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Breathing orbital valence bond (BOVB) computations (Hiberty, P. C.; Humbel, S.; Byrman, C. P.; van Lenthe,
J. H.J. Chem. Phys1994 101, 5969) are used to obtain nonidentity barriers for hydrogen transfer reactions
between X and Xgroups, X= X' = CHjs, SiHs, GeHs, SnH;, PbH;. Modeling of these barriers by means of

VB state correlation diagrams (Shaik, S.; Shurki,Aagew. Chem., Int. Ed. Endl999 38, 586) leads to a
simple expression for the barrier (eq 29) as an interplay of an intrinsic term and the reaction driving force.
The equation predicts barrier heights that are compatible with the BOVB computed barrier heights. Its
comparison with the Marcus equation shows similarities and differences.

The field of hydrogen abstraction has traditionally been an computational chemistry methods routinely overestimate bar-
area of intense theoretical research. On one hand, the contemriers, even when sophisticated levels and extended basis sets
porary theoretical tools could all along tackle hydrogen abstrac- are used? Fortunately, however, the ab initio barriers calculated
tion, because of its relative simplicity. On the other hand, the for series of hydrogen abstraction reactions often exhibit the
process is fundamentally important since it is associated with same trend as experimental activation enertfieEherefore,
processes that affect “life”, such as DNA-damaging, destruction assuming the correctness of the trends, a consistent and practical
of cell membranes, aging, Alzheimer’s disease, oxidation of approach would be to construct a unified model that reproduces
organic molecules by metallo-enzymes, and sd és. such, the computed barriers from computed reactivity factors, within
there is a great deal of activity, aimed at understanding the the same theoretical methodology.
reactivity patterns of these reactions and their analogues. The choice of theoretical methodology depends, in turn, on
Important correlations were established with fundamental fac- 5 pajance of accuracy and insight. MO-based computational
tors, such as bond energy, steric effects, the “polar effect”, Pauli methods can be carried out to reasonable accuracies but do not
repulsions, and so ch!? There are not only succesdebut provide direct insight into the factors controlling the barriers.
also disagreements between different mo@&f9a1>1&nd the In contrast, valence bond (VB) calculations possess this facility,
goal yet lies ahead. There is still a need goantum chemical  since the VB barrier can be computed and, using the same
modelsthat, on one hand, involve a clear mechanism of barrier computational tools, it can be analyzed in terms of fundamental
formation and, on the other hand, lead to compact expressionsquamities that are natural concepts of the VB theory, e.g.,
of the barrier and its dependence on fundamental properties ofragonance energies, bond energies, excitation energies, mixing
the reactant, in a manner that can reveal trends and makegf jonic structures, ett®17 Fortunately, current VB methods,
systematic predictions, much as the Marcus equation hase_g_’ the breathing orbital VB (BOVB¥ VBCI,° and other VB
achieved in the area of electron-transfer reactitty. calculation02! exhibit a modest accuracy that, for bond

A general strategy for modeling can rely either on empirical energies and barriers, approaches those of MP2 and coupled-
parameters or on theoretically computed parameters. Thecluster CCSD(T) methods. As such, modern VB theory pos-
inconvenience of empirical modeling, which results in some sesses a reasonable mix of the ingredients: accuracy, which is
inconsistency, is that some of the reactivity factors cannot be stjll modest, and great chemical lucidity, that together may
evaluated from empirical data, and one needs to make assumpenable to construct successful models of reactivity. This is the

tions about the missing factors (e.g., the assumption of negligible chosen approach in the present paper, which addresses the
electronic interaction in electron-transfer transition Sﬂé&sr barriers of nonidentity hydrogen transfer reactions.

estimate them in some independent manner. Pure theoretical As part of a long-term program to construct VB models of

modeling is, in this sense, more consistent since all the reactivity reactivity based on modern VB methods, we have undertaken

fE;CtOI’S arle avallabl?q, n prlnC|pIe,(if]:f9ml t_heory. Hltl)woever,fthhe the approach to use BOVB to calculate barriers, and then to
theory-only approach encounters difficulties as well. One of the ., 40| " their heights using VB state correlation diagrams

difficulties in constructing such theoretical models is that (VBSCD), of the types used before for a variety of reactiia
In this approach the goal is to construct a general equation that

:ggr:]e;f’%”noi'\i/”e%s?t“thors- has the following features: (i) it should lead to a physically
* Universitede paré'_Sud_ reasonable mechanism of barrier formation, and (ii) it can
8 The Hebrew University. reproduce the computed trends and barriers using fundamental
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guantities, e.g., bond energies, resonance energies, excitation
energies, etc. We believe that in this manner it would be possible
to formulate a correct form of structureeactivity relationships.
Once such goal is achieved, sufficient insight will be gained
on the sources of error visnas experimental barriers in a
manner that can be put to practical use.

In a recent paper2we applied this approach to the barriers
of identity reactions, where the hydrogen is transferred between
two identical groups, X= X', in eq 1.

X'e + H=X = X'—H + Xe @)

We showed that, for the series, X X' = CHgs, SiH;, Geh,
SnH;, and PbH, all computational levels, including MP2,
CCSD(T), and BOVB gave the same trend, namely, that the E
barriers decrease down the column of the periodic table. Using

the VBSCD modeling, it was demonstrated that this trend is
dominated by a single quantity, the singlet-to-triplet excitation,
AEst, of the H-X bond, which is the promotion gap in the

VBSCD. Simple equations for the barrier were derived and 1.0 0.0 1.0
enabled to predict the trend in the computational barriers for a
variety of other X groups. The polar effeéfsjue to the mixing 0

of ionic structures in the transition state, were fotfado be Figure 1. A typical VBSCD for Xe + H—X — X'—H + X,
significant, but since they behaved as quasi-constants for theexemplified for X= C and X = Si. The locations of the TS and the
entire series, they were not expressed explicitly. ACS are ind_icated along the reaction coordir@t@ll points refer_to
Modeling identity barriers is much easier than nonidentity Iﬂz %‘Z?S?]‘tﬂg?st ﬁéoggogjs‘?n';?diItm?eggvgr?g”?ﬁg”rgaaé’tsa{;t'f‘;r"z
reaction in which X= X' in eq 1. One reason is the symmetry ; -
. . " - . resonance energy of the ACS, aA#H,; is the reaction energy change.
of the identity transition state, which makes the VB calculation gy P 9y g

of the species easy and facilitates the VB expression of all the 0 weights of the VB structures were determined by use of

barrier factors. The other reason is the simplicity of the equation {4 Coulsor-Chirgwir?4 formula, eq 3, which is the equivalent
for the barrier that does not include the effect of the reaction ¢ 4 Mulliken population analyéis in ,\/B theory.

energy change (the “driving force” of the reaction). In non-
identity reactions the challenge is much greater, and this is dealt
with in the present paper, which seeks to establish a general
equation for the barrier that includes dependence on intrinsic
factors and the “driving force” of the reaction. In addition, the The calculations used the 6-31G* basis set forXCHs, SiHs,
so-derived barrier equation will have to show the relationship \yhile for the heavier analogues we used the Los Alamos
between the barrier of the nonidentity reaction and its constituent o¢ective core potential and matching basis set, LANL2DZ, to
identity process and to address the role of the ionic structures,yhich we added d-polarization functions taken from 6-31G*
whose importance are currently debated in the experimental (henceforth ECP/31G* These two basis sets were used before
community. and their compatibility was ascertained. The transition states
(TSs) were optimized at the MP2 level and the IRC gatvas
used then as the “reaction coordinate” for the BOVB calcula-

W =c’+ ¢ [@]P;0 (3)

1Z]

Theoretical Methods

VB Procedures.In VB theory, a state wave functiol/, is tions. Along the IRC path we located also the avoided-crossing
given as a linear combination of VB structur@s, in eq 2. state (ACSY’ which is the state that arises by the mixing of
the two Lewis structures at their crossing point. Since the ACS
W= zciq)i (2 was ascertained to give close barriers to the VB barriers at the
I

MP2 TS (see later), it therefore serves as a model for the TS of
the nonidentity reaction.

The reaction coordinat€) is defined as the bond order
difference:

The VB structures correspond to all the modes of distributing
the “active electrons” that participate in the interchanging bonds.
In the case of hydrogen transfer there are three electrons to
distribute in the orbitals that define the interchanging bonds
along the X-H—X' axis. These are the active electrons and Q= ny(d) — ny(d), n(d) = e ¥ (4)
orbitals that are treated in a VB manner. The rest of the occupied

orbitals (the inactive part) are treated as electron pairs in doubly wheren(d) or n(d") are calculated from any given bond length
occupied orbitals. dor d' relative to the equilibrium bond length of X—H (X'—

In the BOVB method?8 the orbitals are allowed to be different H). The constant in n(d) is taken from the corresponding
for each VB structure. In this manner, the orbitals respond to values determined before for the identity reaction, where the
the instantaneous field of the individual VB structure rather than bond order was defined as 3:8With this definition ofQ, the
to an average field of all the structures. As such, BOVB accounts IRC path stretches from1 to +1, as shown in Figure 1. The
for part of the dynamic correlation, while leaving the wave IRC calculations provide the relationship between the bond
function compact. For the sake of economy, all the valence distancesd’ (of H—X') andd (of H—X). Combination of the
orbitals in the present work were allowed to optimize during d-d' relationship derived from the IRC with their relationship
the BOVB procedure, except for thetype orbitals, which were  in eq 4 enables us to determine the individdaandd lengths
kept frozen. for a given value of). For example, we can determine tthe/



Modeling Identity Barriers

SCHEME 1: VB Structure Set for Hydrogen Transfer
Processes (note that the two Lewis structuresd, ) are
made from covalent and ionic structures)

Xe— oH oX' Xe He — &X'
1 2
@, (1) xs~ H oX' Xe H X~ -0u(p)
3 4
X" SH™ X Xe He x*
5 6
@, (ex) X$™ oH x* x* He D'&
7 8

values atlQ = 0 and compare the location of the ACS relative
to the origins of this coordinate (see Appendix 1).
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TABLE 1: Computed (kcal/mol) Barriers ( AE¥) and
Reaction Energies AE;,) for the Nonidentity Reaction, X'e
+ H=X — X'—H + X

X.X'  AE{MP2) AE¥(VB,TS) AE¥(VB,ACS) AE(MP2) AE(VB)
C.Si 324 30.7 30.5 19.7 14.6
CGe 346 334 327 26.3 21.9
c,sn 441 39.5 38.3 35.6 29.6
CPb 483 43.0 412 423 36.0
Si,Ge 171 223 21.9 6.6 7.3
Si,Sn 249 27.0 26.0 15.9 15.0
SiPb 285 29.9 28.1 226 214
Ge,Sn  16.4 20.7 205 9.3 7.8
GePb  19.6 22.9 22.0 16.0 14.2
SsnPb 151 18.2 17.9 6.7 6.4

the TS, one has to show that the ACS is a sufficiently good
approximation to the TS.

The resonance energy of the ACS is defined in eq 7 and,
provided the ACS and TS are close in energy. This would also

The BOVB calculations were done with the Xiamen package be the resonance energy of the TS.

of programs® The MP2 calculations were carried out using
Gaussian 98?

The VB Structures Set.The VB structures for a hydrogen

transfer reaction are shown in Scheme 1 and involve all the

B= E(IPACS) - E(q)L,crosg ~ E(IPTS) - E((DL,crosg (7)

A related quantity i3, which is the resonance energy if the

modes of distributing three electrons among the three fragmentsACS iS approximated only by the Lewis state (eq 5), namely,

These are the familiar Heitlel.ondon (HL) structure® that

describe the covalent spin-pairing in either the right-hand or
left-hand bond of the reactants (r) and products (p), respectively,

and the corresponding ionic structurds, which contribute to

the bonds of the reactants and products (r, p) or which are

excited states (ex) that can mix only into the TS but not into
the ground states of reactants and products.

VB State Correlation Diagrams (VBSCDs) from the VB
Structures. To convert the VB structures into a compact
VBSCD 160.17athe covalent HL structures have to be mixed with

the resonance energy of the Lewis state, eq 8:
B .= E(IPL(ACS)) — E(® 1089 8)

The differenceB — B will account for the importance of the
mixing of the excited ionic structured (@nd 8), which were
found to be of minor importance for the identity reactions.
Another important state function is the linear combination
of the HL structures, which cross along the IRC and thereby
generate the backbone of the state crossing in the VBSCD. The

the corresponding ionic structures that are required to describebondlng combination of the HL structures at the crossing point

a two-electron Lewis bond. Thus, mixing @._(r) with ;(r),
structures3 and 5, leads to the right-hand side+X' Lewis
bond for the reactant X /H—X. Similarly, mixing of @y (p)
with @i(p), structurest and6, leads to the Lewis bond of the
product, X—H/ «X. Subsequently, the two Lewis curves are

computed by tracing them along the IRC that is determined from 1,5 while

the MP2 calculations. The crossing point of the two Lewis
structures is the location of the ACS, as shown in Figure 1.
The wave function of the ACS after avoided crossing is given
by the symmetric linear combination of the two Lewis curves,
called also the Lewis state, defined in eq 5:

W\ (acs) = N[P,(r) — @, (p)] N-normalization const. (5)

The full adiabatic state that correspond to the ACS geometry

is generated by mixing int# the remaining structure;j(ex),
7 and8:

Wacs = € W acs) T C;P(eX) + cPg(ex) (6)

The individual components of the Lewis state are not frozen

is called the HL-state, given by eq 9, where ths are
coefficients that may or may not be equal (unlike the coefficients
of the Lewis structures which are strictly equal at the ACS):

Wy =Py (r) — @y (P) 9)

Wy accounts for the covalent three-electron
delocalization over the three reaction cent&s,simply adds
the contribution of the ionic fluctuations into the two-electron
bonds. The mixing of7 and 8 further adds to the ACS the
charge-transfer fluctuations from one two-electron bond to the
other. The energetic effect imparted by mixing of the ionic
structure is given by the resonance energy due to covalent
ionic mixing in eq 1072

REcovfion = E(quCS) - E(IPHL) (10)

This quantity is therefore a direct measure of the “polar effect”

in the TS.

Results

Table 1 shows the energy barriers calculated for all the

and are allowed to relax during the calculations, so that the final nonidentity pairs (X,X) at three different levelsAE¥{(MP2)

adiabatic ACS is the variational mixture of all the eight
structures in the VB structure set.

data refer to the MP2 barrierdAE*(VB,TS) to the VB barrier
calculated at the geometry of the MP2 TS, whiA&*(VB,-

It is apparent that the ACS has a well-defined wave function, ACS) data are the barriers calculated at the ACS geometry, with

which is a perfectly resonating mixture of the principal VB

the full wave function in eq 6. Shown also are the reaction

structures, and a well-defined location in the potential energy energy changesAE, for all the pairs. The X, Xpairs are
surface. As such, the ACS is an attractive model for the TS. As defined so that the HX' bond is always the weaker one.

shown in Figure 1, however, the ACS is not necessarily identical

The deviations between th&E,, quantities at the VB and

with the TS. Therefore, before it can be chosen as a model for MP2 level reflect deviations in the corresponding bond enetéies.
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TABLE 2: Geometric Features of the TS and ACS for the Nonidentity Reaction, Xe + H—X — X'—H + X

geometric parameters % deviatio®? % extensioh
TS ACS (ACSViz TS) (ACS)

XX d(A) d (A) d+d (A) d(A) d (A) d+d (A) %D(d) %D(d") %Ad/dy %Ad'/dy
C,Si 1.536 1.637 3.173 1.444 1.721 3.165 —6.0 5.1 33.8 16.0
C,Ge 1.603 1.673 3.276 1.478 1.786 3.264 -7.8 6.8 37.0 155
C,Sn 1.705 1.821 3.526 1.554 1.956 3.510 -8.9 7.4 44.0 13.8
C,Pb 1.779 1.821 3.600 1.600 1.977 3,577 —-10.0 8.6 48.3 13.6
Si,Ge 1.857 1.763 3.620 1.804 1.815 3.619 -2.9 2.9 21.6 17.4
Si,Sn 2.010 1.868 3.878 1.899 1.974 3.873 -5.5 5.7 28.1 14.8
Si,Pb 2.134 1.843 3.977 1.968 1.999 3.967 -7.8 8.5 32.7 14.8
Ge,Sn 1.977 1.911 3.888 1.909 1.978 3.887 -33 35 235 15.1
Ge,Pb 2.100 1.871 3.971 1971 1.997 3.968 —6.1 6.7 27.5 147
Sn,Pb 2.123 1.940 4.063 2.061 2.007 4.068 -2.9 35 19.9 153

ad andd' refer to the drawing in Scheme 2%D(d) = 100[d(ACS) — d(TS)J/d(TS). ¢ %Ad/dy = 100[d(ACS) — do)/do.

SCHEME 2: Definitions of Bond Lengths in the TS and 21-28%. The TS ionicity is accompanied by large covalent-

ACS for X'e + H=X — X'=H + eX (X = MH'3, X' = ionic resonance energy, in the fourth line of the Table. This
M'H3) quantity,RE.ov—ion, IS Seen to be almost a constant, ca. 20 kcal/
H H mol, and does not vary in relation to the weight of the ionic
\ d d S aH structures. The excited-ionic structures are seen to have much
A M H M'\ smaller weights compared with the other ionic structures. Their
l H energetic effect is given by the difference of tBeand B_
H

guantities, which is seen to be small, ca.-355 kcal/mol, and

_ . almost constant. Thus, much like in the study of the identity
The match betweeAE(MP2) andAE¥(VB,TS) is not uniform,  reactionsi’ here too the TS is dominated by the avoided

and the deviations spread from 1.2 kcal/mol for the C, Ge pair crossing of the Lewis curves. The polar effect in the TS is

to 5.3 kcal/mol for the C, Pb pair. However, what is important significant but it continues to behave as a quasi-constant
in terms of our goal in the present paper is the good match quantity.

between theAE¥H(VB,TS) and AE¥(VB,ACS) values, which The resonance energy of the TB, exhibits intriguing

differ by 0.2 to 1.8 kcal/mol. Clearly, therefore, in terms of equalities, e.g.B(C,Ge) = B(Si,Ge), B(C,Pb) = B(Si,Pb) =

relative energies, the ACS is a reasonably good approximation B(Ge,Pb)= B(Sn,Pb), etc. MoreoveB(X,X') for the noniden-

to the TS. tity reaction has virtually the same value BEX',X’) in the
Table 2 shows the key geometric features of the TS and theidentity reaction¥2and has no relationship 8(X,X). It seems

ACS, by reference to the drawing in Scheme 2. ThetKand that the resonance energy of the TS is determined by the weak

H—X' bond lengths of the TS are seen to be different than thosebond, H-X'. In fact, B can be reasonably well approximated

of the ACS, by 2.9-10.0% (see (d,d') values). While these  as follows:

deviations are not negligible, it can be seen that the sum of the

distances remains nearly constant. This means that the ACS lies B~ 0.5D(H—X"), (12)

on the reaction coordinate and is displaced relative to the TS in

a “Hammond fashion®! such that one bond gets shorter by \yhere the subscript zero refers to the bond at its equilibrium

the same gmqunt as the second bond gets longer. As showmyeometry. This expression is reminiscent of the similar expres-
previouslys’ this is a general phenomenon, and one can locate gjon derived for the resonance energy of the identity!™PS.

the ACS by starting at the TS and stepping gradually along the However, the relation to the weak bond only is intriguing and

reaction vector, which is the mode having an imaginary il have to be accounted for in terms of the mechanism of
frequency in the TS. The displacement is therefore linear, and ayoided crossing.

as such the ACS and the TS are located within the avoided
crossing region. As discussed quite sometime %gthe
resonance enerdyremains constant along such a displacement.
We may therefore use the ACS as an approximation to the TS The Mechanism of Activation. As shown in Figure 1, the

by the following equation: ACS is achieved by the crossing of the two Lewis curves, where

the two Lewis structures balance their energies. This is expressed
Wi~ Wacs= 6 Wiacs) T GWr(eX) + cgWg(ex)  (11) in eq 13:

Discussion

and use the ACS henceforth for the purpose of modeling the E(D (r), X'e H—X)i = E(P (p), X—H -X)qt (13)
barrier.
Table 3 lists a few properties of the ACS for thg X pairs. where the double dagger refers to the structures at their ACS

The first three lines show the weights of the covalent, ionic, geometry. The condition for achieving this energy equality
and excited-ionic structures (depicted in Scheme 1). The ACS can be derived using the expressions of the semiempirical
species are primarily covalent, but all have significant ionic VB,3334discussed in previous publicatidf¥(see Appendix in
contributions which amount to as much as-R'% of the total ref 17a). Thus, the energy of the bond is given-bY, while
weight. The ionicity of the ACS is more significant than in the the nonbonded repulsion is given Ry, where the subscript,
ground states where the weights of the ionic structures reachT, refers to the triplet Pauli repulsidfi®33 Using these two
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TABLE 3: BOVB Calculated Quantities for the ACS: Weights (w) of Covalent and lonic Structures, Covalent-lonic
Resonance EnergiesREcov-ion), and ACS Resonance EnergieB(and B, )

C,Si C,Ge C,Sn C,Pb Si,Ge Si,Sn Si,Pb Ge,Sn Ge,Pb Sn,Pb
Weov 0.631 0.655 0.682 0.689 0.608 0.619 0.632 0.640 0.651 0.634
wi(r,p) 0.312 0.303 0.272 0.265 0.331 0.319 0.304 0.305 0.289 0.306
wi(ex) 0.057 0.042 0.046 0.046 0.061 0.062 0.064 0.055 0.060 0.060
RE.ov—ion? 24.9 24.8 21.3 20.5 22.7 20.3 19.6 20.7 19.9 19.7
B. (kcal/moly 34.7 33.4 29.0 27.1 34.2 30.2 27.6 30.4 28.0 27.8
B (kcal/molf 40.0 38.9 33.7 31.4 38.8 34.2 315 35.0 32.4 31.9

aSee eq 10° See eq 8¢ See eq 7.

TABLE 4: Semiempirical Energies of the Lewis Structures, Xe H—X and X'—H eX, at the ACS (kcal/mol}

C,Si C,Ge C,Sn C,Pb Si,Ge Si,Sn Si,Pb Ge,Sn Ge,Pb Sn,Pb

C Si C Ge C Sn C Pb Si Ge Si Sn Si Pb Ge Sn Ge Pb Sn Pb
A 720 677 685 632 613 57.7 574 548 627 619 57.1 56.9 53.1 53.8 558 56.7 52.4 539 52.7 53.4
At 85.4 102.8 79.1 947 67.0 83.1 60.6 720 89.1 91.6 75.7 80.7 66.7 69.7 76.6 80.3 68.7 69.9 69.6 68.8

A+0.51r 114.7 119.2 108.1 110.6 94.8 99.3 87.7 90.8 107.2 107.7 95.0 97.2 86.4 88.7 94.1 96.9 86.7 88.8 87.5 87.8
aBased on eq 15.

definitions, the energies of the two Lewis structures are |ABLE S5: Comparison of Semiempirical and BOVB

expressed in egs 14a and 14b, Calculated Resonance Energies for the ACS (kcal/mol)
XX B(VB) B.(VB) B(eq 18) B(eq 12)
e H—X)¥ = — —x)¥ C,Si 40.0 34.7 39.0 42.1
E(q)l‘(r)' X'e H=X) AH=X)"+ C,Ge 38.9 334 36.4 38.8
0.5[,(X",H) + A:(X,X")]* (14a) C,Sn 33.7 29.0 32.4 34.2
C,Pb 31.4 27.1 29.7 30.8
, , Si,Ge 38.8 34.2 35.8 38.8
E(®, (p), X'—H eX)* = —2(H-X")" + Si,sn 34.2 30.2 32.0 34.2
n1¥ Si,Pb 31.5 27.6 29.2 30.8
O'SMT(X'H) + /IT(X’X )I” (14b) Ge,Sn 35.0 304 31.8 34.2
Ge,Pb 324 28.0 29.3 30.8
where A+(X,X')* refers to the triplet repulsiéh of the end Sn,Pb 319 27.8 29.2 30.8

groups, X and X in the ACS. Thus, in each Lewis structure,
there are triplet repulsions between thespin electron of the strong bond stretches to achieve bond strength equality with
nonbonded group, X (or % and the electrons of the-HX'(X) the weak bond. Thus, we should expect that the properties of
bond, which have 50% distribution of spinsand 3.3 This the TS (ACS) will be determined much by the weak bond.
equation neglects steric effect of these groups and electrostatic The Resonance Energy of the ACSUsing the same
interactions between the nonbonded X)(¥roup and H. The ~ semiempirical VB theory? we can derive an expression fBy
condition for crossing becomes then using the mixing of the two VB structures. The details are given
in Appendix 2 to this paper, while eq 17 shows the result:
AH=X')* + 0.51(X",H)* = A(H—X)* + 0.51:(X,H)* (15) .
B= é[/l(H—X) + 0.54:(H,X) — 0.50(X,X") — /I(X,X’)]‘JF

Table 4 shows the semiempirical quantities evaluated from a7)
the BOVB data for all the ACS structures of this study, denoted
by the X, X pairs. It can be seen that in most cases the condition An identical expression exists by replacing théH—X) +
of eq 15 is met precisely, while in some cases there are 0.511((H,X)]* term by the L(H—X) + 0.511(H,X')]* term, since
discrepancies of 2:24.5 kcal/mol, which may reflect the neglect  they are equal according to eq 15. Neglecting the long-range
of the electrostatic and steric interactions in eqs 14a and 14b.terms, the expression f@ becomes

Assuming thatit is proportional tol by roughly a constant,
then the condition in eq 15 becomes simply eq 16. Such a 1 , ,
condition has traditionally been used in other approaches thatB - §[A(H_X ) +0.54,(H.X )]i -
employ empirical bond energy curves to obtain the crossing 1 N
point2a1l FAH=X) +0.50:(H,X)]" (18)

/I(H—X')i R /I(H—X)‘t (16) Because the primed and unprimed | A7]* values are a bit
different (see Table 4), we take an average valueBforhese

The data in Table 4 show that this condition is approximately B values are presented in Table 5, along with the VB calculated
met in the various ACS structures. This means that in the ACS, quantities and those estimated from eq 12 above. The match of
the stronger bond will have to be weakened much more than the calculated values to the estimated values is reasonably good.
the weak bond to attain the crossing and the above equality. TheB(eq 18) values are lower somewhat thanB(&B) values,
Indeed, inspection of Table 2 shows that in each case, the weakoy 2.1 + 1 kcal/mol. TheB(eq 12) values are closer to the
bond, H-X', undergoes a smaller percentage of lengthening B(VB) values. Because eq 12 is much simpler, it should be the
(%Ad/dy’ = 13.6-17.4) compared with the strong bond;-K choice expression whenever eq 18 cannot be applied.
(%Ad/dy = 19.9-48.3). At the asymptote, we might consider It should be noted, that the singltdriplet excitation energy
that the weak bond retains its original strength and only the of the bond (H-X or H—X") is given by the sumA + A1].
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TABLE 6: Comparison of Heights of the Crossing Points (in kcal/mol) for the Nonidentity Reaction, Xe + H—X — X'—H +
X, Computed by BOVB and a Semiempirical Model Equation (eq 22)

C,Si C,Ge C,Sn C,Pb Si,Ge Si,Sn Si,Pb Ge,Sn Ge,Pb Sn,Pb
AE((VB) 70.5 71.6 72.0 72.6 60.7 60.2 59.6 55.5 54.3 49.8
AE(eq 22) 74.4 72.0 74.5 73.3 57.1 59.7 58.8 54.3 52.8 46.1

Thus, assuming that ~ A, then the expression in eq 19 is wheref is some fraction of the promotion gap, that separates
identical to the expression derived for the identity reactiAs, the two Lewis curves at their onsé) & +1) in Figure 1.

namely, For a nonidentity reaction, as in Figure 1, there are two
different gapsG' and G. Similarly, there are two different
B = 0.25AEg(H—X)* = 0.25AEg(H—-X')"  (19) corresponding factors { andf’) that describe the curvatures

of the corresponding curves in Figure 1. In addition, the ground

where all these terms correspond to their values at the ACSstate points of the Lewis curves maintain an energy difference,

geometry, indicated by the double dagger. The success of eqgiven as the difference in the corresponding bond energies,
12 is surprisingly good and indicates that at the ACS geometry

the originally weak bond HX' stretches to an extent that its AE,. = E(p) — E(r) = D(H—X), — D(X—H"), (24)
singlet-triplet excitation energyAEst(H—X')}, is related to P 0 0

the original bond ener H—X")o, as follows: . . . .
9 9D Jo W Combining all these factors into a single equation for the

BRI I v B — oyt barrier}®v-22bderived in Appendix 3 to this paper, and defining
ABgi{H=X)"=2D(H-X") =B =0.3D(H-X"), (20) average gap anflquantities, as in eqs 25a and 25b

Expressions for the Barrier. Using Figure 1, the barrier in
any direction is given by the difference between the height of
the corresponding crossing point and the resonance energy, i.e.,

G,=05G+G) (25a)

f,=05F+1 (25b)

AE*=AE,— B (21) _ _
leads to the expression &fE. in eq 26
This expression enables us to estimate the barrier and relate it
to the BOVB computed one, given by the differeriBACS) AE =fG + (B \AE + (L \AR2 (26)
— E(X's + H—X)o, where the subscript zero refers to the RO V(€ ®\2G ®
reactants. Two complementary approaches are used henceforth
to derive barriers based on the mechanism of activation projectedNeglecting the quadratic term, and assuming B42G, is

by the VBSCD. _ S - ~1/2, leads to the following compact expression:
The first approach relies on the semiempirical expression in
eq 14. Thus, the height of the crossing point is given by the 1
energy difference of the Lewis structure at the ACS and at the AE =G, + 5AE, (27)

ground state. Using the Lewis structure with the weak bond

H—X', this becomes . . .
The quantitiesG, G', and AE,, are available directly from

AE. = A — AH=X")Y +0. X H) + A(X. XV (22 the VB calculations and are collected in Table 7. Tladf'
= *o~ M )+ 056 (XH) + 4:(X. X (22) values are derived from the VB curves@t= 0 (see Appendix

Here thel'o — A(H—X')* term corresponds to the bond distortion 1 and 3). The quantiies and G' are identical to the

energy required to reach the ACS from the ground state, while corresponding quantitigs in the. idfentity reactions and can be
the other two terms correspond to the triplet repulsion that occursrelated to the :smglettrlplet (_excnatlon of the corresponding
by bringing the nonbonded X to the+X' moleculel’233The H—X and H-X" bonds, that is:

so-determined values are shown in Table 6 side by side with

the heights of the crossing point obtained from the BOVB G~ 0.7AEg(H-X); G' ~ 0.7AEg(H-X")  (28)
calculations. The match is seen to be very reasonable, consider-

ing the fact that eq 22 neglects other nonbonded interactions.In the identity process, thiefactor was almost constant 0.38
Clearly, eq 22 can be further refined by accounting for the 0.40 for the entire series. Here, the two factors are different
nonbonded interactions. A similar semiempirical approach is such that the curve along which the stronger bond is made is
described in ref 1lac and leads to a very good fit to more concave and has the smaller vadffeHowever, the

experimental barriers. However, as we elaborated béfthis average quantity, is less variablef, = 0.34-0.40, and is
model keeps the small long-range repulsion tetrfX,X"), and closer to the corresponding quantity in the identity reactions.
neglects the large short-range repulsion terms, é+§X,H). Using all these quantities in eqs 26 and 27 leads toAke

We interpreted the success of this approach as being due to,gyes in Table 7. Comparison with the corresponding BOVB
cancellation of error&? _ values shows a very good fit. Thus, in eq 26, the coefficient of
An alternative and independent approach is to evaluate theyhg |inear termG'/2G,, is smaller than 1/2, so that the use of

height of the avoided crossing from the promotion gaps, 1/5 in eq 27 compensates for the quadratic term in eq 26.

curvatures, and other properties of the BOVB curves in Figure Equation 27 leads t ; ion for th
1. For an identity reaction, the height of the crossing point is barr(iq;rairgogq Zg_ea s 1o a compact expression for the energy

related to the promotion gap of the VBSCD as folloW#s:
AE,=1G (23) AE*(VBSCD) =fG,+0.5AE,— B (29)
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TABLE 7: Reactivity Factors and Heights of the Crossing Points Calculated from the VBSCD and by Direct BOVB
Computations?

C,Si C,Ge C,Sn C,Pb Si,Ge Si,Sn Si,Pb Ge,Sn Ge,Pb Sn,Pb

f 0.34 0.30 0.30 0.30 0.37 0.34 0.32 0.36 0.33 0.37
f 0.41 0.41 0.40 0.38 0.42 0.43 0.41 0.40 0.38 0.39
G 192.9 192.9 192.9 192.9 144.3 144.3 144.3 145.7 145.7 124.2
G 144.3 145.7 124.2 115.8 145.7 124.2 115.8 124.2 115.8 115.8
AEq 14.6 21.9 29.6 36.0 7.3 15.0 21.4 7.8 14.2 6.4

AE(eq 26) 70.1 70.9 69.8 70.2 61.1 59.5 58.8 55.1 53.5 48.9
AE«(eq 27) 70.5 711 70.3 70.5 60.9 59.2 58.2 55.2 53.5 48.8
AEL(VB) 70.5 71.6 72.0 72.6 60.7 60.2 59.6 55.5 54.3 49.8

a Except for the dimensionledss all other factors are in kcal/mol.

TABLE 8: Comparison of Barriers and Intrinsic Barriers for X ', X Pairs, Calculated Using the VBSCD Model Equation and
the Marcus Equation with the Values Computed by BOVE

C,Si C,Ge C,Sn C,Pb Si,Ge Si,Sn Si,Pb Ge,Sn Ge,Pb Sn,Pb
AE*(eq 29) 30.2 31.9 36.4 38.8 21.9 25.1 27.2 19.8 211 17.2
AE*(Marcus) 29.0 33.0 36.7 40.3 22.4 25.4 28.2 20.7 23.1 17.0
AE*(VB,ACS) 30.5 32.7 38.3 41.2 21.9 26.0 28.1 20.5 22.0 17.9
AEX(VB,TS) 30.7 33.4 39.5 43.0 22.3 27.0 29.9 20.7 22.9 18.2
AEg*(Marcus) 21.1 20.6 19.1 17.7 18.6 17.1 15.7 16.6 15.2 13.7
AEin(eq 31) 235 21.4 22.9 22.0 18.2 18.2 16.8 16.6 14.7 14.6

a All values are in kcal/mol.

In this manner, the equation contains a balance between arbarriers determined for the ACS and the MP2 TS. As such, the
intrinsic term,f.G,, and the reaction “driving force” tern\Ep. VBSCD equation can serve as a general organizing tool for
Using the BOVB computedB values we obtain the barriers  structure reactivity relationships.
according to eq 29. These barriers are compared with the BOVB
barriers in Table 8 and the fit is seen to be very good. Clearly, conclusions
eq 29, based on the VBSCD, captures the key factors that
determine the barrier, and can form a basis for strueture The paper presents BOVB computations for nonidentity
reactivity relationships. hydrogen transfer reactions between X andgXoups, X=
It is instructive to compare eq 29 with the Marcus expression X' = CHs, SiHs, GeHs, SnH;, PbH. The VBSCD modéf
for the barriet® in terms of the intrinsic barrieAEy*, and the and a semiempirical VB theoKf32are then used to pattern
reaction energyAE,, as shown in eq 30. the computational BOVB results. It is shown that the avoided
crossing state (AC3%) is a reasonable approximation to the
AE2 BOVB transition state. The ACS is the state obtained from the
AE*(Marcus)= AE?) +0.5AE,, + L (30) avoided crossing of the two Lewis structures of reactants and
6AE§ products and contains additional contributions from excited
charge-transfer VB configurations (structueasnd8 in Scheme

Much like the Marcus equa’[ion' the VBSCD eq 29 contains a 2) The calculations show that the weaker bond, defined as
balance of an intrinsic barrier quantity and the reaction energy X' —H, dominates the properties of the ACS; its geometry and
term (the correlation coefficient? between the two sets of ~ resonance energy. However, the barrier itself is affected more
barriers is 0.9851). In the Marcus equation, the intrinsic barrier, by the stretching of the strong bond (throught fliequantity
AE}, is determined as the average of the component identity in €d 27). As found for the corresponding identity reactibis,
barriers. In the VBSCD equation, the intrinsic barrier in the here too the polar effect in the transition states is significant
VBSCD follows the expression but behaves as a quasi-constant quantity.
A simple expression derived from the VBSCD model

—fG.—B (31) reproduces the BOVB barriers quite well. Thus, it is shown that

a-a a qualitative model can be coupled to a complex computational
. scheme to reproduce all the trends and show their dependence
gnd can be determined as suc_:h even_when the process has NG, fundamental properties of the reactant and products. Com-
identity components (e.g., radical addition, etc.). Using eq 31, parable to the Marcus equation, the VBSCD expression of the

AEF

int

the VBSCD barrier becomes barrier contains a balance between intrinsic properties of
. . reactants and the reaction driving force. The intrinsic barrier
AE(VBSCD) = AEj, + 0.5AE,, (32) can be derived from the properties of the reactants and does

not require knowledge of the identity barriers as the Marcus

Table 8 shows the intrinsic barriers, and the barriers calculated equation.

with the Marcus and VBSCD equations, alongside the BOVB

calculated barriers for the ACS and the MP2 TS. Itis apparent Acknowledgment. The research at XMU is supported in
that the intrinsic barriers in the Marcus equation are smaller part by the Natural Science Foundation of China (No. 20073033,
than the corresponding quantity in the VBSCD equation. This No. 20021002) and by the Ministry of Education, China. The
difference is compensated in the Marcus expression by theresearch at HU is supported in parts by the VW Stiftung through
quadratic term, while in the VBSCD equation this term is the Ministry of Sciences of the Niedersachsen States and by
unnecessary. Both equations give very good fits to the BOVB the Robert Szold Foundation.
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TABLE Al: dandd values forQ = 0 and Q values for ACS

C,Si C,Ge C,Sn C,Pb Si,Ge Si,Sn Si,Pb Ge,Sn Ge,Pb Sn,Pb
d@A) 1.354 1.365 1.397 1.424 1.779 1.813 1.859 1.851 1.891 2.030
d (A) 1.807 1.890 2.100 2.138 1.840 2.058 2.105 2.036 2.076 2.038
Q(ACS) 0.21 0.24 0.32 0.33 0.06 0.18 0.22 0.13 0.17 0.08
Appendix 1. d and d' values for Q = 0 and Q values for All parameters on the right-hand side in eq A2.6 are related to
ACS Structures the ACS geometry. Thus we get eq 16 in the text.

The location ofQ = 0 is necessary for obtaining the values
of f andf’ for the two intersecting VB curves. This is done as Appendix 3. Derivation of Barrier Equation for the
follows. (i) Using the IRC calculations we obtain the values of Two-Curve VBSCD
d' as a function ofd. (ii) From eq 4 (text), aQ = 0, we have

the relationship Suppose that the energies of the two curves are written as

quadratic functions of the reaction coordingg2°

a(d—dy =a(d —dy) (A1)
E(Q =a+2aQ+aQ’ (A3.1)
wherea anda’ are the constants which are obtained by setting _ 5
the bond order in the identity transition state to 0.5. Ex(Q) = by +b,Q + b,Q (A3.2)
Table Al gives the bond lengths for the structure® at 0.
Also shown are th& values of the ACS, which are obtained The coefficients of; andb; are defined so as to match the idea
by use of thed andd' lengths in Table 2 to determine the bond inherent in the VBSCD (see pp 12831 in ref 22b) that the

orders of the ACS and obtai@(ACS) from eq 4. height of the crossing point, eq 23, relative to the reactant state
can be expressed as a fractidh ¢f the promotion gap@®).

Appendix 2. Derivation of Resonance Energy between Thus, the coefficients are expressed, by reference to Figure Al,
Two Lewis Structures as follows:

To get an expression for resonance energy between the two 1 1
Lewis structures, a secular equation for the two structures is ay= fGPa, = EGP a,= (E - fr)Gf (A3.3)
solved.

From the semiempirical VB theoR};3* the energies of the 1 1
two Lewis structures are given as by = AE,, + f,Gyb, = — EG;,bz = (E — fp)G:) (A3.4)

Hy = E(® (1), X'e H=X) = With these coefficients thig andf, values are simply the slopes
—A(H=X) + 0.5(+(X",H) + 4;(X,X")] (A2.1) of the VB curves aQ = 0 and are obtained as follows:

H,, = E(®,(p), X'—H oX) = —A(H—X') + 0.5[L(X,H) +

E(0)= erf’ (A3.5)
Ir(X.X)] (A2.2)
o o Ep(0)=pr:,+ AErp (A3.6)
And their interaction is
where

Hy, = @ (NIH[P (p)= 0.5A(H—X) + A(H-X") —
AX=X") — A:(X,X")] (A2.3) GP = Gp + AErp (A3.7)
S, = [® (N|H|P (p)l= —0.5 (A2.4) G[) =G, - AErp (A3.8)

At the ACS geometry, the energies of the two Lewis Having E(0) and G value leads to thef values. The so-
structures are identical. Thus, the eneB}¥, (acs)) is easily determined values are thé andf’ in Table 7 in the text. At

given by solving the 2x< 2 secular equation the crossing poinQ., the energies of the two structures are
identical. Neglecting the quadratic terms from eqs A3.1 and
le - SLZHll A3.2 we have
E(W i acsy) = Hi1 — —1-s. (A2.5)
S o
_ 2(f,G, — f,G; + AE) (A3.9)
A .
From eqs A2.1, A2.2, and A2.4 we have G; +GP
B=E(® (), X'e H=X) —E(¥\(acs)) Substituting thisQ. value into eq. A3.1 we g&i22
2
= 32 0.3,y (f,+1)GG  GPAE,
E.= + (A3.10)

G,+G G, +G

= Z[AH-X) + 0.5170¢ H) — A(X—X') -

0.51:(X,X")] (A2.6) where the quadratic terms in eq A3.1 are still neglected.
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Figure A1l. VBSCD showing the parameters needed to derive a barrier
expression for a nonidentity reaction.

Define the parameter),

G -G
LT =A (A3.11)
Gl +GP
If Ais an infinitesimal, it can be proven that
GGP 1
P—r _ Lef 2
—G; n Gf 4(Gp + Gf) + O(A9) (A3.12)

By neglecting the quadratic terms of the infinitesimal, eq A3.10
is written as

1

G
— p 2
AE. =G, + e A, + 5AE,  (A3.13)
where
1
f,= 306, +f)

G—lGr+Gp—1G +G A3.14
a E( b r) - é( b r) (A3.14)

In applicationsf, andf, are given by egs. A3.5 and A3.6. In
the nonidentity hydrogen transfer reaction,

G =G, G,=G, f=f f=

fr (A3.15)

Thus, we finally get eq 26 in the main text.
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