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The classical phase space structure of a spectroscopic Hamiltonian for two coupled vibrational modes is
analyzed using bifurcation theory, classified on catastrophe maps, for a variety of higher order resonances
(3:2, 4:2, 5:2, 6:2 and 4:4, 5:4, 6:4), cases not considered in previous work. A type of bifurcation not encountered
for lower resonance orders, based onoVerlap of separatricesrather than change in behavior of fixed points,
is analyzed, and a procedure is developed to augment the catastrophe map. Energy level patterns are associated
with the new resonances, in analogy with the patterns of adjacent level spacings considered earlier for the 2:1
resonance.

I. Introduction

The fitting and interpretation of molecular vibrational spectra
often requires resonance coupling terms in the spectroscopic
Hamiltonian, in addition to terms diagonal in the number of
quanta in the zero-order normal modes. These coupling terms
mix the zero-order modes so that the eigenstates are no longer
assignable, at least in a dynamically meaningful way, in terms
of quantum numbers of the zero-order modes. Instead, new
assignments of the number of quanta in modes that reflect the
resonant dynamics are more properly used. Systems where this
has been accomplished include local stretch modes,1,2 resulting
from a 2:2 Darling-Dennison resonance, and stretch-bend
resonant modes,3 resulting from a 2:1 Fermi resonance. This is
done using tools of nonlinear dynamics including bifurcation
and catastrophe map analysis.4-6 Observable patterns in the
spectra that reflect the changes in the dynamics have been
predicted,7 and these patterns have been exploited in analysis
of spectra of isomerizing systems,8 highly excited spectra of
CS2,9 and spectra of chaotic bending dynamics of acetylene.10,11

In this paper, our previous analyses of the 2:2 and 2:1
resonance systems is generalized to higher-order resonance
Hamiltonians withm:n ) m:2 andm:4. There are several reasons
for doing this. These resonances may arise by accident in
arbitrary molecular spectra. They are known to be very relevant
to the system of two coupled Morse oscillators, a frequently
used model for a pair of coupled stretch vibrations.12-18 As the
coupling is varied between zero and infinity, the system tunes
through a series of strong resonances of these types.15-18 The
coupled Morse oscillator model is directly relevant to the
dynamics of the stretching normal modes of CO2 and CS2, where
the frequency ratios of the modes imply a 4:2 resonance in CO2

and a 5:2 resonance in CS2.
We begin by introducing the spectroscopic fitting Hamiltonian

and converting it to a corresponding semiclassical form in
action-angle variables. Then, we discuss the fundamental modes
of the classical system, that is, the low-energy normal modes
and the new modes, born in bifurcations, that define the large-
scale phase space structure. We use the catastrophe map to
classify all types of dynamics possible for a spectroscopic

Hamiltonian of given resonance order. Examination of the 3:2
resonance shows that this treatment is not quite complete: an
additional bifurcation is found that does not directly involve
the behavior of the fundamental modes, but ratheroVerlapping
of separatrices. A procedure is given to augment the catastrophe
map to include this new bifurcation. Explicit catastrophe maps
are presented for the 3:2, 4:2, 5:2, 6:2 and 4:4, 5:4, and 6:4
resonances, with discussion of spectral patterns associated with
these systems.

II. Semiclassical Resonance Hamiltonian

A spectroscopic fitting Hamiltonian to second order in the
quantum numbers with a singlem: n resonance coupling is given
by

whereH0 is the diagonal term up to second order in the normal
modes

di/2 is the zero point energy

and Vm:n is the resonance coupling term between two modes
labeled 1 and 2

Using the Heisenberg correspondence principle,19,20the quantum
spectroscopic Hamiltonian is transformed to the following
semiclassical form
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The modes not coupled by the resonance can be regarded as
“spectator modes” because the number of quanta in these modes
is preserved; equivalently, the classical actions associated with
these modes are constants of the motion. In the following
analysis, we consider only cases with two explicit modes, but
the values of the parameters given below in eq 7 can easily be
adjusted for the existence of spectator modes.

The existence of a global constant of motion, later referred
to as the polyad number, can be demonstrated for the classical
Hamiltonian with the help of some simple canonical transforma-
tions

with σ included so that-π e ψ e π. This results in the
transformed Hamiltonian

with the values ofC, R, â andδ given by

Inspection of eq 6 reveals that there is no dependence of the
dynamics on the “fast angle”θ of eq 5, so the actionI is a
constant of the motion, and can be treated as a parameter, rather
than a dynamical variable. The existence of this additional global
action demonstrates the integrability of the system, though we
will not solve analytically for the remaining local action (see
Joyeux21 for 1:1, 2:1, and 3:1 resonance local mode actions).
The corresponding polyad number is a constant of the motion.
The quantum equivalentP ) 2I + 1 is given by

The quantum Hamiltonian is block diagonal in the polyad
number. The number of states within a polyad, i.e., subset of

states that have the same polyad number, is given by [P] + 1
where [x] is the largest integeri such thati e x.

III. Polyad Phase Spheres

With the trivial dependence of the dynamics on the fast angle
variableθ of eq 5, the dynamical arena for a fixed value of the
polyad numberP is a reduced phase space, the surface of a
sphere of radiusI,1,4,22,23with canonical variablesIz, ψ of eq 5.
By projecting out the conserved polyad number and its conjugate
angle, one gets a semiclassical representation on the sphere of
each energy level of a polyad. Didactic presentations can be
found in refs 24,25. To plot the dynamics on the sphere, it is
convenient to change to coordinatesψ, ϑ, whereψ is as before
and serves as the azimuthal angle, andϑ is the longitudinal
angle, defined as

We useϑ andψ, which as dynamical variables are noncanonical,
only for plotting the phase spheres, but retain the canonicalIz,
ψ when performing the bifurcation analysis. The spheres shown
later will actually be plotted as Mercator projections so that
the entire sphere may be viewed at once as phase space
“portraits”.

The spectrum is represented on the phase sphere as follows.
From the quantum Hamiltonian eqs 1-3 the energy levels of
the polyad are calculated. Then, using eq 4, for each energy
level the solutions for the classical quantitiesIz andψ are solved
numerically. Each level is represented on the sphere by a
trajectory (or sometimes, multiple trajectories) consisting of the
solution sets (Iz, ψ).

IV. Classical Dynamical Analysis

In this section, we present the general method used to analyze
the dynamical structure of the semiclassical Hamiltonian,
including its bifurcation behavior. In the next section, we apply
these methods to specificm:n resonance cases.

We begin with the notion of the fundamental modes, or
natural motions of the system.26 At low energy, these are the
usual anharmonic normal modes. At higher energy, the normal
modes abruptly change character, and new anharmonic modes
are born in bifurcations. The dynamics of the system is
represented on phase spheres, with a distinct sphere for each
polyad.1,5 The structure of the sphere is categorized by its fixed-
point behavior; each fundamental mode corresponds to a fixed
point in the reduced phase space projected on the sphere.
Qualitative changes occur with bifurcations, in which the number
and character of the fixed points change. The bifurcations take
place with variation of control parameters, to be defined later,
appropriate to the spectroscopic Hamiltonian. The complete
bifurcation behavior of the Hamiltonian with respect to all
possible values of the control parameters constitutes the phase
space structure of the Hamiltonian, which is plotted and
classified on the catastrophe map. This allows different spectral
polyads of the same molecule or several molecules at once to
be plotted together and compared visually.5,6

A. Fixed Points and Fundamental Modes.The phase sphere
is a reduced-dimension representation of phase space because
it projects out the “fast angle”θ and the polyad numberP. Fixed
points on the sphere therefore correspond to periodic orbits in
the full phase space. For example, at low energy the fixed points
correspond to the normal modes. Because of the conserved
polyad number, at higher energy, even when there is chaos

σψ ) mφ1 - nφ2

σθ ) mφ1 + nφ2

2Iz ) σ(I1

m
-

I2

n)
2I ) σ(I1

m
+

I2

n)
σ ) greatest common factor ofm andn (5)

H ) C + RIz + âIz
2 + δx(I + Iz)

m(I - Iz)
ncos(σψ) (6)

C ) (mω1 + nω2

σ )I + (m2ø11 + mnø12+ n2ø22

σ2 )I2

R )
mω1 - nω2

σ
+ 2(m2ø11- n2ø22

σ2 )I
â )

m2ø11- mnø12+ n2ø22

σ2

δ ) 2km:nxmmnn

σm+n
(7)

P ) σ(n1 + d1/2

m
+

n2 + d2/2

n ) (8)

cosϑ ) Iz/I (9)

10798 J. Phys. Chem. A, Vol. 106, No. 45, 2002 Svitak et al.



(unlike the present situation with just a single resonance and
therefore integrable dynamics), it is possible to find analytic
expressions for the fixed points24,27-29 and, therefore, the
fundamental modes, including the new modes born in bifurca-
tions of the normal modes. In a chaotic system, organized around
the fundamental modes there are an infinite number of subsidiary
periodic orbits, which can only be found by numerical integra-
tion of Hamilton’s equations. Fortunately, these subsidiary orbits
can be ignored for many purposes of spectral analysis, because
the finite size of Planck’s constant means that quantum
mechanics “smooths over” the finer details of the classical
dynamics.

For the m: n resonance Hamiltonian (6) the dynamical
variables areψ and Iz, and their time derivatives are

Setting them simultaneously equal to zero

gives the general conditions for fixed points (except at the poles,
where we have to be more careful for technical reasons of the
coordinates, as discussed shortly). These fixed point conditions
will lead to polynomial equations for a finite set of solutions,
which we will obtain and characterize according to their location
on the phase sphere.

The fixed points are found by solving for the conditions
10-13. To satisfy eqs 11,13 requires

where the plus sign defines the east hemisphere, the minus sign
the west. Combining with (10,12) leads to

The fixed points lie on great circles, defined by (14), that pass
through the poles. The number of great circles is given byσ,
so whenσ ) 1 there is a single great circle that intersects the
equator at the east and west; whenσ ) 2 there are two great
circles that quarter the sphere.

It is necessary to be careful in applying the fixed points
conditions (12,13) at the poles, because the coordinate system
can make things very misleading there. At the poles,ψ can be
rapidly changing but, since the poles do not depend on the value
of ψ, they may still be fixed points. Furthermore, at the north
pole

which from (11) satisfies the fixed point condition (13) thatİz

) 0. At the south pole

which again satisfies (13). However, this does not necessarily
imply that the action is meaningfully fixed at the pole. An
example is seen in the 2:1 resonance system, where the north

pole is a fixed point, but the south pole is not.3-5 The reason is
easy to see: a trajectory may pass through a pole with nonzero
velocity, meaning the pole is not a fixed point, butİz necessarily
will equal zero, simply because one is at the top or bottom of
the sphere.

One remedy is to rotate the sphere and apply the conditions
(12,13) to the rotated poles; another remedy is to plot phase
space profiles, i.e., trajectories on the sphere, and examine the
behavior at the poles visually.

B. Stability Analysis of the Fundamental Modes.The
stability character of the modes associated with the fixed points
is important, both to characterize the fundamental modes, and
also because a change in stability is the hallmark of a bifurcation,
so is a key criterion used in the bifurcation analysis.

The stability of the fixed points is determined in general via
the stability matrix.30,31 Let f ) ψ̇ and g ) İz. The stability
matrix M is given by the Jacobian

A fixed point is unstable when the eigenvalues are real.
Additionally, we have thatgIz ) -fψ so that the eigenvaluesλi

are given by

The expression forgψ is given by

the expression forfψ by

and the expression forfIz by

To evaluate the stability of the fixed points on the great circles,
the Iz andψ obtained from the fixed point conditions (14,15)
are inserted in the stability matrix equations (19-22). If a
rational torus, i.e., torus filled with resonant periodic orbits,
exists at couplingδ ) 0, its stability cannot be definitively
determined from the equations above because the eigenvalues
λi of the stability matrix are identically zero. An analysis of
higher order derivatives or invoking the Poincare´ Index Theorem
leads to the determination that the rational torus is marginally
unstable (Poincare´ index ) 0) for Iz * (I and stable forIz )
(I.

C. Bifurcations and Catastrophe Map.Using the preceding
formalism we can determine the fixed points and their stabilities
for a given polyad, given the parametersC, R, â, andδ, which
are easily obtained by eq 7 from the fit of the spectroscopic
Hamiltonian to data. We want to distill these parameters into
the minimum number of control parameters necessary to
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characterize the dynamical system. We will then vary the control
parameters to see where the fixed points change either their
number or stability in bifurcations. The catastrophe map is a
plot of where these bifurcations occur as a function of the control
parameters.

There are several ways to define the control parameters in a
way that minimizes their number, while still being complete.
To maintain consistency with earlier papers of Kellman et al.,
for the 1:1,4 2:15,3 and 2:232,33resonances, we define the control
parameters for them:n resonance as follows

The parameterµ is referred to as thecouplingparameter, and
is a measure of the resonant coupling between the modes;â′ is
referred to as theasymmetryparameter and is a measure of how
far the two modes are off-resonance in their zero-order frequen-
cies.4,5

The bifurcations of interest to us, either the branching of
existing modes or the formation of new modesde noVo out of
phase space (saddle node bifurcation), generally involve the
presence of fixed points and a change in stability (however,
note the separatrix overlap bifurcation discussed below). The
condition for a change in stability is thatλi ) 0 in the stability
matrix analysis. So to construct the catastrophe map, i.e., find
the loci of bifurcations as the control parameters are varied, we
need simultaneously to satisfy both the zero stability condition
(λi ) 0) and the fixed point eqs 10,11. The details of this
construction and its numerical implementation, though straight-
forward, are cumbersome, and are placed in the Appendix.

V. Application to Individual Resonance Hamiltonians

In this section, the preceding formalism is applied to
Hamiltonians with various resonance orderm:n. Detailed
attention is given to all aspects of the 3:2 resonance, including

phase spheres, bifurcations, and catastrophe maps; followed by
catastrophe maps for a number of other resonance casesm:2
andm:4.

A. Example: The 3:2 Resonance.The 3:2 resonance is an
important resonance between normal modes in the system of
two kinetically coupled Morse oscillators,12-18,34-43 which is a
prototype for interesting molecular systems such as the strongly
coupled stretch local modes in CO2 or CS2. The 3:2 resonance
is strongly implicated (in association with other nearby reso-
nances) with the onset of classical chaos in the coupled Morse
system.15-18 The 3:2 resonance of course can be important in
other molecular spectroscopic systems with an accidental 3:2
frequency degeneracy.

The 3:2 resonance catastrophe map is shown in Figure 1(a).
For comparison with the 2:1 resonance, Figure 1(b) shows the
catastrophe map for the 2:1 Hamiltonian as previously con-
structed by Kellman et al.5,3 The first thing to note is that the
3:2 catastrophe map has five zones I-V, whereas the 2:1 map
has only four. Second, the two maps are divided by horizontal
and vertical dashed lines. We will return to the meaning of these
dashed lines shortly.

Despite their differences, the two catastrophe maps are
similar. For some of the zones, they share topologically similar
phase sphere structure, i.e., structure of stable and unstable fixed
points. The zones of the 3:2 map that correspond in this sense
to those of the 2:1 map are numbered identically as I-IV in
Figure 1. Figure 2 shows representative phase spheres (in
Mercator projection) for the 3:2 system. The points on the
catastrophe map corresponding to each sphere in Figure 2 are
labeled with a triangle in Figure 1. At least one sphere is shown
from each zone; cases with multiple spheres from a zone are
labeled IIa, IIb, and so forth. Zones I-IV of the two maps have
the same structure with regard to their fixed points, as well as
the patterns of their quantum spectra.7 We will abbreviate their
discussion, but there are some new twists in the 3:2 system
which deserve attention.

For both maps in Figure 1 the vertical dashed line indicates
the existence of a rational torus, i.e., a torus filled with resonant
periodic orbits, that occurs at zero coupling. The horizontal

Figure 1. (a) 3:2 resonance catastrophe map and (b) the 2:1 resonance catastrophe map. The triangles indicate locations of phase spheres plotted
in Figure 2.

â′ ) R
2âI

(23)

µ ) δ
â

(2I)(m+n)/2-2 (24)
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dashed line indicates activity involving the south pole. For the
2:1 resonance this is fleeting, occurring when the separatrix
passes through the south pole. For the 3:2 resonance, there is
more intricate activity at the south pole. Although the number
of fixed points remains the same, the east and west fixed points

are interchanged, as can be seen in the panels for spheres IIIa,b
in Figure 2. The horizontal dashed lines have a connection with
behavior seen in spectral patterns that will be discussed below.

1. Separatrix OVerlap Bifurcation and the Augmented Ca-
tastrophe Map.Of particular interest for the 3:2 system is the

Figure 2. Representative phase spheres (as Mercator projections) from different zones of the 3:2 resonance catastrophe map of Figure 1(a). The
spheres are labeled by their location on the catastrophe map of Figure 1(a), e.g., sphere IIa is located at triangle “a” in zone II.
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remaining zone V, which exhibits not only new phase sphere
structure, but also a novel kind of bifurcation that does not
involve a change of stability of the fixed points. Inspection of
the phase space plots for spheres from zone Va and Vb in Figure
2 shows that there is some sort of bifurcation taking place. This
is a peculiar type of bifurcation because it does not involve a
change in the number or stability of the fixed points.

The key is to recognize that this bifurcation involves not the
fixed points but rather the other component of the phase space
structure, the separatricessspecifically, oVerlap of two sepa-
ratrices. The phase space portrait at a point where this bifurcation
takes place is shown in Figure 3. The bifurcation occurs at the
south pole. It is clear that it involves the separatrices, not the
fixed points.

To provide a more complete description it is necessary to
augment the catastrophe map to take into account this bifurcation
involving overlapping separatrices. This separates the catastro-
phe map into additional regions. The augmented catastrophe

map for the 3:2 resonance shown in Figure 4. The added
bifurcations due to separatrix overlap are indicated in Figure 4
by the newly added dashed curves in zone V. (Compare with
Figure 1(a)).

We should ascertain at this point whether the catastrophe
maps constructed by Kellman et al.5,32,33 for the 1:1, 2:2, and

Figure 3. Separatrix overlap bifurcation illustrated by a series of phase space portraits that pass through it by a smooth change of control parameters.
At the bifurcation, the two separatrices coalesce, eliminating the phase space region between them. The phase space topology is altered after going
through this bifurcation although at no time did the existence or stability of any of the fixed points change. For all the plots the coupling parameter,
µ, is set equal to-2.5, whereas the asymmetry parameter,â′, is given by (a)-0.03, (b)-0.0237, and (c)-0.02.

Figure 4. 3:2 resonance catastrophe map augmented by the separatrix
overlap bifurcation. The map is the same as Figure 1(a) except for the
new dashed curves in zone V indicating the locus of the separatrix
overlap bifurcation. The phase space plots shown in Figure 3 show the
effect of passing through this boundary atµ ) -2.5.

Figure 5. Spectral patterns of spacing of adjacent levels for 3:2
catastrophe map zones sampled in Figure 1(a). The spectra are those
of individual phase spheres shown in Figure 2. Each “X” represents
the energy of an unstable fixed point and associated separatrix on the
given sphere; each circle represents the energy of a stable fixed point.
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2:1 systems also exhibit the separatrix overlap bifurcation. For
the 1:1 and 2:1 resonances, there are no catastrophe map zones
where there exists more than one separatrix, so these resonances
can be eliminated from consideration. The combined 1:1 and
2:2 resonance was examined by Rose and Kellman.33 The
separatrix overlap does occur for this system. This was not noted
explicitly in ref 33, but it occurs only where a bifurcation
involving fixed points was noted, so no augmentation of the
catastrophe map is needed.

2. Spectral Patterns of the 3:2 Resonance.The classical phase
space structure is reflected in the quantum system. Phase space
structure affects spectral patterns, in particular the patterns of
energy level differences within a polyad. These patterns were
demonstrated previously7 for the 2:1 Fermi resonance. We now
focus on the energy level patterns of the 3:2 resonance, using
the previous results on the 2:1 resonance as the starting point.
The key point was that the pattern of spacings of adjacent energy
levels is indicative of separatrix structure in phase space. A “dip”
in the spacing of levels that are “adjacent”sin a suitably defined
way having to do with quantum number assignments7,8sis the
characteristic hallmark of a separatrix.

For the 3:2 system, the spectral patterns in zones I-IV are
very similar to those for the 2:1 resonance, reflecting the similar
dynamics of corresponding zones in the 2:1 and 3:2 systems.

Zone V of the 3:2 system differs in having two separatrices.
This suggests that there should be two minima in the level
spacings, and this is indeed the case, as seen in Figure 5, which
shows the pattern of adjacent levels for sphere Va of Figure 2.

Another interesting pattern has to do with crossing from a
zone with a separatrix, into a zone without a separatrix, but
where one sees the remnant of the separatrix in the spectral
pattern. In the 2:1 system, in zone IV the energy level pattern
has a “pseudo-dip”.7 This is not a true dip, i.e., place where the
energy level spacing goes to zero, characteristic of a zero in
the classical frequency at a separatrix, and signified by a
minimum in the quantum spectrum that goes to zero in the limit

p f 0. Rather, it is characteristic of theremnantof a separatrix7

as catastrophe map zones are crossed. (The pseudo-dip corre-
sponds to an inflection point in an effective potential picture.7,8

This inflection point is the remnant of a perturbed minimum or
maximum in the effective potential and a separatrix on the
sphere, as a catastrophe map zone is crossed in a bifurcation
which destroys the separatrix.)

The same phenomenon occurs in the 3:2 system. The spectral
pattern, Figure 5, of sphere Vc shows a true dip, corresponding
to the separatrix at the south pole, Figure 2. The spectral pattern
of sphere IIb in Figure 5 looks very similar, but the apparent
minimum in the level spacing is a pseudo-dip. It corresponds
to the “pinched” character of the phase space near the south
pole of the sphere IIb of Figure 2. This pinched phase space is
the remnant of the separatrix of sphere Vc.

Zone IV, like zone IIb, has a pseudo-dip in the spectral
pattern, the remnant of a separatrix in zone III.

B. Higher m:n Resonances.We now present a host of
catastrophe maps for additionalm: n resonance systems, leaving
out the detailed description of dynamics in the last two sections.
The resonances that we focus on are those that are most
important in the dynamics of the normal modes in the system
of two kinetically coupled Morse oscillators.12-18,34-43 Because
of the symmetry of the system,n is limited to even numbers.
These resonances are not limited to the coupled Morse system
and may occur in general molecular spectroscopic systems.
Generally, we are interested in lower order resonances, as these
tend to be stronger and cover a broader range of frequency ratios.
The catastrophe maps for them: 2 and m: 4 resonance
Hamiltonians withm ) 4, 5, 6 are shown in Figure 6.

The first observation is that the maps for different reso-
nancesm: n tend to be similar for the same value ofn. The
maps for the 3:2 resonance in Figure 1a and the 4:2, 5:2, and
6:2 in Figure 6 all have a similar pattern; the maps for the 4:4,
5:4, and 6:4 in Figure 6 all have a pattern distinct from them:
2 pattern.

Figure 6. Catastrophe maps, analogous to Figure 1(a,b), for them: 2 andm: 4 resonances withm ) 4-6.
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There are several observations to be made about the phase
sphere structures associated with the catastrophe maps in Fig-
ure 6. First, zones at the top and bottom, center, like zones I
and IV in Figure 1, have no separatrices. Their phase space
structure, while distorted, is that of the zero-order modes.
Second, as zone boundaries are crossed towardâ′ ) 0 (and|µ|
large), additional separatrices may sometimes be added, with
the maximal number occurring whenâ′ ) 0. Third, the zone
that contains the control parameter origin has at least one
hyperbolic fixed point and associated separatrix (forσ * 1 there
are at leastσ (see eq 5) hyperbolic fixed points andσ elliptic
fixed points forming an island chain). This arises from the
breakup into a resonance zone of the zero-order rational torus
that exists whenµ ) 0. Finally, for separatrix overlap to occur
in a zone, it is necessary that there exist more than one separatrix
for that zone, eliminating zones I-IV as candidates for this type
of bifurcation.

The catastrophe maps of Figure 6 can be augmented for the
separatrix overlap bifurcation in the same was as done previously
in Figure 4 for the 3:2 resonance; the augmented maps for the
4:2 and 5:2 maps are shown in Figure 7.

Conclusions and Future Work

In this paper, we have analyzed the classical phase space
structure of a spectroscopic Hamiltonian for two coupled
vibrational modes using bifurcation theory, classified on catas-
trophe maps, for a variety of higher order resonances not
considered in previous work. A type of bifurcation not
encountered for lower resonance orders, involving overlap of
separatrices rather than change in behavior of fixed points, has
been analyzed. Energy level patterns have been associated with
the 3:2 resonance, in analogy with the patterns of adjacent level
spacings considered earlier for the 2:1 resonance. Catastrophe
maps for a variety of resonances (3:2, 4:2, 5:2, 6:2 and 4:4,
5:4, 6:4) have been presented, and relationships and similarities
among them discussed.

Energy level patterns associated with phase space structure,
including bifurcations, have become useful in understanding and
interpreting dynamical information encoded in experimental and
computed spectra.5-9 The catastrophe map is a way of analyzing
and presenting the global phase space structure possible for the
spectroscopic Hamiltonian of a given resonance. In this way,
distinct and sometimes very subtle changes in energy level
patterns can be predicted and interpreted; the predictions for
the ubiquitous 2:1 Fermi resonance have in fact been observed.
It is hoped that the bifurcation and catastrophe map analysis
presented here will prove to be similarly useful for higher order
resonances.

Appendix: Bifurcation Analysis And Catastrophe Map
for the m:n Resonance

Conceptually, the algebra involved in performing the bifurca-
tion analysis and representing it on the catastrophe map is
relatively straightforward. It involves examination of where the
number and stability of the fixed points changes with respect
to variation of the control parametersµ, â′ of (23,24). With the
presence of the conserved polyad number, only algebraic
equations with analytic expressions need be solved, rather than
numerical solution of the equations of motion.24,27-29 (However,
for the generalm: n resonance there are not analytic solutions
for the functions involved, so these do need to be solved
numerically.)

We begin by rewriting both the fixed point equations (12,-
13) and the condition that the stability changes (λi ) 0, with λi

given by eqs 19-22) in terms of the control parametersµ, â′
of (23,24) and a parameter that we here callγ, defined as

where |γ| e 1 by definition. (The parameterγ has the same
definition asϑ defined earlier in (9) to parametrize the sphere;
we employ the two separate symbolsγ, ϑ to distinguish their

Figure 7. Augmented catastrophe maps for the 4:2 and 5:2 resonances.
The additional bifurcation due to overlapping separatrices is given by
the new dashed curves (compare Figure 6) in the same manner as the
augmented 3:2 map in Figure 4.

γ ≡ Iz/I (A1)
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distinct usages.) Writingλ2 in terms of these variables (as a
precursor to solving for the bifurcation conditionλ2 ) 0), we
have

Rather than mount a frontal analytic assault on this equation,
we next rewrite the fixed point conditions in terms ofγ, µ, and
â′ and use these with (A2) to obtain the bifurcation information
we want by means of numerical techniques. We will proceed
through the fixed points and their bifurcations in the same order
that they were presented in Section IV.

1. Fixed Points on Great Circles.The fixed points on great
circles are given from (14) by cos(σψ) ) (1, with the additional
condition given by eq 15. In terms ofγ, µ, andâ′ this is

The bifurcation conditionλ2 ) 0 with (A2) for λ becomes

For these equations, we must resort to numerically solving
them simultaneously forµ andâ′. This entails inserting values
for γ between-1 and 1, solving forµ in (A4), and then inserting
both γ andµ into (A3) to solve forâ′. Consideration needs to
be given to the vanishing denominators when solving forµ and
â′, as there are values ofγ where the catastrophe map curves
are discontinuous with respect to parametrization byγ. These
values are easily found via the solution of a quadratic expression
in the denominator.

2. No Coupling. The condition of no coupling, withδ ) 0 in
the Hamiltonian (6), implies thatIz ) - R/â for |Iz| e I; i.e., µ
) 0 andγ ) -â′ for |γ| e 1, which finally boils down to

This gives rise to arational toruswhich undergoes a bifurcation
to produce a resonance zone with stable and unstable fixed point
when the coupling is nonzero. See ref 31.
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λ2 ) â2µI2

2m+n-4{1
4
µ(1 + γ)m-2(1 - γ)n-2sin2(σψ)[m(1 - γ) -

n(1 + γ)]2σ2

+ σ2cos(σψ)[2(m+n)/2-1x(1 + γ)m(1 - γ)n + µcos(σψ)(1 +

γ)m-2(1 - γ)n-2{(m2)(m2 - 1)(1 - γ)2

- 2(m2)(n2)(1 + γ)(1 - γ) + (n2)(n2- 1)(1 + γ)2}]} (A2)

2âI{â′ + γ ( µ

2(m+n)/2
(1 + γ)m/2-1(1 - γ)n/2-1[m(1 - γ) -

n(1 + γ)]} ) 0 (A3)

2(m+n)/2-1x(1 + γ)m(1 - γ)n ( µ ×(1 + γ)m-2(1 - γ)n-2

[m2(m2 - 1)(1 - γ)2 - 2(m2)(n2)(1 - γ2) +

n
2(n2 - 1)(1 + γ)2] ) 0 (A4)

µ ) 0; -1 e â′ e 1 (A5)
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