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Breathing orbital valence bond (BOVB) computations (Hiberty, P. C.; Humbel, S.; Byrman, C. P.; van Lenthe,
J. H.J. Chem. Phys. 1994, 101, 5969) are used to obtain nonidentity barriers for hydrogen transfer reactions
between X and X′ groups, X* X′ ) CH3, SiH3, GeH3, SnH3, PbH3. Modeling of these barriers by means of
VB state correlation diagrams (Shaik, S.; Shurki, A.Angew. Chem., Int. Ed. Engl.1999, 38, 586) leads to a
simple expression for the barrier (eq 29) as an interplay of an intrinsic term and the reaction driving force.
The equation predicts barrier heights that are compatible with the BOVB computed barrier heights. Its
comparison with the Marcus equation shows similarities and differences.

The field of hydrogen abstraction has traditionally been an
area of intense theoretical research. On one hand, the contem-
porary theoretical tools could all along tackle hydrogen abstrac-
tion, because of its relative simplicity. On the other hand, the
process is fundamentally important since it is associated with
processes that affect “life”, such as DNA-damaging, destruction
of cell membranes, aging, Alzheimer’s disease, oxidation of
organic molecules by metallo-enzymes, and so on.1 As such,
there is a great deal of activity, aimed at understanding the
reactivity patterns of these reactions and their analogues.2

Important correlations were established with fundamental fac-
tors, such as bond energy, steric effects, the “polar effect”, Pauli
repulsions, and so on.2-12 There are not only successes2a but
also disagreements between different models,4,5,10a,11b,12and the
goal yet lies ahead. There is still a need forquantum chemical
modelsthat, on one hand, involve a clear mechanism of barrier
formation and, on the other hand, lead to compact expressions
of the barrier and its dependence on fundamental properties of
the reactant, in a manner that can reveal trends and make
systematic predictions, much as the Marcus equation has
achieved in the area of electron-transfer reactivity.13

A general strategy for modeling can rely either on empirical
parameters or on theoretically computed parameters. The
inconvenience of empirical modeling, which results in some
inconsistency, is that some of the reactivity factors cannot be
evaluated from empirical data, and one needs to make assump-
tions about the missing factors (e.g., the assumption of negligible
electronic interaction in electron-transfer transition states13b) or
estimate them in some independent manner. Pure theoretical
modeling is, in this sense, more consistent since all the reactivity
factors are available, in principle, from theory. However, the
theory-only approach encounters difficulties as well. One of the
difficulties in constructing such theoretical models is that

computational chemistry methods routinely overestimate bar-
riers, even when sophisticated levels and extended basis sets
are used.14 Fortunately, however, the ab initio barriers calculated
for series of hydrogen abstraction reactions often exhibit the
same trend as experimental activation energies.15 Therefore,
assuming the correctness of the trends, a consistent and practical
approach would be to construct a unified model that reproduces
the computed barriers from computed reactivity factors, within
the same theoretical methodology.

The choice of theoretical methodology depends, in turn, on
a balance of accuracy and insight. MO-based computational
methods can be carried out to reasonable accuracies but do not
provide direct insight into the factors controlling the barriers.
In contrast, valence bond (VB) calculations possess this facility,
since the VB barrier can be computed and, using the same
computational tools, it can be analyzed in terms of fundamental
quantities that are natural concepts of the VB theory, e.g.,
resonance energies, bond energies, excitation energies, mixing
of ionic structures, etc.16,17 Fortunately, current VB methods,
e.g., the breathing orbital VB (BOVB),18 VBCI,19 and other VB
calculations,20,21 exhibit a modest accuracy that, for bond
energies and barriers, approaches those of MP2 and coupled-
cluster CCSD(T) methods. As such, modern VB theory pos-
sesses a reasonable mix of the ingredients: accuracy, which is
still modest, and great chemical lucidity, that together may
enable to construct successful models of reactivity. This is the
chosen approach in the present paper, which addresses the
barriers of nonidentity hydrogen transfer reactions.

As part of a long-term program to construct VB models of
reactivity based on modern VB methods, we have undertaken
the approach to use BOVB to calculate barriers, and then to
model their heights using VB state correlation diagrams
(VBSCD), of the types used before for a variety of reactions.16,22

In this approach the goal is to construct a general equation that
has the following features: (i) it should lead to a physically
reasonable mechanism of barrier formation, and (ii) it can
reproduce the computed trends and barriers using fundamental
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quantities, e.g., bond energies, resonance energies, excitation
energies, etc. We believe that in this manner it would be possible
to formulate a correct form of structure-reactivity relationships.
Once such goal is achieved, sufficient insight will be gained
on the sources of error vis-a`-vis experimental barriers in a
manner that can be put to practical use.

In a recent paper,17a we applied this approach to the barriers
of identity reactions, where the hydrogen is transferred between
two identical groups, X) X′, in eq 1.

We showed that, for the series, X) X′ ) CH3, SiH3, GeH3,
SnH3, and PbH3, all computational levels, including MP2,
CCSD(T), and BOVB gave the same trend, namely, that the
barriers decrease down the column of the periodic table. Using
the VBSCD modeling, it was demonstrated that this trend is
dominated by a single quantity, the singlet-to-triplet excitation,
∆EST, of the H-X bond, which is the promotion gap in the
VBSCD. Simple equations for the barrier were derived and
enabled to predict the trend in the computational barriers for a
variety of other X groups. The polar effects,23 due to the mixing
of ionic structures in the transition state, were found17a to be
significant, but since they behaved as quasi-constants for the
entire series, they were not expressed explicitly.

Modeling identity barriers is much easier than nonidentity
reaction in which X* X′ in eq 1. One reason is the symmetry
of the identity transition state, which makes the VB calculation
of the species easy and facilitates the VB expression of all the
barrier factors. The other reason is the simplicity of the equation
for the barrier that does not include the effect of the reaction
energy change (the “driving force” of the reaction). In non-
identity reactions the challenge is much greater, and this is dealt
with in the present paper, which seeks to establish a general
equation for the barrier that includes dependence on intrinsic
factors and the “driving force” of the reaction. In addition, the
so-derived barrier equation will have to show the relationship
between the barrier of the nonidentity reaction and its constituent
identity process and to address the role of the ionic structures
whose importance are currently debated in the experimental
community.

Theoretical Methods

VB Procedures.In VB theory, a state wave function,Ψ, is
given as a linear combination of VB structures,Φi, in eq 2.

The VB structures correspond to all the modes of distributing
the “active electrons” that participate in the interchanging bonds.
In the case of hydrogen transfer there are three electrons to
distribute in the orbitals that define the interchanging bonds
along the X-H-X′ axis. These are the active electrons and
orbitals that are treated in a VB manner. The rest of the occupied
orbitals (the inactive part) are treated as electron pairs in doubly
occupied orbitals.

In the BOVB method,18 the orbitals are allowed to be different
for each VB structure. In this manner, the orbitals respond to
the instantaneous field of the individual VB structure rather than
to an average field of all the structures. As such, BOVB accounts
for part of the dynamic correlation, while leaving the wave
function compact. For the sake of economy, all the valence
orbitals in the present work were allowed to optimize during
the BOVB procedure, except for theπ type orbitals, which were
kept frozen.

The weights of the VB structures were determined by use of
the Coulson-Chirgwin24 formula, eq 3, which is the equivalent
of a Mulliken population analysis in VB theory.

The calculations used the 6-31G* basis set for X) CH3, SiH3,
while for the heavier analogues we used the Los Alamos
effective core potential and matching basis set, LANL2DZ, to
which we added d-polarization functions taken from 6-31G*
(henceforth ECP/31G*).25 These two basis sets were used before
and their compatibility was ascertained. The transition states
(TSs) were optimized at the MP2 level and the IRC path26 was
used then as the “reaction coordinate” for the BOVB calcula-
tions. Along the IRC path we located also the avoided-crossing
state (ACS),27 which is the state that arises by the mixing of
the two Lewis structures at their crossing point. Since the ACS
was ascertained to give close barriers to the VB barriers at the
MP2 TS (see later), it therefore serves as a model for the TS of
the nonidentity reaction.

The reaction coordinateQ is defined as the bond order
difference:

wheren(d) or n(d′) are calculated from any given bond length
d or d′ relative to the equilibrium bond lengthd0 of X-H (X′-
H). The constanta in n(d) is taken from the corresponding
values determined before for the identity reaction, where the
bond order was defined as 0.5.17aWith this definition ofQ, the
IRC path stretches from-1 to +1, as shown in Figure 1. The
IRC calculations provide the relationship between the bond
distancesd′ (of H-X′) and d (of H-X). Combination of the
d-d′ relationship derived from the IRC with their relationship
in eq 4 enables us to determine the individuald′ andd lengths
for a given value ofQ. For example, we can determine thed-d′

X′• + H-X f X′-H + X• (1)

Ψ ) ∑
i

ciΦi (2)

Figure 1. A typical VBSCD for X′• + H-X f X′-H + •X,
exemplified for X) C and X′ ) Si. The locations of the TS and the
ACS are indicated along the reaction coordinateQ (all points refer to
the geometries along the IRC). TheGs are promotion gaps, the∆Ec is
the height of the crossing point relative to the reactants,B is the
resonance energy of the ACS, and∆Erp is the reaction energy change.

wi ) ci
2 + ∑

i*j

cicj 〈Φi|Φj 〉 (3)

Q ) n1(d′) - n2(d), n(d) ) e-a(d-d0) (4)
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values atQ ) 0 and compare the location of the ACS relative
to the origins of this coordinate (see Appendix 1).

The BOVB calculations were done with the Xiamen package
of programs.28 The MP2 calculations were carried out using
Gaussian 98.29

The VB Structures Set.The VB structures for a hydrogen
transfer reaction are shown in Scheme 1 and involve all the
modes of distributing three electrons among the three fragments.
These are the familiar Heitler-London (HL) structures30 that
describe the covalent spin-pairing in either the right-hand or
left-hand bond of the reactants (r) and products (p), respectively,
and the corresponding ionic structures,Φi, which contribute to
the bonds of the reactants and products (r, p) or which are
excited states (ex) that can mix only into the TS but not into
the ground states of reactants and products.

VB State Correlation Diagrams (VBSCDs) from the VB
Structures. To convert the VB structures into a compact
VBSCD,16b,17athe covalent HL structures have to be mixed with
the corresponding ionic structures that are required to describe
a two-electron Lewis bond. Thus, mixing ofΦHL(r) with Φi(r),
structures3 and 5, leads to the right-hand side H-X′ Lewis
bond for the reactant X′• /H-X. Similarly, mixing of ΦHL(p)
with Φi(p), structures4 and6, leads to the Lewis bond of the
product, X′-H/ •X. Subsequently, the two Lewis curves are
computed by tracing them along the IRC that is determined from
the MP2 calculations. The crossing point of the two Lewis
structures is the location of the ACS, as shown in Figure 1.
The wave function of the ACS after avoided crossing is given
by the symmetric linear combination of the two Lewis curves,
called also the Lewis state, defined in eq 5:

The full adiabatic state that correspond to the ACS geometry
is generated by mixing intoΨL the remaining structures,Φi(ex),
7 and8:

The individual components of the Lewis state are not frozen
and are allowed to relax during the calculations, so that the final
adiabatic ACS is the variational mixture of all the eight
structures in the VB structure set.

It is apparent that the ACS has a well-defined wave function,
which is a perfectly resonating mixture of the principal VB
structures, and a well-defined location in the potential energy
surface. As such, the ACS is an attractive model for the TS. As
shown in Figure 1, however, the ACS is not necessarily identical
with the TS. Therefore, before it can be chosen as a model for

the TS, one has to show that the ACS is a sufficiently good
approximation to the TS.

The resonance energy of the ACS is defined in eq 7 and,
provided the ACS and TS are close in energy. This would also
be the resonance energy of the TS.

A related quantity isBL, which is the resonance energy if the
ACS is approximated only by the Lewis state (eq 5), namely,
the resonance energy of the Lewis state, eq 8:

The differenceB - BL will account for the importance of the
mixing of the excited ionic structures (7 and 8), which were
found to be of minor importance for the identity reactions.

Another important state function is the linear combination
of the HL structures, which cross along the IRC and thereby
generate the backbone of the state crossing in the VBSCD. The
bonding combination of the HL structures at the crossing point
is called the HL-state, given by eq 9, where thec’s are
coefficients that may or may not be equal (unlike the coefficients
of the Lewis structures which are strictly equal at the ACS):

Thus, while ΨHL accounts for the covalent three-electron
delocalization over the three reaction centers,ΨL simply adds
the contribution of the ionic fluctuations into the two-electron
bonds. The mixing of7 and 8 further adds to the ACS the
charge-transfer fluctuations from one two-electron bond to the
other. The energetic effect imparted by mixing of the ionic
structure is given by the resonance energy due to covalent-
ionic mixing in eq 10.17a

This quantity is therefore a direct measure of the “polar effect”
in the TS.

Results

Table 1 shows the energy barriers calculated for all the
nonidentity pairs (X,X′) at three different levels:∆E‡(MP2)
data refer to the MP2 barriers,∆E‡(VB,TS) to the VB barrier
calculated at the geometry of the MP2 TS, while∆E‡(VB,-
ACS) data are the barriers calculated at the ACS geometry, with
the full wave function in eq 6. Shown also are the reaction
energy changes,∆Erp, for all the pairs. The X, X′ pairs are
defined so that the H-X′ bond is always the weaker one.

The deviations between the∆Erp quantities at the VB and
MP2 level reflect deviations in the corresponding bond energies.17a

SCHEME 1: VB Structure Set for Hydrogen Transfer
Processes (note that the two Lewis structures (ΦL) are
made from covalent and ionic structures)

ΨL(ACS) ) N[ΦL(r) - ΦL(p)] N-normalization const. (5)

ΨACS ) cLΨL(ACS) + c7Φ7(ex) + c8Φ8(ex) (6)

TABLE 1: Computed (kcal/mol) Barriers ( ∆E‡) and
Reaction Energies (∆Erp) for the Nonidentity Reaction, X′•
+ H-X f X′-H + •X
X,X ′ ∆E‡(MP2) ∆E‡(VB,TS) ∆E‡(VB,ACS) ∆Erp(MP2) ∆Erp(VB)

C,Si 32.4 30.7 30.5 19.7 14.6
C,Ge 34.6 33.4 32.7 26.3 21.9
C,Sn 44.1 39.5 38.3 35.6 29.6
C,Pb 48.3 43.0 41.2 42.3 36.0
Si,Ge 17.1 22.3 21.9 6.6 7.3
Si,Sn 24.9 27.0 26.0 15.9 15.0
Si,Pb 28.5 29.9 28.1 22.6 21.4
Ge,Sn 16.4 20.7 20.5 9.3 7.8
Ge,Pb 19.6 22.9 22.0 16.0 14.2
Sn,Pb 15.1 18.2 17.9 6.7 6.4

B ) E(ΨACS) - E(ΦL,cross) ∼ E(ΨTS) - E(ΦL,cross) (7)

BL ) E(ΨL(ACS)) - E(ΦL,cross) (8)

ΨHL ) crΦHL(r) - cpΦHL(p) (9)

REcov-ion ) E(ΨACS) - E(ΨHL) (10)
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The match between∆E‡(MP2) and∆E‡(VB,TS) is not uniform,
and the deviations spread from 1.2 kcal/mol for the C, Ge pair
to 5.3 kcal/mol for the C, Pb pair. However, what is important
in terms of our goal in the present paper is the good match
between the∆E‡(VB,TS) and ∆E‡(VB,ACS) values, which
differ by 0.2 to 1.8 kcal/mol. Clearly, therefore, in terms of
relative energies, the ACS is a reasonably good approximation
to the TS.

Table 2 shows the key geometric features of the TS and the
ACS, by reference to the drawing in Scheme 2. The X-H and
H-X′ bond lengths of the TS are seen to be different than those
of the ACS, by 2.9-10.0% (see %D(d,d′) values). While these
deviations are not negligible, it can be seen that the sum of the
distances remains nearly constant. This means that the ACS lies
on the reaction coordinate and is displaced relative to the TS in
a “Hammond fashion”,31 such that one bond gets shorter by
the same amount as the second bond gets longer. As shown
previously,27 this is a general phenomenon, and one can locate
the ACS by starting at the TS and stepping gradually along the
reaction vector, which is the mode having an imaginary
frequency in the TS. The displacement is therefore linear, and
as such the ACS and the TS are located within the avoided
crossing region. As discussed quite sometime ago,32 the
resonance energyB remains constant along such a displacement.
We may therefore use the ACS as an approximation to the TS
by the following equation:

and use the ACS henceforth for the purpose of modeling the
barrier.

Table 3 lists a few properties of the ACS for the X′, X pairs.
The first three lines show the weights of the covalent, ionic,
and excited-ionic structures (depicted in Scheme 1). The ACS
species are primarily covalent, but all have significant ionic
contributions which amount to as much as 31-37% of the total
weight. The ionicity of the ACS is more significant than in the
ground states where the weights of the ionic structures reach

21-28%. The TS ionicity is accompanied by large covalent-
ionic resonance energy, in the fourth line of the Table. This
quantity,REcov-ion, is seen to be almost a constant, ca. 20 kcal/
mol, and does not vary in relation to the weight of the ionic
structures. The excited-ionic structures are seen to have much
smaller weights compared with the other ionic structures. Their
energetic effect is given by the difference of theB and BL

quantities, which is seen to be small, ca. 3.9-5.5 kcal/mol, and
almost constant. Thus, much like in the study of the identity
reactions,17a here too the TS is dominated by the avoided
crossing of the Lewis curves. The polar effect in the TS is
significant but it continues to behave as a quasi-constant
quantity.

The resonance energy of the TS,B, exhibits intriguing
equalities, e.g.,B(C,Ge) ) B(Si,Ge), B(C,Pb) ) B(Si,Pb) )
B(Ge,Pb)) B(Sn,Pb), etc. Moreover,B(X,X ′) for the noniden-
tity reaction has virtually the same value asB(X′,X′) in the
identity reactions17aand has no relationship toB(X,X). It seems
that the resonance energy of the TS is determined by the weak
bond, H-X′. In fact, B can be reasonably well approximated
as follows:

where the subscript zero refers to the bond at its equilibrium
geometry. This expression is reminiscent of the similar expres-
sion derived for the resonance energy of the identity TS.17a

However, the relation to the weak bond only is intriguing and
will have to be accounted for in terms of the mechanism of
avoided crossing.

Discussion

The Mechanism of Activation. As shown in Figure 1, the
ACS is achieved by the crossing of the two Lewis curves, where
the two Lewis structures balance their energies. This is expressed
in eq 13:

where the double dagger refers to the structures at their ACS
geometry. The condition for achieving this energy equality
can be derived using the expressions of the semiempirical
VB,33,34discussed in previous publications17a(see Appendix in
ref 17a). Thus, the energy of the bond is given by-λ, while
the nonbonded repulsion is given byλT, where the subscript,
T, refers to the triplet Pauli repulsion.17a,33 Using these two

TABLE 2: Geometric Features of the TS and ACS for the Nonidentity Reaction, X′• + H-X f X′-H + •X

geometric parametersa % deviationb % extensionc

TS ACS (ACS viz TS) (ACS)

X,X ′ d (Å) d′ (Å) d+d′ (Å) d (Å) d′ (Å) d+d′ (Å) %D(d) %D(d′) %∆d/d0 %∆d′/d0′

C,Si 1.536 1.637 3.173 1.444 1.721 3.165 -6.0 5.1 33.8 16.0
C,Ge 1.603 1.673 3.276 1.478 1.786 3.264 -7.8 6.8 37.0 15.5
C,Sn 1.705 1.821 3.526 1.554 1.956 3.510 -8.9 7.4 44.0 13.8
C,Pb 1.779 1.821 3.600 1.600 1.977 3.577 -10.0 8.6 48.3 13.6
Si,Ge 1.857 1.763 3.620 1.804 1.815 3.619 -2.9 2.9 21.6 17.4
Si,Sn 2.010 1.868 3.878 1.899 1.974 3.873 -5.5 5.7 28.1 14.8
Si,Pb 2.134 1.843 3.977 1.968 1.999 3.967 -7.8 8.5 32.7 14.8
Ge,Sn 1.977 1.911 3.888 1.909 1.978 3.887 -3.3 3.5 23.5 15.1
Ge,Pb 2.100 1.871 3.971 1.971 1.997 3.968 -6.1 6.7 27.5 14.7
Sn,Pb 2.123 1.940 4.063 2.061 2.007 4.068 -2.9 3.5 19.9 15.3

a d andd′ refer to the drawing in Scheme 2.b %D(d) ) 100[d(ACS) - d(TS)]/d(TS). c %∆d/d0 ) 100[d(ACS) - d0]/d0.

SCHEME 2: Definitions of Bond Lengths in the TS and
ACS for X ′• + H-X f X′-H + •X (X ) MH ′3, X′ )
M ′H3)

ΨTS ≈ ΨACS ) cLΨL(ACS) + c7Ψ7(ex) + c8Ψ8(ex) (11)

B ≈ 0.5D(H-X′)0 (12)

E(ΦL(r), X′• H-X)‡ ) E(ΦL(p), X′-H •X)‡ (13)
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definitions, the energies of the two Lewis structures are
expressed in eqs 14a and 14b,

where λT(X,X ′)‡ refers to the triplet repulsion11 of the end
groups, X and X′, in the ACS. Thus, in each Lewis structure,
there are triplet repulsions between theR spin electron of the
nonbonded group, X (or X′), and the electrons of the H-X′(X)
bond, which have 50% distribution of spinsR and â.33b This
equation neglects steric effect of these groups and electrostatic
interactions between the nonbonded X (X′) group and H. The
condition for crossing becomes then

Table 4 shows the semiempirical quantities evaluated from
the BOVB data for all the ACS structures of this study, denoted
by the X, X′ pairs. It can be seen that in most cases the condition
of eq 15 is met precisely, while in some cases there are
discrepancies of 2.2-4.5 kcal/mol, which may reflect the neglect
of the electrostatic and steric interactions in eqs 14a and 14b.

Assuming thatλT is proportional toλ by roughly a constant,
then the condition in eq 15 becomes simply eq 16. Such a
condition has traditionally been used in other approaches that
employ empirical bond energy curves to obtain the crossing
point.2a,11

The data in Table 4 show that this condition is approximately
met in the various ACS structures. This means that in the ACS,
the stronger bond will have to be weakened much more than
the weak bond to attain the crossing and the above equality.
Indeed, inspection of Table 2 shows that in each case, the weak
bond, H-X′, undergoes a smaller percentage of lengthening
(%∆d′/d0′ ) 13.6-17.4) compared with the strong bond, X-H
(%∆d/d0 ) 19.9-48.3). At the asymptote, we might consider
that the weak bond retains its original strength and only the

strong bond stretches to achieve bond strength equality with
the weak bond. Thus, we should expect that the properties of
the TS (ACS) will be determined much by the weak bond.

The Resonance Energy of the ACS.Using the same
semiempirical VB theory,33 we can derive an expression forB,
using the mixing of the two VB structures. The details are given
in Appendix 2 to this paper, while eq 17 shows the result:

An identical expression exists by replacing the [λ(H-X) +
0.5λT((H,X)]‡ term by the [λ(H-X) + 0.5λT(H,X′)]‡ term, since
they are equal according to eq 15. Neglecting the long-range
terms, the expression forB becomes

Because the primed and unprimed [λ + λT]‡ values are a bit
different (see Table 4), we take an average value forB. These
B values are presented in Table 5, along with the VB calculated
quantities and those estimated from eq 12 above. The match of
the calculated values to the estimated values is reasonably good.
TheB(eq 18) values are lower somewhat than theB(VB) values,
by 2.1 ( 1 kcal/mol. TheB(eq 12) values are closer to the
B(VB) values. Because eq 12 is much simpler, it should be the
choice expression whenever eq 18 cannot be applied.

It should be noted, that the singlet-triplet excitation energy
of the bond (H-X or H-X′) is given by the sum [λ + λT].

TABLE 3: BOVB Calculated Quantities for the ACS: Weights (ω) of Covalent and Ionic Structures, Covalent-Ionic
Resonance Energies (REcov-ion), and ACS Resonance Energies (B and BL)

C,Si C,Ge C,Sn C,Pb Si,Ge Si,Sn Si,Pb Ge,Sn Ge,Pb Sn,Pb

ωcov 0.631 0.655 0.682 0.689 0.608 0.619 0.632 0.640 0.651 0.634
ωi(r,p) 0.312 0.303 0.272 0.265 0.331 0.319 0.304 0.305 0.289 0.306
ωi(ex) 0.057 0.042 0.046 0.046 0.061 0.062 0.064 0.055 0.060 0.060
REcov-ion

a 24.9 24.8 21.3 20.5 22.7 20.3 19.6 20.7 19.9 19.7
BL (kcal/mol)b 34.7 33.4 29.0 27.1 34.2 30.2 27.6 30.4 28.0 27.8
B (kcal/mol)c 40.0 38.9 33.7 31.4 38.8 34.2 31.5 35.0 32.4 31.9

a See eq 10.b See eq 8.c See eq 7.

TABLE 4: Semiempirical Energies of the Lewis Structures, X′• H-X and X′-H •X, at the ACS (kcal/mol)a

C,Si C,Ge C,Sn C,Pb Si,Ge Si,Sn Si,Pb Ge,Sn Ge,Pb Sn,Pb

C Si C Ge C Sn C Pb Si Ge Si Sn Si Pb Ge Sn Ge Pb Sn Pb

λ 72.0 67.7 68.5 63.2 61.3 57.7 57.4 54.8 62.7 61.9 57.1 56.9 53.1 53.8 55.8 56.7 52.4 53.9 52.7 53.4
λT 85.4 102.8 79.1 94.7 67.0 83.1 60.6 72.0 89.1 91.6 75.7 80.7 66.7 69.7 76.6 80.3 68.7 69.9 69.6 68.8
λ+0.5λT 114.7 119.2 108.1 110.6 94.8 99.3 87.7 90.8 107.2 107.7 95.0 97.2 86.4 88.7 94.1 96.9 86.7 88.8 87.5 87.8

a Based on eq 15.

E(ΦL(r), X′• H-X)‡ ) -λ(H-X)‡ +

0.5[λT(X′,H) + λT(X,X ′)]‡ (14a)

E(ΦL(p), X′-H •X)‡ ) -λ(H-X′)‡ +

0.5[λT(X,H) + λT(X,X ′)]‡ (14b)

λ(H-X′)‡ + 0.5λT(X′,H)‡ ) λ(H-X)‡ + 0.5λT(X,H)‡ (15)

λ(H-X′)‡ ≈ λ(H-X)‡ (16)

TABLE 5: Comparison of Semiempirical and BOVB
Calculated Resonance Energies for the ACS (kcal/mol)

X,X ′ B(VB) BL(VB) B(eq 18) B(eq 12)

C,Si 40.0 34.7 39.0 42.1
C,Ge 38.9 33.4 36.4 38.8
C,Sn 33.7 29.0 32.4 34.2
C,Pb 31.4 27.1 29.7 30.8
Si,Ge 38.8 34.2 35.8 38.8
Si,Sn 34.2 30.2 32.0 34.2
Si,Pb 31.5 27.6 29.2 30.8
Ge,Sn 35.0 30.4 31.8 34.2
Ge,Pb 32.4 28.0 29.3 30.8
Sn,Pb 31.9 27.8 29.2 30.8

B ) 1
3
[λ(H-X) + 0.5λT(H,X) - 0.5λT(X,X ′) - λ(X,X ′)]‡

(17)

B ) 1
3
[λ(H-X′) + 0.5λT(H,X′)]‡ )

1
3
[λ(H-X) + 0.5λT(H,X)]‡ (18)
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Thus, assuming thatλ ≈ λT, then the expression in eq 19 is
identical to the expression derived for the identity reactions,17a

namely,

where all these terms correspond to their values at the ACS
geometry, indicated by the double dagger. The success of eq
12 is surprisingly good and indicates that at the ACS geometry
the originally weak bond H-X′ stretches to an extent that its
singlet-triplet excitation energy,∆EST(H-X′)‡, is related to
the original bond energy,D(H-X′)0, as follows:

Expressions for the Barrier. Using Figure 1, the barrier in
any direction is given by the difference between the height of
the corresponding crossing point and the resonance energy, i.e.,

This expression enables us to estimate the barrier and relate it
to the BOVB computed one, given by the differenceE(ACS)
- E(X′• + H-X)0, where the subscript zero refers to the
reactants. Two complementary approaches are used henceforth
to derive barriers based on the mechanism of activation projected
by the VBSCD.

The first approach relies on the semiempirical expression in
eq 14. Thus, the height of the crossing point is given by the
energy difference of the Lewis structure at the ACS and at the
ground state. Using the Lewis structure with the weak bond
H-X′, this becomes

Here theλ′0 - λ(H-X′)‡ term corresponds to the bond distortion
energy required to reach the ACS from the ground state, while
the other two terms correspond to the triplet repulsion that occurs
by bringing the nonbonded X to the H-X′ molecule.17a,33The
so-determined values are shown in Table 6 side by side with
the heights of the crossing point obtained from the BOVB
calculations. The match is seen to be very reasonable, consider-
ing the fact that eq 22 neglects other nonbonded interactions.
Clearly, eq 22 can be further refined by accounting for the
nonbonded interactions. A similar semiempirical approach is
described in ref 11a-c and leads to a very good fit to
experimental barriers. However, as we elaborated before,33b this
model keeps the small long-range repulsion term,λT(X,X ′), and
neglects the large short-range repulsion terms, e.g.,λT(X,H).
We interpreted the success of this approach as being due to
cancellation of errors.33b

An alternative and independent approach is to evaluate the
height of the avoided crossing from the promotion gaps,
curvatures, and other properties of the BOVB curves in Figure
1. For an identity reaction, the height of the crossing point is
related to the promotion gap of the VBSCD as follows:16

wheref is some fraction of the promotion gap,G, that separates
the two Lewis curves at their onset (Q ) (1) in Figure 1.

For a nonidentity reaction, as in Figure 1, there are two
different gapsG′ and G. Similarly, there are two different
correspondingf factors (f and f ′) that describe the curvatures
of the corresponding curves in Figure 1. In addition, the ground
state points of the Lewis curves maintain an energy difference,
given as the difference in the corresponding bond energies,

Combining all these factors into a single equation for the
barrier,16b,22bderived in Appendix 3 to this paper, and defining
average gap andf quantities, as in eqs 25a and 25b

leads to the expression of∆Ec in eq 26

Neglecting the quadratic term, and assuming thatG′/2Ga is
∼1/2, leads to the following compact expression:

The quantitiesG, G′, and∆Erp are available directly from
the VB calculations and are collected in Table 7. Thef and f ′
values are derived from the VB curves atQ ) 0 (see Appendix
1 and 3). The quantitiesG and G′ are identical to the
corresponding quantities in the identity reactions and can be
related to the singlet-triplet excitation of the corresponding
H-X and H-X′ bonds, that is:

In the identity process, thef factor was almost constant 0.38-
0.40 for the entire series. Here, the two factors are different
such that the curve along which the stronger bond is made is
more concave and has the smaller value.16b However, the
average quantityfa is less variable,fa ) 0.34-0.40, and is
closer to the corresponding quantity in the identity reactions.
Using all these quantities in eqs 26 and 27 leads to the∆Ec

values in Table 7. Comparison with the corresponding BOVB
values shows a very good fit. Thus, in eq 26, the coefficient of
the linear term,G′/2Ga, is smaller than 1/2, so that the use of
1/2 in eq 27 compensates for the quadratic term in eq 26.

Equation 27 leads to a compact expression for the energy
barrier in eq 29:

TABLE 6: Comparison of Heights of the Crossing Points (in kcal/mol) for the Nonidentity Reaction, X′• + H-X f X′-H +
•X, Computed by BOVB and a Semiempirical Model Equation (eq 22)

C,Si C,Ge C,Sn C,Pb Si,Ge Si,Sn Si,Pb Ge,Sn Ge,Pb Sn,Pb

∆Ec(VB) 70.5 71.6 72.0 72.6 60.7 60.2 59.6 55.5 54.3 49.8
∆Ec(eq 22) 74.4 72.0 74.5 73.3 57.1 59.7 58.8 54.3 52.8 46.1

∆Erp ) E(p) - E(r) ) D(H-X)0 - D(X-H′)0 (24)

Ga ) 0.5 (G + G′) (25a)

fa ) 0.5 (f + f ′) (25b)

∆Ec ) faGa + ( G′
2Ga

)∆Erp + ( 1
2Ga

)∆Erp
2 (26)

∆Ec ) faGa + 1
2

∆Erp (27)

G ≈ 0.75∆EST(H-X); G′ ≈ 0.75∆EST(H-X′) (28)

∆E‡(VBSCD) ) faGa + 0.5∆Erp - B (29)

B ) 0.25∆EST(H-X)‡ ) 0.25∆EST(H-X′)‡ (19)

∆EST(H-X′)‡ ) 2D(H-X′)0 w B ) 0.5D(H-X′)0 (20)

∆E‡ ) ∆Ec - B (21)

∆Ec ) λ′0 - λ(H-X′)‡ + 0.5[λT(X,H) + λT(X,X ′)]‡ (22)

∆Ec ) fG (23)
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In this manner, the equation contains a balance between an
intrinsic term,faGa, and the reaction “driving force” term,∆Erp.
Using the BOVB computedB values we obtain the barriers
according to eq 29. These barriers are compared with the BOVB
barriers in Table 8 and the fit is seen to be very good. Clearly,
eq 29, based on the VBSCD, captures the key factors that
determine the barrier, and can form a basis for structure-
reactivity relationships.

It is instructive to compare eq 29 with the Marcus expression
for the barrier13 in terms of the intrinsic barrier,∆E0

‡, and the
reaction energy,∆Erp, as shown in eq 30.

Much like the Marcus equation, the VBSCD eq 29 contains a
balance of an intrinsic barrier quantity and the reaction energy
term (the correlation coefficientr2 between the two sets of
barriers is 0.9851). In the Marcus equation, the intrinsic barrier,
∆E0

‡, is determined as the average of the component identity
barriers. In the VBSCD equation, the intrinsic barrier in the
VBSCD follows the expression

and can be determined as such even when the process has no
identity components (e.g., radical addition, etc.). Using eq 31,
the VBSCD barrier becomes

Table 8 shows the intrinsic barriers, and the barriers calculated
with the Marcus and VBSCD equations, alongside the BOVB
calculated barriers for the ACS and the MP2 TS. It is apparent
that the intrinsic barriers in the Marcus equation are smaller
than the corresponding quantity in the VBSCD equation. This
difference is compensated in the Marcus expression by the
quadratic term, while in the VBSCD equation this term is
unnecessary. Both equations give very good fits to the BOVB

barriers determined for the ACS and the MP2 TS. As such, the
VBSCD equation can serve as a general organizing tool for
structure reactivity relationships.

Conclusions

The paper presents BOVB computations for nonidentity
hydrogen transfer reactions between X and X′ groups, X*
X′ ) CH3, SiH3, GeH3, SnH3, PbH3. The VBSCD model16

and a semiempirical VB theory17a,33 are then used to pattern
the computational BOVB results. It is shown that the avoided
crossing state (ACS)27 is a reasonable approximation to the
BOVB transition state. The ACS is the state obtained from the
avoided crossing of the two Lewis structures of reactants and
products and contains additional contributions from excited
charge-transfer VB configurations (structures7 and8 in Scheme
2). The calculations show that the weaker bond, defined as
X′-H, dominates the properties of the ACS; its geometry and
resonance energy. However, the barrier itself is affected more
by the stretching of the strong bond (throught thefG quantity
in eq 27). As found for the corresponding identity reactions,17a

here too the polar effect in the transition states is significant
but behaves as a quasi-constant quantity.

A simple expression derived from the VBSCD model
reproduces the BOVB barriers quite well. Thus, it is shown that
a qualitative model can be coupled to a complex computational
scheme to reproduce all the trends and show their dependence
on fundamental properties of the reactant and products. Com-
parable to the Marcus equation, the VBSCD expression of the
barrier contains a balance between intrinsic properties of
reactants and the reaction driving force. The intrinsic barrier
can be derived from the properties of the reactants and does
not require knowledge of the identity barriers as the Marcus
equation.
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TABLE 7: Reactivity Factors and Heights of the Crossing Points Calculated from the VBSCD and by Direct BOVB
Computationsa

C,Si C,Ge C,Sn C,Pb Si,Ge Si,Sn Si,Pb Ge,Sn Ge,Pb Sn,Pb

f 0.34 0.30 0.30 0.30 0.37 0.34 0.32 0.36 0.33 0.37
f ′ 0.41 0.41 0.40 0.38 0.42 0.43 0.41 0.40 0.38 0.39
G 192.9 192.9 192.9 192.9 144.3 144.3 144.3 145.7 145.7 124.2
G′ 144.3 145.7 124.2 115.8 145.7 124.2 115.8 124.2 115.8 115.8
∆Erp 14.6 21.9 29.6 36.0 7.3 15.0 21.4 7.8 14.2 6.4
∆Ec(eq 26) 70.1 70.9 69.8 70.2 61.1 59.5 58.8 55.1 53.5 48.9
∆Ec(eq 27) 70.5 71.1 70.3 70.5 60.9 59.2 58.2 55.2 53.5 48.8
∆Ec(VB) 70.5 71.6 72.0 72.6 60.7 60.2 59.6 55.5 54.3 49.8

a Except for the dimensionlessf ’s all other factors are in kcal/mol.

TABLE 8: Comparison of Barriers and Intrinsic Barriers for X ′,X Pairs, Calculated Using the VBSCD Model Equation and
the Marcus Equation with the Values Computed by BOVBa

C,Si C,Ge C,Sn C,Pb Si,Ge Si,Sn Si,Pb Ge,Sn Ge,Pb Sn,Pb

∆E‡(eq 29) 30.2 31.9 36.4 38.8 21.9 25.1 27.2 19.8 21.1 17.2
∆E‡(Marcus) 29.0 33.0 36.7 40.3 22.4 25.4 28.2 20.7 23.1 17.0
∆E‡(VB,ACS) 30.5 32.7 38.3 41.2 21.9 26.0 28.1 20.5 22.0 17.9
∆E‡(VB,TS) 30.7 33.4 39.5 43.0 22.3 27.0 29.9 20.7 22.9 18.2
∆E0

‡(Marcus) 21.1 20.6 19.1 17.7 18.6 17.1 15.7 16.6 15.2 13.7
∆Eint

‡(eq 31) 23.5 21.4 22.9 22.0 18.2 18.2 16.8 16.6 14.7 14.6

a All values are in kcal/mol.

∆E‡(Marcus)) ∆E0
‡ + 0.5∆Erp +

∆Erp
2

16∆E0
‡

(30)

∆Eint
‡ ) faGa - B (31)

∆E‡(VBSCD) ) ∆Eint
‡ + 0.5∆Erp (32)
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Appendix 1. d and d′ values for Q ) 0 and Q values for
ACS Structures

The location ofQ ) 0 is necessary for obtaining the values
of f andf ′ for the two intersecting VB curves. This is done as
follows. (i) Using the IRC calculations we obtain the values of
d′ as a function ofd. (ii) From eq 4 (text), atQ ) 0, we have
the relationship

wherea anda′ are the constants which are obtained by setting
the bond order in the identity transition state to 0.5.

Table A1 gives the bond lengths for the structures atQ ) 0.
Also shown are theQ values of the ACS, which are obtained
by use of thed andd′ lengths in Table 2 to determine the bond
orders of the ACS and obtainQ(ACS) from eq 4.

Appendix 2. Derivation of Resonance Energy between
Two Lewis Structures

To get an expression for resonance energy between the two
Lewis structures, a secular equation for the two structures is
solved.

From the semiempirical VB theory,33,34 the energies of the
two Lewis structures are given as

And their interaction is

At the ACS geometry, the energies of the two Lewis
structures are identical. Thus, the energyE(ΨL(ACS)) is easily
given by solving the 2× 2 secular equation

From eqs A2.1, A2.2, and A2.4 we have

All parameters on the right-hand side in eq A2.6 are related to
the ACS geometry. Thus we get eq 16 in the text.

Appendix 3. Derivation of Barrier Equation for the
Two-Curve VBSCD

Suppose that the energies of the two curves are written as
quadratic functions of the reaction coordinateQ,22b

The coefficients ofai andbi are defined so as to match the idea
inherent in the VBSCD (see pp 128-131 in ref 22b) that the
height of the crossing point, eq 23, relative to the reactant state
can be expressed as a fraction (f) of the promotion gap (G).
Thus, the coefficients are expressed, by reference to Figure A1,
as follows:

With these coefficients thefr andfp values are simply the slopes
of the VB curves atQ ) 0 and are obtained as follows:

where

Having E(0) and G value leads to thef values. The so-
determinedf values are thef and f ′ in Table 7 in the text. At
the crossing pointQc, the energies of the two structures are
identical. Neglecting the quadratic terms from eqs A3.1 and
A3.2 we have

Substituting thisQc value into eq. A3.1 we get16b,22b

where the quadratic terms in eq A3.1 are still neglected.

TABLE A1: d and d′ values for Q ) 0 and Q values for ACS

C,Si C,Ge C,Sn C,Pb Si,Ge Si,Sn Si,Pb Ge,Sn Ge,Pb Sn,Pb

d (Å) 1.354 1.365 1.397 1.424 1.779 1.813 1.859 1.851 1.891 2.030
d′ (Å) 1.807 1.890 2.100 2.138 1.840 2.058 2.105 2.036 2.076 2.038
Q(ACS) 0.21 0.24 0.32 0.33 0.06 0.18 0.22 0.13 0.17 0.08

a(d - d0) ) a′(d′ - d0′) (A.1)

H11 ) E(ΦL(r), X′• H-X) )
-λ(H-X) + 0.5[λT(X′,H) + λT(X,X ′)] (A2.1)

H22 ) E(ΦL(p), X′-H •X) ) -λ(H-X′) + 0.5[λT(X,H) +
λT(X,X ′)] (A2.2)

H12 ) 〈ΦL(r)|H|ΦL(p)〉 ) 0.5[λ(H-X) + λ(H-X′) -
λ(X-X′) - λT(X,X ′)] (A2.3)

S12 ) 〈ΦL(r)|H|ΦL(p)〉 ) -0.5 (A2.4)

E(ΨL(ACS)) ) H11 -
H12 - S12H11

1 - S12
(A2.5)

B ) E(ΦL(r), X′• H-X) -E(ΨL(ACS))

) 2
3
(H12 + 0.5H11)

) 1
3
[λ(H-X) + 0.5λT(X,H) - λ(X-X′) -

0.5λT(X,X ′)] (A2.6)

Er(Q) ) a0 + a1Q + a2Q
2 (A3.1)

Ep(Q) ) b0 + b1Q + b2Q
2 (A3.2)

a0 ) frGr
p,a1 ) 1

2
Gr

p,a2 ) (12 - fr)Gr
p (A3.3)

b0 ) ∆Erp + fpGp
r ,b1 ) - 1

2
Gp

r ,b2 ) (12 - fp)Gp
r (A3.4)

Er(0) ) frGr
p (A3.5)

Ep(0) ) fpGp
r + ∆Erp (A3.6)

Gr
p ) Gp + ∆Erp (A3.7)

Gp
r ) Gr - ∆Erp (A3.8)

Qc )
2(fpGp

r - frGr
p + ∆Erp)

Gp
r + Gr

p
(A3.9)

∆Ec )
(fp + fr)Gp

rGr
p

Gp
r + Gr

p
+

Gr
p∆Erp

Gp
r + Gr

p
(A3.10)
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Define the parameter,∆,

If ∆ is an infinitesimal, it can be proven that

By neglecting the quadratic terms of the infinitesimal, eq A3.10
is written as

where

In applications,fp and fr are given by eqs. A3.5 and A3.6. In
the nonidentity hydrogen transfer reaction,

Thus, we finally get eq 26 in the main text.
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