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The theory of solvatochromism based on a dielectric continuum description of the solvent and the classical
Onsager cavity model is revisited and extended to include the effect of an added 1:1 salt. An expression is
derived for the reaction field inside the solute cavity, which is applicable in the limit of low salt concentrations.
Using this result, expressions are obtained for the shifts in the (0-0) absorption and fluorescence maxima on
the basis of Marcus’ approach to the calculation of the medium reorganization free energy in the ground state
and excited (Franck-Condon) state of the solute molecule. The lifetime of the excited state is assumed to
exceed the longest relaxation time characteristic of the medium. For the salt-free case, our equations differ
markedly from several others reported in the literature dealing with the pure solvent effect, and the origin of
the discrepancy is clarified. Finally, it is shown how the new equations can be used, in principle, to obtain
estimates for the Onsager radius, polarizability, and dipole moments in the ground state and the lowest excited
state of a solute molecule from a simple analysis of absorption and fluorescence data only, except in cases
where the dipole moments are noncollinear. Completion of the analysis then requires an independent
measurement of the ground-state dipole moment.

1. Introduction

Electric dipole moments may be derived from the application
of an electric field to molecules in the gas phase, which is
studied using the microwave technique, by observing the normal
Stark effect. More commonly, however, experimental dipole
moments are obtained in the liquid phase from measurements
of dielectric constants. In addition to ground-state dipole
moments, excited-state dipole moments are of considerable
interest.1

Experimental methods for the determination of dipole mo-
ments in their electronically excited states are based on the
knowledge of the experimental ground-state dipole moment and
a change of the position of a band in the electronic spectrum,
external (electrochromism) or internal (solvatochromism). Sol-
vatochromic methods, also known as solvent-shift methods, are
simpler because they do not require the use of an external field.
However, they are less reliable and less accurate because their
use involves numerous simplifications and approximations. The
various solvatochromic equations make use of ground-state
dipole moments and shifts of the absorption and emission
(fluorescence, phosphorescence) maxima in solvents of different
polarities.1 The most commonly employed theoretical expres-
sions are those derived by Kawski, Chamma, and Viallet2-5 and
by Bakhshiev6 for compounds that fluoresce or phosphoresce.
The McRae7 and Suppan8,9 equations are used for nonemitting
compounds.

Several simplifications and shortcomings of these theoretical
treatments will be mentioned here. First of all, it is usually

assumed that ground- and excited-state dipole moments are
collinear, although an effort has been made to introduce a
correction for noncollinear dipole moments.10 Even in the case
of collinear ground- and excited-state dipole moments, parallel
and antiparallel orientations are possible. Furthermore, specific
solute-solvent interactions on absorption and emission profiles
are generally not taken into account. The possibility of
incomplete solvent relaxation prior to emission is not considered
either, although some attempts to improve the theory in this
regard can be found in the work of Bakhshiev.6,11 Also,
improvements in the determination of the effective molecular
size in terms of the Onsager cavity radius, which is needed in
solvatochromic equations, are desirable.12 Finally, the use of
solvatochromic equations may result in negative or imaginary
values of excited-state dipole moments for some compounds.

In solution chemistry, one of the important effects upon
electronic absorption and emission spectra is exhibited by
dissolved salts, resulting in a shift of the maxima to different
wavelengths and in changes of the intensity of absorption or
emission.

The importance of salt effects is well known, as demonstrated
by such diverse phenomena as the dependence of solubility on
ionic strength, salting out, et cetera, although organic chemists
tend to be more concerned with specific salt effects.13

In this contribution, we have set out to explore the theory of
solvatochromism on the basis of a dielectric continuum descrip-
tion of the solvent and the Onsager cavity model14 and in
particular to investigate the role of added salt in producing
“ionochromic” shifts.

The results can be used to derive expressions for shifts of
the 0-0 absorption and emission maxima. It will be shown that

* Corresponding author. E-mail: wmulder@uwimona.edu.jm. Fax:
+1-876-977-1835.

11932 J. Phys. Chem. A2002,106,11932-11937

10.1021/jp026505o CCC: $22.00 © 2002 American Chemical Society
Published on Web 11/13/2002



the equations obtained for solutions without salt are different
from most of those reported before and used in the analysis of
experimental results but vindicate and generalize the approach
taken by Lippert15 many years ago. It will then be demonstrated
how these new equations could be used to estimate the Onsager
cavity radius, polarizabilities, and ground- and excited-state
dipole moments along with their relative orientation using
absorption and fluorescence spectra and an independent mea-
surement of the ground-state dipole moment.

2. Salt Effect on the Reaction Field of a Polar Solute
Molecule

Consider a dipoleµ ) qδ (q ) charge,δ ) distance between
+q and-q) in a vacuum. In SI units, the potential at distance
r and colatitudeθ with respect to the direction ofµb is given by

in the limit δ f 0 (i.e., for a point dipole).
Next, the same dipole is thought of as having been placed at

the center of a spherical cavity of radiusa (≈molecular size)
in a solvent that is modeled as a continuous dielectric with a
relative permittivity ofε > 1 (see Figure 1).

In view of the axial symmetry of this system, two coordinates,
r andθ, suffice. Two regions will be distinguished: region 1
(the cavity: 0e r e a; ε ) 1) and the outer region 2 (solvent
+ salt; r g a). On the average, the molecule will induce an
axially symmetric charge distribution by polarizing the solvent
and attracting/repelling ions. This polarized environment gener-
ates its own potential distribution in regions 1 and 2 corre-
sponding to the reaction field,EBr(r, θ).

The total dipole momentµb can now be written as

where µbp is the permanent dipole moment andR is the
polarizability of the solute molecule.

The potential distributionæ1(rb) inside the cavity is equal to
the sum of the dipole potential (eq 1) and the contribution due
to the response of the medium, the latter obeying the Laplace
equation, so that the potential distribution in region 1 can be
written as

wherePn(x) is a Legendre polynomial defined as

These functions satisfy the orthogonality relationship

The coefficientsAn will be determined later using the boundary
conditions atr ) a.

Next, we turn our attention to the average potential distribu-
tion in the exterior region, where a 1:1 salt is assumed to be
present at low concentrationcs. Then æ2 is, to a good

approximation, a solution of the linearized Poisson-Boltzmann
equation

as long asFæ2 , RT, on average. Here,F is the Faraday
constant, andκ is the inverse Debye screening length given as

It is important to note that eq 6 is of the Helmholtz type. Its
general solution for an axially symmetric system is given as16

where theBn’s are, as yet, undetermined coefficients, i)
x-1, and theHn+(1/2)

(1) (x)’s are Hankel functions of the first
kind, which are linear combinations of Bessel functions, as
follows:

With x ) iκr, this function can also be expressed as

All that we shall need to know about the functionsfn(x) and
gn(x) is that

Hence,

The unknown coefficientsAn (eq 3) andBn must now be
calculated by substituting the general expressions foræ1 and
æ2 into the boundary conditions atr ) a (i.e., the conditions of

Figure 1. Onsager cavity model and coordinates used in the description
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continuity of the potential and normal components of the
dielectric displacement):

Substitution of the series expansions and use the orthogonality
property of thePn’s, eq 5, then lead to the two sets of linear
equations:

and

from which it is immediately obvious thatAn ) Bn ) 0 if n *
1, and as a consequence, the potential of the reaction field inside
the cavity,ær(r, θ), takes the simple form

which implies that the reaction field is uniform inside the cavity
and equal toEBr ) -A1µb/µ. Solving eqs 15b and 16b forA1

finally yields

whereε′ denotes an “effective” relative permittivity:

Equation 18 is recognized as a modified version of the
familiar Onsager formula for the reaction field acting on a dipole
immersed in a continuous dielectric, which is retrieved upon
settingcs ) 0.

By expanding eq 18 up to terms of second order in the small
parameterκa and introducing, for future reference, the dimen-
sionless quantity

one arrives at the approximate expression

3. Solvatochromic Shifts in the Presence of a 1:1 Salt

When a polar molecule in its ground state with permanent
dipole momentµbp, polarizabilityR, and total dipole momentµb
is promoted to the lowest vibrational level of the first excited
(singlet) state (characterized byµbp*, R*, and µb*), it absorbs
energyhν0 when present in the gas phase and emits the same
energy in the fluorescence step (0-0 transition), as illustrated
in Figure 2.

In solution, we need to distinguish between four total dipole
moments:

µb: Ground state, in equilibrium with medium (solvent+
ions).

µb∞*: After absorption of a photon with energyhνA, the lowest
excited state is reached with the permanent dipole moments of
solvent molecules and averaged ionic distribution remaining
“frozen”. Only the electronic part of the medium polarization
responds (“optical”, infinite-frequency response).

µb*: Provided the excited state is sufficiently long-lived, the
medium adapts to the excited dipole, and a new equilibrium is
established.

µb∞: During the emission of a photon of energyhνF, there is
only an electronic response by the medium, so no equilibrium
and therefore no true ground state is attained at first. Then, the
dipole-medium system relaxes back to its ground state with
dipole momentµb.

Throughout the subsequent discussion we shall assume that
the cavity radius is constant (i.e.,a* ) a). The angle between
ground-state and excited-state dipole moments equalsú.

The energyhνA will be calculated next as the difference
between the amounts of work involved in forming dipolesµb∞*
andµb from a ground-state dipoleµbp in a vacuum:

Figure 2. Schematic representation of the sequence of absorption,
emission, and relaxation processes for transitions between the lowest
vibrational levels corresponding to the electronic ground state and the
first excited (singlet) state of a solute molecule (0-0 transition). Also
indicated are the dipole moments at the various stages.
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The second contribution is simply the stabilization energy of
the ground-state dipole momentµb:

where we denote byEB0(µb′) the equilibrium reaction field due
to the dipoleµb′.

The first term is equal to the work of polarizing the molecule
in a vacuum, whereas the second represents the reversible work
performed in an imaginary process in which the positive and
negative charges on the dipole are merged in a vacuum and
subsequently separated again in solution.

The nonequilibrium excited dipoleµb∞* can be formed from
µbp following the sequence of steps shown below, withw(µbp f
µb∞*) being equal to the sum of the corresponding energy
contributions:

Here,EB(µb∞*) is the reaction field produced by the medium in
the nonequilibrium state described earlier. It can be written as
the sum ofEB(µb) and the response to the “excess” dipole moment
(µb∞* - µb) by a uniform medium with relative permittivityn2

(using Onsager’s equation; see also eq 18):

Collapse the dipoleµb∞* in vacuum and rebuild it in solution.
During the second stage, the work is done with the dipole
exposed to the fieldEB0(µb′) from µb′ ) 0 to µb′ ) µb:

From then onward,EB0(µb) remains a fixed component of the
reaction field while only the electronic response varies asµb′
increases further fromµb to µb∞*:

Adding up the contributions (i-iv), subtracting eq 23, and
defining the solvatochromic shift for the 0-0 absorption as∆ν̃A

) (νA - ν0)/c gives

For reasons of symmetry, the corresponding expression for the
shift in the fluorescence wavenumber is found by simply
interchanging “starred” and “unstarred”R’s and µb’s in this
equation:

In terms of the quantityu (eq 20) and using the solution for the
reaction field, eq 21, the expression for the magnitude of the
total dipole moment of the solute molecule in its ground state,
µ ) µp + RE0, is transformed into

defining the scaled polarizabilityR′ ) R/4πε0a3. Here, only
terms up to order (κa)2 have been retained, which requires the
introduction of the zeroth-order solutionu0 of this equation,
corresponding toκ ) 0:

Solving u from eq 27 and reverting toµb yields the following
explicit form of the latter up to first order in (κa)2:

Substituting this into the equation for the equilibrium reaction
field EB0(µb) yields

If eqs 29 and 30 are then substituted into eq 24, then the result
is a relationship betweenEB(µb∞*) and µb∞*. These quantities are
of course also related according to

which allowsEB(µb∞*) and µb∞* (and hence∆ν̃A) to be expressed
directly in terms ofµbp, µbp*, R, R*, a, ε, n2, andcs. Introducing
the approximationR* ) R (as is usually done in the literature),
one obtains, after some lengthy algebra,

(up to first order in the salt concentrationcs) and, in an entirely
analogous manner,

It is well known that other factors also contribute to the
wavenumber shifts; for example, a dynamic effect, which can
be interpreted within the context of classical dispersion theory
as being a consequence of the high-frequency reaction field
induced by vibrating electrons, needs to be taken into consid-
eration. This field counteracts the “restoring force” on each
electron and hence gives rise to a red shift in the case of
absorption, which is separate from and independent of the
spectral shifts discussed so far. Both the classical model and a
detailed quantum mechanical analysis of the problem lead to
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the following expression for these dynamic shifts:17

where f is the oscillator strength (positive for absorption,
negative for emission).

For polar molecules, this correction is usually relatively small
and is therefore not taken into account, as is an additional shift
associated with dispersion interactions between the solute and
solvent.

Assuming the latter types of shifts to be comparatively
insignificant and specific interactions such as hydrogen bonding
to be absent, eqs 32 and 33 suggest the following procedure
for analyzing absorption and fluorescence data.

First of all, in the absence of salt (cs ) 0), ν̃A and ν̃F are
measured for the 0-0 transition in two different solvents. The
difference6,15

is evaluated for each. Dividing one by the other, an equation
results from whichR′ can be solved. Subsequently, (µbp* -
µbp)2/a3 ) (µp

2 + µp
*2 - 2µpµp* cos ú)/a3 is obtained.

Next, for each solvent,

is calculated,5 which yields values forν̃0 and (µp*2 - µp
2)/a3.

In particular, the above relationships can be used to calculate
(µbp* - µjp) ‚ µbp/a3. For one solvent, the salt effect onν̃A is then
measured. The limiting slope of theν̃A versuscs relationship,
along with the value obtained for (µbp* - µbp) ‚ µbp/a3, is now
used to obtain the Onsager cavity radiusa and, from the known
value ofR′, the polarizabilityR as well.

From the values ofa, (µp*2 - µp
2)/a3, and (µbp* - µbp)2/a3

found earlier, the magnitudes of the dipole moments in the
ground and excited states can be calculated only in the case
that these are collinear. Otherwise, the angleú would appear as
an extra unknown, and insufficient information is contained in
the spectral shifts to determineµp, µp*, and ú separately. In
those situations, a separate measurement ofµp (or some
combination ofµp anda) is necessary. However, it is entirely
possible that an improved approximation beyond the linearized
Poisson-Boltzmann level (eq 6) will render the solvatochromic
data sufficient again to determine all individual parameters,
including ú, without the need for additional experiments.

4. Discussion

The present treatment of the influence of the medium on
absorption and fluorescence spectra through local ordering
follows the Onsager model in that it assumes that spectral shifts
are due mainly to nonspecific, electrostatic interactions. In
accordance with this model, the solvent is described as a
continuum, characterized in terms of a refractive indexn and a
bulk permittivity ε. Since it was first proposed, the model has
been extended to account for dielectric saturation in the vicinity
of the solute dipole by allowingε to approach the bulk value
more gradually.18,19 Although this modification is reasonable

enough, different forms of the distance dependence ofε have
been suggested, and there seems to be some difficulty in
assessing their relative merits quantitatively.

The primary objective of this investigation, however, is to
establish the influence of added salt on the reaction field (inside
the cavity) and, by extension, on the position of absorption and
fluorescence peaks, in particular those corresponding to the 0-0
transition (which coincide for molecules in the gas phase). This
study was motivated by the desire to introduce a controllable
length gauge, in the form of the Debye screening length, which
could be used to “measure” the Onsager cavity radius indirectly.
In the absence of salt, this radius is the only characteristic length
in the model system, which is the reason that solvent studies
allow only certain combinations of parameters, such asµp

2/a3

or R/a3, to be determined from spectroscopic data.
It should be stressed that our result for the reaction field, eq

21, is exact only in the limit of low salt concentrations, as the
use of the Poisson-Boltzmann equation implies. At the same
time, this restriction serves to suppress complications that would
otherwise have arisen as a result of ion association,20 which
can be expected to be quite extensive, especially in solvents of
low relative permittivity such as the ones that are commonly
used in investigations of this kind.

Our analysis of the reorganizational free-energy changes
accompanying absorption or emission of radiation leads to eqs
32 and 33, where the applicability of the second is obviously
limited to those cases where the excited singlet state survives
long enough for the medium to adapt to its corresponding dipole
moment,µbp*. The slowest process is most likely the rearrange-
ment of ions, with a characteristic time on the order of the
double-layer relaxation time of the salt solution. Of course, it
needs to be decided in each individual case how reasonable the
assumption of medium equilibration is. Corrections for solvent
relaxation in the case of short-lived excited states typically
involve the use of the Debye model. No attempt to include
corrections for medium relaxation has been made in the present
study.

From numerical estimates, it can be inferred that the
magnitude of the salt-induced shifts in wavelength,|∆λs| =
λ0

2|∆ν̃s|, in many cases can be expected to be very (even
prohibitively) small in the limit of small (κa)2. High accuracy
in determining the variation of spectral shifts with salt concen-
tration (which even in favorable cases may amount to no more
than a few nanometers) will then be required. The application
of this method will therefore probably be limited to molecules
that are not too large (sinceu0 is proportional toa-2, the salt-
induced shift varies according toa-1; see eqs 32 and 33) with
large dipole moments exhibiting strong charge transfer at long
wavelengths (as in certain dyes). For example, a preliminary
experiment shows that a maximum at 275 nm (logεA ) 3.57)
for a 1× 10-4 M solution of methyl red in methanol is shifted
to 271 nm (logεA ) 2.61) for 1× 10-3 M methyl red in 0.1 M
methanolic lithium perchlorate.

A comparison of our results for the purely solvent-induced
shifts with expressions that have been published in the past by
several workers in the field (and which are still widely applied)
reveals a surprising disagreement, considering that all treatments
are essentially based on the same simple electrostatic picture.
One therefore should not expect to find any ambiguity in the
implications of such a model.

First of all, authors usually choose a value forR′ a priori,
typically R′ ) 015 or 1/2,6,7,21,22whereas we prefer to leave it
unspecified, as an adjustable parameter. The choice of solvent
then manifests itself in the form of “solvent functions” that

∆ν̃A,F
dyn ) -const× fA,F

ν̃0R
n2 - 1

2n2 + 1
(34)

ν̃A - ν̃F )
2(µbp* - µbp)

2

4πε0a
3hc ( ε - 1

2ε + 1 - 2R′(ε - 1)
-

n2 - 1

2n2 + 1 - 2R′(n2 - 1)) (35)

ν̃A + ν̃F

2
) ν̃0 -

µp*
2 - µp

2

4πε0a
3hc

ε - 1
2ε + 1 - 2R′(ε - 1)

(36)
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depend solely onε andn2. Our eqs 32 and 33 are equivalent to
expressions derived by Lippert,15 who assumed thatR ) 0 (and,
of course,cs ) 0) and the ground-state and excited-state dipole
moments are collinear, but differ substantially from those arrived
at in later papers by other authors.2,6

The source of the discrepancy can be traced to an erroneous
notion about the orientational contribution of permanent solvent
dipole moments to the reaction field. In both earlier and current
theories23 of solvatochromism, this contribution is isolated from
the net cavity field by simply subtracting an electronic contribu-
tion that is postulated to possess the same form as Onsager’s
equation, withε replaced by the square of a zero-frequency
refractive index,n0. Usually,n0 is conveniently taken to be equal
to n. The problem with this argument is that it implicitly assumes
that the continuity conditions on potential and dielectric
displacement at the cavity boundary are imposedseparatelyon
each one of the components (i.e., dipolar and electronic) of the
polarization field. Clearly, there is no good physical reason that
this should be so, and indeed it would be highly fortuitous if it
were.

Our method of calculation avoids this flaw by exploiting the
close analogy between the nonequilibrium solvent configuration
that occurs in response to a sudden change of the solute dipole
moment (consequent upon absorption or emission of a photon)
and that due to a rapid loss or gain of an electron by an ion.
The solvent reorganization free energies in the latter case are
calculated using the well-established method first employed by
Marcus in his general theory of fast electron-transfer processes
(for a concise and enlightening recent overview, see ref 24),
and it is essentially this approach that has been adopted in this
paper.

Experimental tests of the new equations are currently under
way, and we expect to present the results in a future publication.
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