifurcation analysis. The spheres shown
later will actually be plotted as Mercator projections so that
the entire sphere may be viewed at once as phase space
“portraits”.

The spectrum is represented on the phase sphere as follows.
From the quantum Hamiltonian egs-3 the energy levels of
the polyad are calculated. Then, using eq 4, for each energy
level the solutions for the classical quantitigandy are solved

H=C+al,+p17+ 8y/(1 +1)"(1 — 1,)"cosEyy) (6) numerically. Each level is represented on the sphere by a
trajectory (or sometimes, multiple trajectories) consisting of the

m
o = greatest common factor af andn (5)

with ¢ included so that-7 < y =< m. This results in the
transformed Hamiltonian

with the values ofC, o, 8 andd given by solution sets g, ).
IV. Classical Dynamical Analysis
2
_ (Mo, + nw, M1, + Mg, + 075, 2 ) .
= s I+ > I In this section, we present the general method used to analyze
o

the dynamical structure of the semiclassical Hamiltonian,
including its bifurcation behavior. In the next section, we apply
mw,; — Nw, mlel— nzxzz these methods to specifin:n resonance cases.
o= e +2 2 | We begin with the notion of the fundamental modes, or
o natural motions of the systeffi.At low energy, these are the
usual anharmonic normal modes. At higher energy, the normal

szn_ mry,;,+ n2X2z modes abruptly change character, and new anharmonic modes
p= are born in bifurcations. The dynamics of the system is
o* represented on phase spheres, with a distinct sphere for each
polyad®® The structure of the sphere is categorized by its fixed-
m™" point behavior; each fundamental mode corresponds to a fixed
0= 2K, S (7) point in the reduced phase space projected on the sphere.

Qualitative changes occur with bifurcations, in which the number
and character of the fixed points change. The bifurcations take
place with variation of control parameters, to be defined later,
appropriate to the spectroscopic Hamiltonian. The complete
ifurcation behavior of the Hamiltonian with respect to all
possible values of the control parameters constitutes the phase
space structure of the Hamiltonian, which is plotted and

Inspection of eq 6 reveals that there is no dependence of the
dynamics on the “fast anglef of eq 5, so the actioh is a

constant of the motion, and can be treated as a parameter, rath
than a dynamical variable. The existence of this additional global
action demonstrates the integrability of the system, though we

will notlsolve .anal.ytlcally fqr the remaining local action (see g|aggified on the catastrophe map. This allows different spectral
Joyeux! for 1'1’. 2:1, and 3:1 resonance local mode actloqs). polyads of the same molecule or several molecules at once to
The correspondlng polyad number is a constant of the motion. be plotted together and compared visuafy.
The quantum equivalert = 21 + 1 is given by A. Fixed Points and Fundamental ModesThe phase sphere
is a reduced-dimension representation of phase space because
p— 0(”1 +dy/2 " n,+ dy/ 2) ®) it projects out the “fast angle? and the polyad numbé@®. Fixed
m n points on the sphere therefore correspond to periodic orbits in
the full phase space. For example, at low energy the fixed points
The quantum Hamiltonian is block diagonal in the polyad correspond to the normal modes. Because of the conserved
number. The number of states within a polyad, i.e., subset of polyad number, at higher energy, even when there is chaos
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(unlike the present situation with just a single resonance and pole is a fixed point, but the south pole is fok. The reason is
therefore integrable dynamics), it is possible to find analytic easy to see: a trajectory may pass through a pole with nonzero
expressions for the fixed poiRfe™2% and, therefore, the  velocity, meaning the pole is not a fixed point, byhecessarily
fundamental modes, including the new modes born in bifurca- will equal zero, simply because one is at the top or bottom of
tions of the normal modes. In a chaotic system, organized aroundthe sphere.

the fundamental modes there are an infinite number of subsidiary One remedy is to rotate the sphere and apply the conditions
periodic orbits, which can only be found by numerical integra- (12,13) to the rotated poles; another remedy is to plot phase
tion of Hamilton’s equations. Fortunately, these subsidiary orbits space profiles, i.e., trajectories on the sphere, and examine the
can be ignored for many purposes of spectral analysis, becausdehavior at the poles visually.

the finite size of Planck’s constant means that quantum B. Stability Analysis of the Fundamental Modes.The
mechanics “smooths over” the finer details of the classical stability character of the modes associated with the fixed points

dynamics. is important, both to characterize the fundamental modes, and
For the m: n resonance Hamiltonian (6) the dynamical also because a change in stability is the hallmark of a bifurcation,
variables arapy andl, and their time derivatives are S0 is a key criterion used in the bifurcation analysis.
5 The stability of the fixed points is determined in general via
p=a+ 2ﬁ|z+§(| + )™ = )" m( — 1) — the stability matrix®3t Let f = y andg = |, The stability

matrix M is given by the Jacobian
n(l +1,)Jcosey) (10)

. ¥H  o°H
i, = 000 +1)™( — 1)" sinoy) (11) v | |2 |olzoy dizolz (18)
9, 9, |-"H —oH
Setting them simultaneously equal to zero oy iz
=0 (12) A fixed point is unstable when the eigenvalues are real.
i=0 Additionally, we have thagy, = —f, so that the eigenvaluds
,= (13) .
are given by
gives the general conditions for fixed points (except at the poles,
where we have to be more careful for technical reasons of the A=A =% f,2+ fi g, (19)

coordinates, as discussed shortly). These fixed point conditions _ o
will lead to polynomial equations for a finite set of solutions, The expression fog,, is given by
which we will obtain and characterize according to their location

on the phase sphere. 9,= d?o(1+ 1)1 — 1) cospy) (20)
The fixed points are found by solving for the conditions ]
10—13. To satisfy egs 11,13 requires the expression fof, by
_ ; _ o _ _
cospy) ==+ 1, sinpy) =0 (24) f,—= E(§(| )™ = )" Y m(l — 1) —
where the plus sign defines the east hemisphere, the minus sign n(l + 1,)]sin(oy) (21)

the west. Combining with (10,12) leads to
and the expression fdy, by

Q m/i2—1., _ | \n/2—1] _ _
o+ 281, + 2(I +1) (—=1) [m( —1) f|Z= 26 + dcospy)(l + |Z)m/2_2(| B |Z)n/2_2 y

n(l +1)] =0 (15)

m/m n
The fixed points lie on great circles, defined by (14), that pass [E(E - 1)(' — 1) - 2(%1)(5)0 +1)0=1) +
through the poles. The number of great circles is giverwpy

so wheno = 1 there is a single great circle that intersects the g(g - 1)(I + IZ)ZI (22)
equator at the east and west; wher= 2 there are two great
circles that quarter the sphere. To evaluate the stability of the fixed points on the great circles,

It is necessary to be careful in applying the fixed points the |, andy obtained from the fixed point conditions (14,15)
conditions (1_2,13) at the_ poles, because the coordinate systeny e inserted in the stability matrix equations €Z2). If a
can make things very misleading there. At the polesan be  rational torus, i.e., torus filled with resonant periodic orbits,
rapidly changing but, since the poles do not depend on the valuegyists at couplingd = 0, its stability cannot be definitively
of v, they may still be fixed points. Furthermore, at the north  getermined from the equations above because the eigenvalues
pole i of the stability matrix are identically zero. An analysis of
| = (16) higher order derivatives or invoking the Poincardex Theorem

leads to the determination that the rational torus is marginally
unstable (Poincaredex = 0) for I, = +I and stable fot, =
+I.
C. Bifurcations and Catastrophe Map.Using the preceding
l,=—I a7) formalism we can determine the fixed points and their stabilities
for a given polyad, given the paramet&sa, 3, andd, which
which again satisfies (13). However, this does not necessarily are easily obtained by eq 7 from the fit of the spectroscopic
imply that the action is meaningfully fixed at the pole. An Hamiltonian to data. We want to distill these parameters into
example is seen in the 2:1 resonance system, where the norththe minimum number of control parameters necessary to

which from (11) satisfies the fixed point condition (13) that
= 0. At the south pole
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Figure 1. (a) 3:2 resonance catastrophe map and (b) the 2:1 resonance catastrophe map. The triangles indicate locations of phase spheres plotted
in Figure 2.

characterize the dynamical system. We will then vary the control phase spheres, bifurcations, and catastrophe maps; followed by

parameters to see where the fixed points change either theircatastrophe maps for a number of other resonance cages

number or stability in bifurcations. The catastrophe map is a andm:4.

plot of where these bifurcations occur as a function of the control A, Example: The 3:2 ResonanceThe 3:2 resonance is an

parameters. important resonance between normal modes in the system of

There are several ways to define the control parameters in atwo kinetically coupled Morse oscillato#d; 183443 which is a

way that minimizes their number, while still being complete. prototype for interesting molecular systems such as the strongly

To maintain consistency with earlier papers of Kellman et al., coupled stretch local modes in GOr CS. The 3:2 resonance

for the 1:1% 2:15%and 2:2233resonances, we define the control is strongly implicated (in association with other nearby reso-

parameters for thenn resonance as follows nances) with the onset of classical chaos in the coupled Morse
systemt>-18 The 3:2 resonance of course can be important in

g = a (23) other molecular spectroscopic systems with an accidental 3:2
261 frequency degeneracy.
The 3:2 resonance catastrophe map is shown in Figure 1(a).
U= §(2|)(”**”)’2‘2 (24) For comparison with the 2:1 resonance, Figure 1(b) shows the
B catastrophe map for the 2:1 Hamiltonian as previously con-

) ) structed by Kellman et &2 The first thing to note is that the
The parametex is referred to as theouplingparameter, and 3.2 catastrophe map has five zoned/, whereas the 2:1 map
is a measure of the resonant coupling between the mgtes;  nhas only four. Second, the two maps are divided by horizontal

referred to as thasymmetryparameter and is a measure of how  and vertical dashed lines. We will return to the meaning of these
far the two modes are off-resonance in their zero-order frequen-qashed lines shortly.

i ncdb . L
cles = . . ) ) Despite their differences, the two catastrophe maps are
The bifurcations of interest to us, either the branching of gjmijar. For some of the zones, they share topologically similar
existing modes or the formation of new modigsnao out of phase sphere structure, i.e., structure of stable and unstable fixed

phase space (saddle node bifurcation), generally involve the ,ints The zones of the 3:2 map that correspond in this sense
presence of fixed points and a change in stability (however, iy those of the 2:1 map are numbered identically a8/1in
note the separatrix overlap bifurcation discussed below). The Figure 1. Figure 2 shows representative phase spheres (in
condition for a change in stability is that= 0 in the stability  \jercator projection) for the 3:2 system. The points on the
matrix _analy3|s. Sp to construct the catastrophe map, ie., find catastrophe map corresponding to each sphere in Figure 2 are
the loci of bifurcations as the control parameters are varied, We |3peled with a triangle in Figure 1. At least one sphere is shown
need simultaneously to satisfy both the zero stability condition 5m each zone; cases with multiple spheres from a zone are
(4 = 0) and the fixed point eqs 10,11. The details of this |5peled 1a, IIb, and so forth. Zones IV of the two maps have
construction and its numerical |mplementat|qn, though strallght- the same structure with regard to their fixed points, as well as
forward, are cumbersome, and are placed in the Appendix.  he patterns of their quantum spectidle will abbreviate their
discussion, but there are some new twists in the 3:2 system
which deserve attention.

In this section, the preceding formalism is applied to For both maps in Figure 1 the vertical dashed line indicates
Hamiltonians with various resonance ordarn. Detailed the existence of a rational torus, i.e., a torus filled with resonant
attention is given to all aspects of the 3:2 resonance, including periodic orbits, that occurs at zero coupling. The horizontal

V. Application to Individual Resonance Hamiltonians
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Figure 2. Representative phase spheres (as Mercator projections) from different zones of the 3:2 resonance catastrophe map of Figure 1(a). The
spheres are labeled by their location on the catastrophe map of Figure 1(a), e.g., sphere lla is located at triangle “a” in zone II.

dashed line indicates activity involving the south pole. For the are interchanged, as can be seen in the panels for spheres llla,b
2:1 resonance this is fleeting, occurring when the separatrix in Figure 2. The horizontal dashed lines have a connection with
passes through the south pole. For the 3:2 resonance, there ibehavior seen in spectral patterns that will be discussed below.
more intricate activity at the south pole. Although the number 1. Separatrix @erlap Bifurcation and the Augmented Ca-

of fixed points remains the same, the east and west fixed pointstastrophe MapOf particular interest for the 3:2 system is the
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Figure 3. Separatrix overlap bifurcation illustrated by a series of phase space portraits that pass through it by a smooth change of control parameters.
At the bifurcation, the two separatrices coalesce, eliminating the phase space region between them. The phase space topology is altered after going
through this bifurcation although at no time did the existence or stability of any of the fixed points change. For all the plots the coupling parameter,

U, is set equal to-2.5, whereas the asymmetry paramefgris given by (a)—0.03, (b)—0.0237, and (c)-0.02.
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Figure 4. 3:2 resonance catastrophe map augmented by the separatrix } ' [ ‘ ’
overlap bifurcation. The map is the same as Figure 1(a) except for the
new dashed curves in zone V indicating the locus of the separatrix Sph b
overlap bifurcation. The phase space plots shown in Figure 3 show the phere
effect of passing through this boundaryat= —2.5.
| |
’ |
|
the phase space plots for spheres from zone Va and Vb in Figure ‘ |
2 shows that there is some sort of bifurcation taking place. This [ '
is a peculiar type of bifurcation because it does not involve a L
change in the number or stability of the fixed points. Figure 5. Spectral patterns of spacing of adjacent levels for 3:2
The key is to recognize that this bifurcation involves not the catastrophe map zones sampled in Figure 1(a). The spectra are those
fixed points but rather the other component of the phase spaceof individual phase spheres shown in Figure 2. Each “X” represents
structure, the separatricespecifically, overlap of two sepa- the energy of an uns'_[able fixed point and associated separatrix on Fhe
ratrices. The phase space portrait at a point where this bifurcation9'Ve" sphere; each circle represents the energy of a stable fixed point.
takes place is shown in Figure 3. The bifurcation occurs at the
south pqle. It is clear that it involves the separatrices, not the map for the 3:2 resonance shown in Figure 4. The added
fixed points. bifurcations due to separatrix overlap are indicated in Figure 4
To provide a more complete description it is necessary to by the newly added dashed curves in zone V. (Compare with
augment the catastrophe map to take into account this bifurcationFigure 1(a)).

involving overlapping separatrices. This separates the catastro- We should ascertain at this point whether the catastrophe
phe map into additional regions. The augmented catastrophemaps constructed by Kellman et®#33for the 1:1, 2:2, and

remaining zone V, which exhibits not only new phase sphere
structure, but also a novel kind of bifurcation that does not
involve a change of stability of the fixed points. Inspection of

|
|
|
|
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Figure 6. Catastrophe maps, analogous to Figure 1(a,b), forrth2 andm: 4 resonances witin = 4—6.

2:1 systems also exhibit the separatrix overlap bifurcation. For A — 0. Rather, it is characteristic of tiemnantof a separatrik

the 1:1 and 2:1 resonances, there are no catastrophe map zoness catastrophe map zones are crossed. (The pseudo-dip corre-

where there exists more than one separatrix, so these resonancesponds to an inflection point in an effective potential pict(ie.

can be eliminated from consideration. The combined 1:1 and This inflection point is the remnant of a perturbed minimum or

2:2 resonance was examined by Rose and KellfadFhe maximum in the effective potential and a separatrix on the

separatrix overlap does occur for this system. This was not notedsphere, as a catastrophe map zone is crossed in a bifurcation

explicitly in ref 33, but it occurs only where a bifurcation which destroys the separatrix.)

involving fixed points was noted, so no augmentation of the ~ The same phenomenon occurs in the 3:2 system. The spectral

catastrophe map is needed. pattern, Figure 5, of sphere Vc shows a true dip, corresponding
2. Spectral Patterns of the 3:2 Resonantbe classical phase to the separatrix at the south pole, Figure 2. The spectral pattern

space structure is reflected in the quantum system. Phase spacef sphere llb in Figure 5 looks very similar, but the apparent

structure affects spectral patterns, in particular the patterns ofminimum in the level spacing is a pseudo-dip. It corresponds

energy level differences within a polyad. These patterns were to the “pinched” character of the phase space near the south

demonstrated previougljor the 2:1 Fermi resonance. We now pole of the sphere Ilb of Figure 2. This pinched phase space is

focus on the energy level patterns of the 3:2 resonance, usingthe remnant of the separatrix of sphere Vc.

the previous results on the 2:1 resonance as the starting point. Zone 1V, like zone llb, has a pseudo-dip in the spectral

The key point was that the pattern of spacings of adjacent energypattern, the remnant of a separatrix in zone IIl.

levels is indicative of separatrix structure in phase space. A“dip”  B. Higher m:n ResonancesWe now present a host of

in the spacing of levels that are “adjacenth a suitably defined catastrophe maps for additiomal n resonance systems, leaving

way having to do with quantum number assignméhtss the out the detailed description of dynamics in the last two sections.
characteristic hallmark of a separatrix. The resonances that we focus on are those that are most
For the 3:2 system, the spectral patterns in zord¥ lare important in the dynamics of the normal modes in the system

very similar to those for the 2:1 resonance, reflecting the similar of two kinetically coupled Morse oscillatotd; 183443 Because
dynamics of corresponding zones in the 2:1 and 3:2 systems.of the symmetry of the system,is limited to even numbers.
Zone V of the 3:2 system differs in having two separatrices. These resonances are not limited to the coupled Morse system
This suggests that there should be two minima in the level and may occur in general molecular spectroscopic systems.
spacings, and this is indeed the case, as seen in Figure 5, whiclGenerally, we are interested in lower order resonances, as these
shows the pattern of adjacent levels for sphere Va of Figure 2. tend to be stronger and cover a broader range of frequency ratios.
Another interesting pattern has to do with crossing from a The catastrophe maps for the: 2 and m: 4 resonance
zone with a separatrix, into a zone without a separatrix, but Hamiltonians withm = 4, 5, 6 are shown in Figure 6.
where one sees the remnant of the separatrix in the spectral The first observation is that the maps for different reso-
pattern. In the 2:1 system, in zone IV the energy level pattern nancesm: n tend to be similar for the same value f The
has a “pseudo-dip™.This is not a true dip, i.e., place where the maps for the 3:2 resonance in Figure 1a and the 4:2, 5:2, and
energy level spacing goes to zero, characteristic of a zero in6:2 in Figure 6 all have a similar pattern; the maps for the 4:4,
the classical frequency at a separatrix, and signified by a 5:4, and 6:4 in Figure 6 all have a pattern distinct fromhe
minimum in the quantum spectrum that goes to zero in the limit 2 pattern.
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There are several observations to be made about the phase 42
sphere structures associated with the catastrophe maps in Fig- .
ure 6. First, zones at the top and bottom, center, like zones | 25 :
and IV in Figure 1, have no separatrices. Their phase space
structure, while distorted, is that of the zero-order modes.
Second, as zone boundaries are crossed tof/ard0 (and|u|

large), additional separatrices may sometimes be added, with
the maximal number occurring whet = 0. Third, the zone

that contains the control parameter origin has at least one
hyperbolic fixed point and associated separatrix ¢fer 1 there

are at least (see eq 5) hyperbolic fixed points andelliptic

fixed points forming an island chain). This arises from the ),
breakup into a resonance zone of the zero-order rational torus
that exists whem = 0. Finally, for separatrix overlap to occur

in a zone, it is necessary that there exist more than one separatrix
for that zone, eliminating zones IV as candidates for this type

of bifurcation.

The catastrophe maps of Figure 6 can be augmented for the
separatrix overlap bifurcation in the same was as done previously
in Figure 4 for the 3:2 resonance; the augmented maps for the
4:2 and 5:2 maps are shown in Figure 7.

0.0

-2.5

Conclusions and Future Work -40 40

In this paper, we have analyzed the classical phase space
structure of a spectroscopic Hamiltonian for two coupled
vibrational modes using bifurcation theory, classified on catas-
trophe maps, for a variety of higher order resonances not
considered in previous work. A type of bifurcation not 50 . .
encountered for lower resonance orders, involving overlap of
separatrices rather than change in behavior of fixed points, has
been analyzed. Energy level patterns have been associated with
the 3:2 resonance, in analogy with the patterns of adjacent level
spacings considered earlier for the 2:1 resonance. Catastrophe
maps for a variety of resonances (3:2, 4:2, 5:2, 6:2 and 4:4,

5:4, 6:4) have been presented, and relationships and similarities
among them discussed.

Energy level patterns associated with phase space structure, B' 0.0
including bifurcations, have become useful in understanding and ’
interpreting dynamical information encoded in experimental and
computed spectrfa® The catastrophe map is a way of analyzing
and presenting the global phase space structure possible for the
spectroscopic Hamiltonian of a given resonance. In this way,
distinct and sometimes very subtle changes in energy level
patterns can be predicted and interpreted; the predictions for
the ubiquitous 2:1 Fermi resonance have in fact been observed.

It is hoped that the bifurcation and catastrophe map analysis
presented here will prove to be similarly useful for higher order -5.0
resonances. 5.0 00

5.0

Appendix: Bifurcation Analysis And Catastrophe Map u
for the m:n Resonance Figure 7. Augmented catastrophe maps for the 4:2 and 5:2 resonances.
. . . . The additional bifurcation due to overlapping separatrices is given by
Conceptually, the algebra involved in performing the bifurca- he new dashed curves (compare Figure 6) in the same manner as the
tion analysis and representing it on the catastrophe map iSaugmented 3:2 map in Figure 4.
relatively straightforward. It involves examination of where the
number and stability of the fixed points changes with respect

to variation of the control parameters’ of (23,24). With the given by egs 1922) in terms of the control parameters /3’

presence of the conserved polyad number, only algebraicof (23,24) and a parameter that we here galtlefined as
equations with analytic expressions need be solved, rather than

numerical solution of the equations of moti&?"~2° (However, =1 (A1)

for the generam: n resonance there are not analytic solutions r=

for the functions involved, so these do need to be solved

numerically.) where|y| < 1 by definition. (The parameter has the same
We begin by rewriting both the fixed point equations (12,- definition asy defined earlier in (9) to parametrize the sphere;

13) and the condition that the stability changés= 0, with 4; we employ the two separate symbgis? to distinguish their
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distinct usages.) Writing? in terms of these variables (as a
precursor to solving for the bifurcation conditidd = 0), we
have

2|2

2= LU )™ = ) Fsiroy)m(d — 7) -

- 2r'rr#n74

n(1 + y)]%*

+ ozcosw)[zm“)’zw (1+ )@ — y)" + ucospy)(1 +

-G - a7

e e+ g o] e

Rather than mount a frontal analytic assault on this equation,

we next rewrite the fixed point conditions in terms)gfu, and
p' and use these with (A2) to obtain the bifurcation information
we want by means of numerical techniques. We will proceed
through the fixed points and their bifurcations in the same order
that they were presented in Section IV.

1. Fixed Points on Great CircleS.he fixed points on great
circles are given from (14) by cagf) = 41, with the additional
condition given by eq 15. In terms ¢f «, andf’ this is

26'{,3' ) )

n(1+ 7/)]} =0 (A3)

The bifurcation conditiort? = 0 with (A2) for A becomes

22711 4+ )1 — )"k u x (L4 p)" AL — )2

oo
g(g - 1)(1 + y)zl =0 (Ad)

For these equations, we must resort to numerically solving
them simultaneously fqe andj'. This entails inserting values
for y between—1 and 1, solving fog in (A4), and then inserting
bothy andu into (A3) to solve forf'. Consideration needs to
be given to the vanishing denominators when solving/{and
p', as there are values gfwhere the catastrophe map curves
are discontinuous with respect to parametrizatiorybfhese
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