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Near-UV, largely Re— phen, bpe metal-to-ligand charge transfer (MLCT) excitatiorfaaf[R€ (phen)-
(COx(transbpe)l [where phen is 1,10-phenanthroline and bpe is 1,2-bis(4-pyridyl)ethylene] i€ kesults

in isomerization at the bpe ligand and formatiorfad-[Re (phen)(CO)(cis-bpe)]". Time-resolved absorption

and infrared (TRIR) measurements reveal the existence of an intermediate with a lifeting8 afs k =

3.6 x 10’ s1). According to the results of the transient IR measurements, the intermediate is ligand-based,
presumably the olefin-localized twisted triplgt. TRIR measurements in thgC=C) region point to a
significant twisting around the <€C bond in3p.

Introduction
@) YA
In the photochemical isomerization of olefins, such as the S N = =
N~

stilbenes, there is experimental evidence for the occurrence of

“nonvertical” energy transfer and a twisted triplet intermediate, trans-bpe phen

3p, in addition to the spectroscopic or “vertical” triplét*. 1713

Saltiel and co-workers first suggested that a twisted geometry -~ 8 o—|+ -~ ¢ 17

existed at the &C bond in3p*.112 N""'-F!em‘\\‘f" L/,,,,_iﬂ“\f 1)
The triplet manifolds are accessible by inter- and intramo- i ,“//.Iq o%o il "\ 'L eso

lecular energy transfer and by heavy-atom effébi&with the 9 355 ~ 7Y

latter evidenced by the heavy-cation-substituted zeolites prepared S Y r N

by Ramamurthyet al.’® They are also accessible by coordinating P N

the olefin in metal complexes, including inert complexes of W

ruthenium or rhenium?~2! Schanze and co-workers have . i N . ) N

Jac-[Re (phen)(CO)s(trans-bpe)] Jfac-[Re (phen)(CO)s(cis-bpe)]

suggested that Re— bpy metal-to-ligand charge transfer
(MLCT) excitation infac-[Re(bpy)(CO}(py-CH,—NH—C(O)- ]
(trans-stilbene)l and a series of related complexes results in 1N the electronic: spectrum ofac-[Re/(phen)(CO)(trans
energy transfer to a stilbene-basad* state (transoidt*) that bpe)]" in CHsCN, there are overlapping Re phen, Re—'bpe

is in competition with MLCT excited-state decay. MLCF [where 'bpe is trans-1,2-bis(4-pyridyl)ethylene], andr —

3t* energy transfer is followed by reversible conversion to the 7*(bpe) absorption bands in the 33870 nm region. Excitation
perpendicular tripleBp*, and its decay results in trans-to-cis in this region results in bpe trans-to-cis isomerization as shown

isomerization at the ligantk. in the UV/visible spectrum by a decrease in absorbance in the
We report here the results of an investigation on the dynamics 270~384 nm region and an increase in the 270 nm region.
of intramolecular sensitization of trans cis ligand isomer- The isomerization process is accompanied by the disappearance

ization in fac-[R€ (phen)(CO)(bpe)l [where phen is 1,10- of IH NMR resonances at 7.17—7.30 ¢ = 16 Hz) for the
phenanthroline and bpe is 1,2-bis(4-pyridyl)ethylene], eq 1, by HC=_CH protons of the trans isomer and growth of those for
transient absorption (TA) and time-resolved infrared (TRIR) the cis isomer ab 6.52-6.80 0 = 12 Hz). The quantum yield
spectroscopies. These measurements provide direct evidence fdr trans-to-cis isomerizationPuans—cis, is 0.25+ 0.02 at 365

a ligand-based photochemical transient and insight into the NM:

mechanism of sensitized trans-to-cis isomerization. Ligand and At 77 K in a 1:1 propionitrile/butyronitrile glass, there is little
complex structures are illustrated in ed1. or no isomerization infac-[Re(phen)(CO)(transbpe)]". A
weak, structured emission appears at 390 nm, presumably from
*To whom correspondence should be addressed. E-mail: neydeiha@ & 7t* state localized on théransbpe ligand but red-shifted,

ig.usp.br (N.Y.M.1.), imeyer@lanl.gov (T.J.M.). presumably by coordination to the metal.
T University of North Carolina at Chapel Hill. . . .
* Universidade de @aPaulo. There is no detectable emission from this complex at room
8 Los Alamos National Laboratory. temperature in CECN. Transient absorption measurements
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10 Py TABLE 1: Summary of TRIR Results in the CO and
A Mid-IR Regions in CH3CN at 298 K
2035 cm’ -
Tgs Ves AT*  excited
complex (cm?) (ecml) (cml)  state
[Re(phen)(COY4-Etpy)[* 1931 1962 +31  MLCT
05 2011 +80

2036 2062 +26
[Re(phen)(COxtrans-bpe)}t 1934 1927 -7  an*

2035 2029 —6

1639 162z —17F

Absorbance

[Re(phen)(COxtransbpe)f ¢ 1934 e e am*
00 & and ) 2035 2029 —6
2100 2050 2000 1950 1900 1850 [Re(phen)(COxcis-bpe)}+ ¢ 1934 1974  +40 MLCT
w 3 2017  +83
avenumoer (em’) 2035 2066 +31
0015 aAs PR~ salts.” AV = ¥es — ¥gs ©In CDsCN, C=C olefin.%In a
B mixture of ~36% fac-[Re/(phen)(CO)(trans-bpe)]” and ~64% fac-
0.010 [R€(phen)(CO)(cis-bpe)]". ¢ Obscured by the bleach at 1934 Tm
0.005 - 2029 cm™ 1927 cm’! |
g fac-[R€ (phen)(CO)(4-Mepy)]” —
E 0.000 1 fac-[Re' (pheri")(CO),(4-Mepy)[™* (2)
§ 00 By contrast, the ground-to-excited-state shifts for the transient
-0010 following laser flash excitation ofac-[R€'(phen)(CO)(trans
bpe)]" are Av = —6 and—7 cnT’l, with »(CO) appearing at
00151 1927 and 202944 cn1Y) in the transient, Table 1. These values
0020 i , . , are comparable to shifts found following excitationfa¢-[Re-
2100 2050 2000 1950 1900 1850 (dppz)(COX(PPR)] ™ (dppz is dipyrido[3,2-a:23-c]phenazine),
Wavenumber (cmi") which produces a dppz-localizédz* excited state?®2° From
Figure 1. Ground-state (A) IR£2 cnr?) and (B) TRIR (4 cn?) this comparison, the transient observedfémr[Re (phen)(CO}-
spectra ofac-[R€(phen)(CO)(trans-bpe)}" in CH:CN (~10—20 mM) (trans-bpe)]" appears to be an intermediate or excited state
at 298 K in they(CO) region. The absorbance ofCO) was~0.8 localized on thetrans-bpe ligand. As for the dppz complex,
absorbance units. Samples for TRIR were Ar-purged prior to measure-the decrease in(CO) compared to the ground state shows that
ment. the ligand acts as an electron donor toward the metal in the
transient.
(~1 x 10-5M in CHsCN, 298 K, Ar deaerated) with excitation TRIR measurements on a prephotolyzed mixture containing

by the second harmonic of a Nd:YAG laser at 355 nm (7 ns ~36% fac[Re/(phen)(CO)(transbpe)]” and ~64% fac[Re'-
pulse width,~6 mJ/pulse) detect a short-lived transient with a (Phen)(COJ(cis-bpe)]” provide evidence fdboth cisbpe MLCT
narrow, intense absorption at 370 nm and a broad, featurelesindtransbpez* excited states following MLCT laser flash
absorption at 488500 nm. The low energy feature is presum- €Xcitation. (The complex containing the pwie-bpe ligand was
ably MLCT in origin as the planarz* triplets absorb below Nt available for this study.) In the transient spectruCO)
400 nm?5 The transient decays with= 28 + 1 ns k = 3.6 x ;hlfts appear at bptﬂmgher and lower energies (lTabIe 1),
107 s%). Sustained photolysis at room temperature results in including »(CO) shifts °f+|40' +31 and+83 cnm *for the
the growth of a characteristic MLCT emission ftac-[Ré€- MLCT excited statefac[Re' (phen™)(CO)(cis-bpe)]™.
(phen)(CO)(cis-bpe)l at 550 nm (phen — Re'). According The TRIR measurements Qfac-[Ré(phen)(COa(trans
to transient emission measurements, the lifetime of the emitting bpe)l]f were extend.ed into the mid-IR reglonlfrom 110010 1700
MLCT state ist = 928+ 16 ns k = 1.08 x 1P s-1).26 cm 1 in CDsCN [Figure 2 (1556-1700 cml)]. The band at
) ' ' 1639 cn1?! (£4 cn?) is the olefin G=C stretch for a planar

In Figure 1 are shown ground-state and room-temperature yans stilbene conformation, with the(C=C) stretches for
transient IR (TRIR) spectra é&c[Re/(phen)(CO)(transbpe)]” additional rotamers appearing at 1643 and 165131 The
in Ar-deaerated CBCN. The concentration of the sample pangs at 1615 and 1597 ciare v(phen) bands. The TRIR
(~10-20 mM) was adjusted so that the absorbance of the CO gifference spectrum is complex but can be interpreted with
bands in the region 1962100 cnrt was~0.8-1.0 absorbance  ,(c=c, planar) shifting tdower energy at 1622 cnt, the band
units. The TRIR spectrum was acquired from the cessation of gt 1643 cmit shifting to 1631 cm?, and the excited-state band
the 355-nm laser pulse to 50 #sThe time-dependent decay  that correlates with the band at 1651 chpossibly obscured
characteristics of the transient spectrum were consistent withpy the bleach at 1639 cri The shifts ofy(C=C) to lower
the 28-ns decay observed by transient absorption. The shortenergy are consistent with a partial loss in-C multiple
excited-state lifetime contributed to the low signal-to-noise honding in the ligand-localized excited state. The absence of
characteristics of the spectra in Figures 1B and 2B. Both the assignable/(phen) bands in the difference spectrum, analogous
direction and magnitude of thg(CO) shifts in the transient  to those observed for the MLCT excited state(s) of [Ru-
spectrum between the ground and excited state in Figure 1B(phen}]2*,32 shows thatv(phen) shifts are negligible in the
are revealing. For MLCT excited states, eq 2, these shifts aretransient, which is also consistent with a bpe-based intermediate.
characteristically large and positivA = +26 to +80 cnt? The observations made here are consistent with the following
for fac-[R€(phen)(CO)(4-Mepy)lt, where Mepy is 4-meth-  conclusions:
ylpyridine) because of partial oxidation at Re and loss of (1) At the wavelengths used to exciiec-[Re (phen)(CO}-
dz(Re)-a*(CO) back-bonding? (transbpe)]™ and mixtures of this isomer arfdc-[R€ (phen)-
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15 of a change in excited-state ordering in the glass. In the glass,
A the energies of the dipolar R@hen~) MLCT states are
increased relative to those of centrosymmetric, olefin-based
1615 cm’ states’® and the3t* < 3MLCT ordering should be maintained.
Trans-to-cis isomerization in the glass is presumably inhibited
by the low temperature and the existence of a thermal barrier
1597 cm’” to 3* — 3p* interconversion.

(4) In fac-[R€ (phen)(CO)(cis-bpe)]", the ordering of low-
lying states in CHCN at 298 K appears to be the reverse with
SMLCT < 3c* (where3c* is the cisoidzzr*analogue of3t*).
Ré'(phen~) MLCT emission occurs at 550 nm, with= 928
ns k= 1.08 x 10° s71) at room temperature. The positive shifts
in »(CO) in the TRIR spectrum of the36:64 trans/cis mixture
provide direct evidence that this is an MLCT state.
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