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An approach for evaluating the initial conditions for classical studies of the photodissociation dynamics of
molecular clusters is described. This approach is based on an approximate separation of the momentum and
coordinate space probability distributions, evaluated using a wave function that is obtained from a Diffusion
Monte Carlo simulation. Using the initial conditions that are generated by this approach, the photodissociation
dynamics of HCl dimer is studied. Excellent agreement between the calculated and experimental angular
momentum and vibrational energy distributions for the remaining HCl molecule and the kinetic energy
distribution of the dissociated hydrogen atom are obtained. The kinetic energy distribution for the chlorine
atom and angular distributions of the remaining hydrogen and chlorine atoms are also obtained and dynamical
information contained in these distributions is discussed.

Introduction

Over the past several years there has been increased interest
in photoinduced processes in molecular clusters.1-11 The
motivation for this work comes primarily from the belief that
if one can photoinitiate a chemical reaction by exciting a
molecule in a molecular cluster either vibrationally4,5 or
electronically,1,2,6-8,10,11one can gain insights into the dynamics
of the underlying bimolecular reaction. Since the formation of
a hydrogen- or van der Waals bond between the constituent
molecules affects the bonding within each of the molecules (as
is illustrated in the shifts of the intramolecular vibrational
frequencies), initiating a reaction inside a cluster can alter the
energetics of the reaction. Studies of how this affects the
dynamics can provide insights into the effects of environment
on the underlying reaction dynamics. Further, by studying
photoinitiated processes within weakly bound complexes, one
gains control over the relative orientations of the molecules prior
to the reaction. This control cannot be achieved in the corre-
sponding bimolecular process. Finally, by preparing the cluster
with intermolecular vibrations excited, one can investigate how
the resulting changes in the geometries that are sampled by the
cluster affect the reactivity and reaction products, thereby
providing insights into the coordinates along which the reaction
occurs.4

While such studies are potentially very powerful, studies of
UV photolysis of neutral clusters introduce several experimental
challenges. These come from difficulties in finding experimental
conditions that ensure that the complexes that are being studied
are of the desired composition and that the observed reaction
products are resulting from the reaction of interest and not other
processes that are also occurring in the system. Further, the large
number of atoms and possible reaction channels can make direct
analysis of the dynamics, based on experimental observables,
difficult. Therefore, to unravel the underlying dynamics from
the experimental observations, it is often useful to perform

simulations of the reaction of interest, since here one has
complete control over the size of the system that is being studied,
and the results of the simulations can be translated into a series
of images that illustrate the time evolution of the dynamics.

In principle, this should be straightforward, assuming one has
an appropriate model for the potential surface that describes
the system of interest. In practice, there are some significant
theoretical and computational hurdles that need to be addressed.
Previous studies have demonstrated that classical mechanics can
provide a realistic description of prompt UV photodissociation
processes12-14 and studies of vibrational predissociation in
clusters.15 In the case of the vibrational predissociation, the
lifetimes of the resonance states to which the high frequency
intramolecular vibration is excited are tens of picoseconds or
longer. On these time scales, the system has enough time to
lose memory of the initial conditions in the intermolecular
degrees of freedom, and, as long as the correct total energy is
contained in the cluster, the results are expected to be relatively
insensitive to the details of the initial conditions.

In contrast, for prompt photodissociation, a reflection principle
dominates the product state distributions. In other words, the
disposal of energy among the various degrees of freedom reflects
the initial conditions for the classical trajectories. Recently
Jungwirth and co-workers showed that in classical studies of
the photodissociation of HX (where X is Cl, Br, or I) in argon
clusters a correct quantum mechanical sampling of the initial
conditions for their simulations is crucial if quantitative agree-
ment between experiment and theory is to be achieved.12,16We
found that a similar reflection principle holds for energy transfer
in collision induced dissociation of weakly interacting species.17

Here, the amount of kinetic energy that is lost by the colliding
atom can be related to the phase of the intermolecular vibration
at the time of the collision. This effect is most pronounced when
the collisions are geometrically constrained, as is the case for
photoinduced processes in clusters.

To unravel the dynamics of photoinitiated processes in weakly
bound complexes, we need an efficient approach for generating
initial coordinate and momentum space distributions that reflect
the quantum nature of the inter- as well as the intramolecular
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vibrations. This is nontrivial for weakly bound clusters. Unlike
more strongly bound species, for which the ground state is well
approximated by an-dimensional Gaussian, harmonic ap-
proximations to the vibrational motions are not appropriate as
the intermolecular vibrations are extremely anharmonic.

The remainder of this paper is divided into two parts. In the
first, we focus on applications of diffusion Monte Carlo
approaches for generating initial phase space distributions for
classical simulations of direct photodissociation in weakly
bonded clusters. In the second part of the paper, we apply these
approaches to a study of the photodissociation dynamics of HCl
dimer. Through comparisons between experiment and theory,
we investigate the dynamics that underly the product state
distributions that were observed by Valentini, Wittig, Kasai,
and their co-workers.7,8,10,11

System

In this study, we focus on the photodissociation of HCl dimer.
The HCl dimer has been the subject of a variety of experimental
and theoretical studies including studies of the spectroscopy in
the microwave and infrared,18-21 studies of vibrational predis-
sociation22,23and UV photodissociation.7,8,10,11,13The reason for
our original interest in this system came from the fact that it is
among the simplest molecular complexes, containing only four
atoms, for which the potential surfaces are well characterized
by other spectroscopic and dynamical studies and for which
the UV photodissociation of a monomer is in an experimentally
obtainable region of the electromagnetic spectrum. Since that
time, UV photolysis of HCl dimer has been studied by Wittig,
Kasai, and Valentini and their co-workers.7,8,10,11

In this work, we need to consider the dynamics of HCl dimer
on two potential surfaces. Initially, the system is described by
the ground-state wave function on the lowest energy electronic
state. Once the dimer absorbs a UV photon, one of the two
HCl bonds is broken and the potential can be approximated by
the interaction of a hydrogen atom, a chlorine atom and a HCl
molecule.

In describing the ground-state properties of (HCl)2, the large
frequency difference between the inter- and intramolecular
degrees of freedom introduces a natural separation of the
vibrational motions into two high-frequency HCl stretches,r1

and r2, and the four low-frequency intermolecular vibrations.
The two HCl stretches are modeled by one-dimensional Morse
functions,

where the parameters are given in Table 1. The intermolecular
vibrations require four coordinates, illustrated in Figure 1. These
are the usual Jacobi coordinates and are given byR, the distance
between the centers of mass of the two monomers,θ1 andθ2

are the angles between the two HCl bonds andR, andφ is the
angle between the plane that containsR and r1 and the plane
containing R and r2. For simplicity, we assume that the
intermolecular axisR lies along thez-axis andr1 is in the xz
plane. In this work, we use the potential of Elrod and Saykally.18

Based on this surface, the dimer is bound by 692 cm-1, the
equilibrium structure hasR ) 3.746 Å,θ1 ) 9°, θ2 ) 89.8°,
andφ ) 180°. The symmetry of the complex implies there is
a second equivalent minimum in whichθ1 ) 90.2° andθ2 )
171° and the barrier between the two minima is 45 cm-1 above
the potential minimum. The ground-state wave function samples
both minima and the experimental tunneling splitting in this
system is 15.5 cm-1.

To aid in the discussion that follows, we refer to the HCl
molecule that lies more nearly parallel toR as thehydrogen
bondingHCl while the other HCl molecule is referred to as the
free HCl. While in classical mechanics, we can choose which
of the two HCl bonds is broken, experimentally the two HCl
bonds have equal absorption cross sections at 193 nm and the
experimental product state distributions reflect linear combina-
tions of the two monomers being broken. As such, in the present
simulations we break each of the HCl monomers with equal
probability.

Once a HCl molecule has absorbed a UV photon, the system
can no longer be considered as two HCl molecules, but rather
a hydrogen atom, a chlorine atom and a HCl molecule.
Following our previous work on this system, we model the
reactive potential as the sum of three interactions. The first is
the interaction between the hydrogen and chlorine atoms. This
potential is described by

in which the parameters have been fit to the ab initio points of
Hirst and Guest24 and are given in Table 1. The interaction
between the hydrogen atom and the remaining HCl molecule
is described by the global H+HCl reactive potential of Truhlar
and co-workers.25 Finally, the interaction between the chlorine
atom and HCl molecule is given by a modified Ar-HCl
potential26 which has been described previously.13 By employing
the above sum of two-body potentials, the following channels
are included in the simulation,

while the possibility for HCl recombination or Cl2 formation
are not included in this model potential. Of the included
channels, the first corresponds to elastic or inelastic scattering.
Since there is nearly zero-probability for H2 formation in these
simulations, we will use the term reactive collisions to refer to
those reactions that undergo hydrogen atom exchange.

Arguably, there are choices in the constituent surfaces that
can be used in such a study. Since the dynamics is prompt,
after 20 fs have elapsed the H-Cl distance exceeds 10 Å, and
we expect that the most important contributions to the potential
are the shape of the HCl repulsive potential and the H+HCl
reactive surface.

Theoretical Approaches

As was mentioned above, photodissociation dynamics in
clusters can be described by classical mechanics, but the initial

TABLE 1: Parameters Used to Define the Potential Surfaces
for (HCl) 2

parameter value

De/cm-1 37 240.87
R/Å-1 0.52309
re/Å 1.274
A/cm-1 514 615
â/Å-1 2.2181

V(ri) ) De[1 - e-R(ri-re)]2 (1)

Figure 1. The coordinates used to describe the ground state of (HCl)2.

VH,Cl(r1) ) Ae-âr1 (2)

H + Cl + H′Cl′(V,j) f H + Cl + H′Cl′(V′,j′)
f Cl + HH′ + Cl′

f H′ + Cl + HCl′(V′,j′)

Photodissociation Dynamics of HCl Dimer J. Phys. Chem. A, Vol. 107, No. 1, 20035



conditions for the classical trajectories need to reflect the
quantum properties of the initial vibrational state of the system.
The work of Heller27,28 has shown us that for high frequency
vibrational modes, such as a HCl stretch, a correct description
of the photodissociation cross section requires a proper quantum
mechanical description of the HCl vibration. In addition, on
the basis of the relatively weak interactions of the two HCl
molecules in the dimer, it is anticipated that the rotational and
vibrational state distributions of the HCl that remains after
photodissociation are strongly correlated to the HCl vibrational
and bending motions in the dimer. This is an example of the
reflection principle. On the basis of this analysis, we expect
the results of the simulations to be particularly sensitive to how
well the choice of the initial coordinates and momenta of the
atoms mimic the corresponding quantum phase space distribu-
tion.

This leads to two theoretical and computational challenges.
The first is the determination of the wave function that describes
the initial quantum state of the system, while the second is to
carry out the transformation of this wave function to a quantum
phase space distribution.

For the intramolecular vibrations, the two HCl stretches, the
wave functions are evaluated in a discrete variable representation
(DVR),29 using the potential given by eq 1. In the case of the
intermolecular vibrations in HCl dimer, the wave function can
be obtained using large basis set approaches.19,30 On the other
hand, generating the codes for these calculations and evaluating
the wave functions are extremely demanding. Further, analogous
calculations for systems with five or more atoms or more than
two interacting molecules are close to or exceed the types of
variational calculations of vibrational states that can be routinely
performed.

To generate an approach that can be applied to studies of
photodissociation of larger clusters or clusters containing larger
molecules, we elect to use an approach that is based on rigid
body diffusion Monte Carlo.31 Previous studies have demon-
strated that this approach can be easily extended to studies of
vibrational motions in quite large systems without a significant
investment in the generation of new computer programs or in
computer time.32-36

A. Diffusion Monte Carlo. Diffusion Monte Carlo (DMC)
provides a way to determine the ground-state wave function
for the system of interest using a Monte Carlo simulation. Our
implementation is based on the work of Anderson,37-39 of Suhm
and Watts,33 and of Buch.31 A good review of the basic ideas
behind DMC can be found in ref 33. Details of our approaches
have been described previously,32,40 and we provide a brief
summary in order to have the terms necessary to describe the
extensions needed to develop quantum phase space distributions
from the DMC wave function.

In DMC, the ground-state wave function is obtained by
solving the time-dependent Schro¨dinger Equation in an imagi-
nary time variableτ ) it. For an arbitrary trial wave function
that has a nonzero overlap with the vibrational ground state of
the system of interest, it is well-known that

and

where E0 is the ground-state energy and|φ0〉 represents the
lowest energy eigenstate ofĤ. In contrast to most other

approaches that are commonly used to represent the wave
function, in DMC, the wave function is represented by an
ensemble of replicas of the system, or walkers, each of which
is localized in the configuration space of the system. By
assuming that each walker moves independently

Here, |ωj(τ)〉 represents the configuration and relative weight
of the jth walker andEref provides an approximation to the zero-
point energy of the system.Eref is determined from the constraint
that the magnitude|Ψ(τ)〉 remains constant, or alternatively,
the sum of the weights of the walkers is constant.38

Equation 6 is essentially the split operator propagator,
introduced by Feit and Fleck41 for quantum dynamics simula-
tions. It provides an accurate approximation to the full propaga-
tor so long as∆τ is sufficiently small. This division of the
operator allows us to divide the propagation of the walkers into
two steps. In the first, the kinetic part of the Hamiltonian acts
on the walker. This causes the position of the walker to be
shifted by an amount that is taken from a Gauss-Random
distribution, with a width in each Cartesian coordinate of
(∆xi)2 ) p∆τ/mi wheremi is the mass of theith atom. The
potential part of the propagator is purely multiplicative and
multiplies the weight of thejth walker by exp{-[V(r j) -
Eref]∆τ/p} wherer j represents the coordinates of thejth walker
at time τ. Although there are several ways to motivate the
approach, from a split operator formulation or from solving a
diffusion equation, the resulting equations are identical.

Because our treatment of HCl dimer (or any other cluster)
focuses only on the intermolecular degrees of freedom, a minor
modification to the above procedure is made. Instead of allowing
all of the atoms to move in their three Cartesian coordinates,
only the centers of mass of the atoms are allowed to diffuse,
while each molecule is also allowed to undergo rotational
diffusion. Buch31 showed that this leads to only minor adjust-
ments to the translational diffusion part of the simulation.
Descriptions of our implementation of this procedure can be
found in ref 32.

B. Quantum Phase Space Distributions.Once we have a
wave function, we need to have a way to transform this function
that only depends on the coordinates of the atoms to a
probability distribution that is a function of the coordinates and
conjugate momenta of each of the atoms. For wave functions
that are written as functions of Cartesian coordinates, or
coordinates that are linear combinations of Cartesian coordinates,
e.g., normal mode coordinates, the Wigner function28

provides a function of the coordinates and momenta that is stable
when propagated on the potential used to generateΨ. This
approach was taken to generate the initial conditions for the
two intramolecular HCl stretches. In the case of the intermo-
lecular degrees of freedom, two issues complicate this analysis.
First, the wave function is expressed in terms of the orientations
of the two HCl molecules and the distance between them and
the above expression does not apply directly to wave functions
that depend on angles. Second, while DMC provides an
ensemble of walkers that represent the ground-state wave
function, it does not give an analytical form for the wave

|Ψ(τ+∆τ)〉 ) e-(Ĥ-Eref)∆τ/p|Ψ(τ)〉
≈ e-(V̂-Eref)∆τ/pe-T̂∆τ/p|Ψ(τ)〉
≈ ∑

j

e-(V̂-Eref)∆τ/pe-T̂∆τ/p|ωj(τ)〉 (5)

W(r,p) ) 1
2πp

∫-∞

∞
ds eisp/pΨ(q + s

2)Ψ* (q - s
2) (6)

|Ψ(τ)〉 ) e-Ĥτ/p|Ψ(τ)0)〉 ) ∑
n)0

e-Enτ/p|φn〉 (3)

lim
τf∞

|Ψ(τ)〉 f e-E0τ/p|φ0〉 (4)
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function from which Ψ(q(s/2) can be readily evaluated.
Consequently, we use an approximation to the Wigner distribu-
tion in which the phase space distribution is described by a
product of the coordinate and momentum space probability
distributions, taking into account of the fact that in angular
degrees of freedom, when the magnitude of the projection of
the angular momentum alongR is mp, the wave function must
die to zero as sin|m|(θ1)sin|m|(θ2).

Within this formulation of the phase space probability
distribution, one still needs to find a way to evaluate the
necessary functions when the form of the wave function is given
by an ensemble of weighted points in space, where the weights
provide the value of the wave function at that particular
geometry of the cluster. As this is a Monte Carlo sampling of
the ground-state wave function, we can use Monte Carlo
integration33,42 to evaluate the overlap integrals between the
ground-state wave function, obtained by DMC, and the mo-
mentum eigenstates of interest. In the case of a one-dimensional
vibrating system, this would require the evaluation of

where the sum is over all of the walkers each of which has a
positionxj and a weightwj. To test this approach, we simulated
the Ne-Ne stretch in neon dimer. In Figure 2a-c we compare
the momentum space wave function, obtained by DMC, with
the results obtained by numerically solving the Schro¨dinger
equation and taking the Fourier transform of the result. Similarly,
for rotational motions, we can project the wave function onto
angular momentum eigenstates. Results of this approach for a
one-dimensional hindered rotor are given in Figure 2d. As these
results demonstrate, this approach provides a realistic depiction
of the momentum space wave function and the corresponding
probability distribution can be obtained by squaring the overlaps.

To obtain the corresponding coordinate space probability
distribution we must take the overlap of the wave function with
itself. This requires two, independent evaluations of the wave
function at the positions of the walkers. One of these evaluations
can be taken directly from the weights of the walkers at a
particular timeτ. For the second evaluation, we take advantage
of the time reversal symmetry of the DMC simulation. Follow-

ing Rothstein,43 the ratio of the weight of thejth walker at time
τ + ∆τ and the weight at timeτ provides a second way to
evaluate the value of the wave function at the coordinates of
the j th walker at timeτ. Multiplying these quantities together,
we find that the value of the probability density at the
coordinates of thejth walker at timeτ is given by

and all that is required in order to obtain the probability density,
rather than the value of the wave function at the coordinates of
a particular walker, is a way to track how the weight of each of
the walkers depends on time. We have found that a small
number of time steps is sufficient to obtain stable results by
this method. It should be noted that this approach is also closely
related to the descendent weighting approach33,44 which was
proposed by Suhm and Watts for evaluating expectation values
of an arbitrary multiplicative operator.

By repeating the above analysis for all of the walkers, the
probability density can be obtained very easily. To illustrate
the accuracy of this approach in Figure 2e we compare the
variational and DMC probability distributions for the ground
state of Ne2.

C. Numerical Details. In the present study, we obtain the
wave functions and phase space probability distributions for the
two HCl stretching motions using a DVR scheme with 500 DVR
points spaced from 0.74 to 2.6 Å along this coordinate. Then
5000 pairs of vibrational coordinates and momenta are chosen
at random using an importance sampling scheme in which only
those initial conditions that are larger than a random number
between 0 and the maximum value of the Wigner function are
used for the simulation. Since we are interested in UV photo-
dissociation at 193 nm, we constrain the bond length of the
HCl bond that is broken to be between 1.537 and 1.59 Å so
that the energy difference between the ground and excited-state
energy of the HCl is within 1000 cm-1 of the 193 nm photon.

To obtain the initial conditions for the intermolecular degrees
of freedom, we perform a rigid body DMC simulation of the
dimer using the potential of Elrod and Saykally18 using the
methods described above with 5800 walkers and a time step of
2.4 fs. The system is allowed to equilibrate over a million time
steps, during which time each walker is given an equal weight

Figure 2. Comparison of DMC wave functions and probability distributions (dotted lines) and the corresponding results from variational calculations
(solid) lines are plotted for the ground state of Ne2 (a-c,e). In (d) we compare the projections of the ground-state wave function for a hindered rotor
system onto angular momentum eigenstates, obtained by DMC (white diamonds) and from a converged variational calculation (black circles).

Ψ̃(p) ) x 1

2πp
∫-∞

∞
dx e-ipx/pΨ(x) ∝ x 1

2πp
∑
j)1

Nwalkers

wje
-ipxj/p

(7)

Ψ2(xj(τ)) ) wj(τ) × wj(τ + ∆τ)

wj(τ)
) wj(τ + ∆τ) (8)
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and walkers are added to or removed from the ensemble
according to the procedures, described in ref 38. The distribution
for Ψ2 is obtained by propagating the simulation 10 time steps
beyond the end point of the simulation. The positions of the
walkers at the end of the simulation provide a list of configura-
tions of the cluster from which the initial conditions for the
simulations are drawn and the weights of each configuration
are given by the values ofΨ2 obtained from the simulation.

The initial conditions for the momenta are obtained within a
partially separable approximation to the wave function. The
distributions inP, the momentum conjugate to the HCl-HCl
stretch coordinate, are obtained by projecting the DMC wave
function onto the free particle momentum eigenstates. In these
calculations, we neglect the angular dependence of the wave
function. Likewise, the angular momentum dependence of the
wave function is obtained by projecting the DMC wave function
onto the coupled angular momentum basis,

The above basis is identical to that used by Bacic, Saykally,
and others in basis set calculations of HCl dimer.18,19 As with
the coordinate distributions, the value of the square of the
momentum space wave function at a particular value of the
linear and angular momenta contributes to the weight of the
trajectory.

Once the lists of possible initial conditions are generated,
20000 sets of initial conditions are taken by randomly selecting
values from the five lists. Each set of initial conditions is used
for two trajectories, one in which the hydrogen bonding HCl
bond is broken and one in which the free HCl bond is broken.
Therefore, a total of 40 000 trajectories are run in this study.

Since the initial conditions are given in terms of the internal
coordinates and their conjugate momenta, the first step is to
transform these values into the corresponding Cartesian coor-
dinates and momentum in which the dynamics are propagated.
This is readily achieved for the three bond lengths, their
conjugate momenta and the three angles. In the case of the
angular momenta, we first transform from the total angular
momentum of each monomer and thez-component into the
corresponding angular velocities, using the relationships

whereJi
2 represents the total angular momentum of theith HCl

monomer,Ji,z thez-component,ji andmi are the corresponding
quantum numbers, andµi represents the reduced mass of the
HCl molecule. It should be noted that since we embed the
coordinate axis system so thatr1 lies in the xz plane, the
projection of its angular momentum onto thez-axis is zero and
mp corresponds to the projection of the angular momentum of
the second HCl monomer onto the complex-fixedz-axis. The
above relationships can be inverted to give

Focusing on eq 15, one finds that whenm * 0 asθ2 f 0, θ̇2

becomes imaginary. This unphysical result arises from a kinetic
coupling between the three internal angles and their conjugate
momenta. Specifically, ifm is nonzero, the complex cannot
sample configurations in which one of the HCl molecules lies
nearly parallel to the intermolecular axis. As such, these initial
conditions lead to negative kinetic energy and are discarded.
From the initial angles, distances and corresponding time
derivatives, the initial Cartesian coordinates and momenta can
be readily evaluated.

To summarize the above procedures, DMC is used to
determine the initial coordinate and momentum space probability
distributions and the initial conditions for the classical trajec-
tories are sampled from a product of these two distributions,
with the constraint that the initial conditions that lead to
imaginaryθ̇2 are discarded as these correspond to unphysical
configurations of the system in phase space. The probability
distribution in coordinate space is a fully coupled function of
the four intermolecular coordinates, while the momentum space
distribution is expressed as a product of the distribution that
depends onPR and the one that depends on the three angular
momentum quantum numbers.

Once an appropriate set of initial conditions is chosen, the
classical dynamics is propagated using a Gear algorithm. To
ensure that the system has reached the asymptotic region, the
system is propagated for 60 fs afterr1 + r2 > 10.5 Å and either
the Cl-Cl distance exceeds 5.2 Å or the simulations has been
run for more than 1.2 ps.

Before presenting the results of this study, it should be noted
that in the study of the photodissociation dynamics of (HCl)2,
described in refs 13 and 45, DMC techniques were also used
to obtain the initial conditions for classical studies of the
dynamics. The approaches taken in the earlier work and in the
present study differ in several important aspects. In the previous
work, the DMC simulations were performed in the Cartesian
coordinates of all of the atoms, whereas now DMC is applied
to calculations of the energies and wave function of the
intermolecular degrees of freedom. The approach taken in the
earlier work leads to larger uncertainties due to the factor of
100 difference between the frequencies of the inter- and
intramolecular vibrations. Despite the higher dimensionality of
the DMC simulations in the earlier work, the wave function
that was obtained from the DMC simulations was only used to
determine the initial coordinates and momenta in the three
angular degrees of freedom. The initial conditions in the radial
degrees of freedom were obtained by evaluating a Wigner
distribuiton function using a wave function that was obtained
by using one-dimensional slices through the global surface, with
all other degrees of freedom constrained to their equilibrium
values. Finally, the initial coordinates forφ and its conjugate
momentum were obtained independently of the initial conditions
in θ1 andθ2 and their conjugate momenta. While this approach
worked well for us at the time, it is neither as general nor as
rigorous as the approach described above.

Results and Discussion

A. HCl Product State Distributions. To start, we will focus
on the two features of the photodissociation of (HCl)2 that were
investigated by Valentini and co-workers,8 specifically the HCl
vibrational and angular momentum distributions following

Φj1,j2,m(θ1,θ2,φ) ) Y j1,m
(θ1,φ)Yj2,m

(θ2,0) (9)

Ji
2 ) p2j i(j i + 1) ) µi

2ri
4[θ̇i

2 + sin2θiφ̇i
2] (10)

Ji,z ) mip ) µiri
2sin2θiφ̇i (11)

φ̇ ) mp

µ2r2
2sin2θ2

(12)

θ̇1 )
p xj1(j1 + 1)

µ1r1
2

(13)

θ̇1 ) p

µ2r2
2 xj2(j2 + 1) - m2

sin2θ2

(14)
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photodissociation of (HCl)2 at 193 nm. These are plotted in
Figure 3. In both cases, the distributions shown with black
squares and thick error bars represent the experimental results,
while the white circles, with thin error bars, provide the
calculated results. The calculated vibrational energy distribution
is obtained by taking the overlap of final values ofr andp for
the remaining HCl molecule with the Wigner distributions that
correspond to each of the vibrational states. In other words, the
relative probability that the HCl will end up in the state with
vibrational quantum numbern is given by

where the sum is over all of the trajectories,wk
(i) provides the

weight of thekth trajectory, described above,rk(tf) and pk(tf)
provide the HCl bond length and vibrational momentum at the
end of the simulation, andWn(r,p) is the Wigner distribution,
defined in eq 7 obtained from thenth eigenstate of HCl. We
define Wtot to be the sum of the initial weights of all of the
trajectories. The corresponding uncertainties are46

Once all of thePn and σn have been calculated, they are
normalized so that thePn add up to one. As the results, plotted
in Figure 3a, demonstrate the experimental and calculated results
are in nearly exact agreement. The fact that both the experi-
mental and calculated vibrational distributions show nearly

100% of the HCl is produced inn ) 0 reflects the fact that the
photodissociation is prompt and the HCl remains in then ) 0
vibrational state.

In the case of the angular momentum distributions, for each
trajectory, we calculated the magnitude of the angular momen-
tum of the remaining HCl molecule and assigned it to the closest
integer multiple ofp. The plots are obtained by summing the
weights of the trajectories that correspond to a particular value
of j and normalizing the results so that the total probability is
one. Here the uncertainties are obtained by46

where

and the summation is only over those weights that correspond
to trajectories for which the final angular momentum of the
remaining HCl molecule,j - 0.5< jf < j + 0.5. The agreement
between the experimental and calculated angular momentum
distributions is also extremely good, and if we shift the
calculated distribution to slightly largerj, nearly exact agreement
would be achieved.

To further investigate the dynamics that lead to the observed
HCl vibrational and angular momentum distributions, we divide
the trajectories into two subsets, those for which the hydrogen
bonding HCl monomer is broken and those in which the free
HCl monomer is broken. The dimer undergoes large amplitude
motions inθ1 andθ2, as is indicated by the 15.5 cm-1 tunneling
splitting. As such, we define the hydrogen bonding HCl
monomer to be the one for which|cos(θi)| is closest to 1.

When the free HCl bond is broken, there is little interaction
between the dissociating H and Cl atoms and the remaining
HCl molecule. As a result, there is very little energy transferred
to the remaining HCl molecule. This is illustrated by the fact
that the average vibrational energy in the HCl bond is reduced
by less than 0.2% for this subset of the trajectories. When we
compare the initial and final angular momentum distributions
for the remaining HCl, plotted in Figure 4, we find that they
are nearly identical. The only notable difference is an increase
in the angular momentum in those cases when the initial angular
is zero. This shift is likely due to a small amount of energy
transfer from the chlorine atom to the HCl molecule. Given the
geometry of the complex and the smaller energy spacings
between thej ) 0 and j ) 1 states of HCl, compared to the
spacings between higher lying rotational levels and the vibra-
tional levels, those states withj ) 0 will be most sensitive to
this small amount of energy transfer.

When we make similar comparisons between the initial and
final angular momentum of the remaining HCl when the
hydrogen bonding HCl bond is broken, the situation becomes
more complicated. As is illustrated in Figure 5a,b, because the
hydrogen bonding HCl is pointing toward the other HCl
monomer when the HCl bond is broken, it is possible for the
hydrogen to undergo either an inelastic or reactive collision with
the remaining HCl monomer. Based on the trajectories, there
is a 2% probability that a reaction will occur, while another
48% of the probability corresponds to trajectories that lead to
a change in the internal energy of the remaining HCl monomer
of more than 10%. This leads to an increase of the average
vibrational energy of the remaining HCl monomer by ap-

Figure 3. Plots of the final (a) vibrational and (b) angular momentum
distributions of the HCl molecule that remains after photodissociation.
The experimental distributions, reported by Valentini and co-workers,
ref 8, are plotted with squares, while the calculated results are plotted
with circles. The error bars on the calculated results represent one
standard deviation, as defined in the text.
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proximately 35%. The resulting angular momentum distribution
is shown in Figure 4b. The primary effects are a shift of the
distribution and the long tail in the angular momentum distribu-
tion. In these calculations, we find that there are trajectories
that lead to HCl products that have angular momenta as large
as j ) 35, although 99% of the trajectories havej e 20. In
contrast, the initial wave function only contains nonzeroj
components withj e 10. The part of the angular momentum

distribution of the remaining HCl molecule withj g 5 provides
an experimental signature of trajectories in which there is energy
transfer between the dissociated hydrogen atom and the remain-
ing HCl molecule.

B. Chlorine and Hydrogen Atom Kinetic Energy and
Angular Distributions. In a complementary set of studies,
Wittig and co-workers7 investigated the kinetic energy of the
hydrogen atom that was released after the photodissociation of
(HCl)2. In contrast to the present study, in this experiment the
free HCl molecule is vibrationally excited into the state with
two quanta in the HCl stretch prior to photodissociation at 193.3
nm. As such, the free HCl bond is preferentially broken in this
experiment. The most notable feature in the experimental
hydrogen atom kinetic energy distribution is a series of peaks
at energies above the translational energy that would be
measured if the HCl monomer were allowed to dissociate in
isolation. These peaks were attributed to vibrational states of
the Cl-HCl complex.

In Figure 6a we plot the calculated kinetic energy distribution
for the hydrogen atom. Focusing on the high energy tail of this
distribution, shown in an enlarged scale in Figure 6c, we find
that the distribution for the photodissociation of the free HCl
monomer, plotted with a dotted line in Figure 6a,c, is in
qualitative agreement with the experimental distributions, plotted
in Figure 3 of ref 7. In their analysis, Wittig and co-workers
attributed these features to transitions to bound states of the
Cl-HCl complex. Since transitions to specific resonance states
are purely quantum mechanical phenomena, we cannot expect
to extract the peak structure from the classical results. On the
other hand, we find that more than 10% of the trajectories
display long-lived Cl-HCl complexes that undergo several
vibrations prior to dissociation. These trajectories lead to the
increased width of the hydrogen atom kinetic energy distribution,
compared to the distribution that results from the photodisso-
ciation of the monomer, as can be seen by comparing the thick
solid, dotted and dashed curves in Figure 6a,c. This feature of
the dynamics also leads to the decrease in the kinetic energy of
the chlorine atom, shown in Figure 6b,d.

Further investigation of the translational energy distributions
of the hydrogen and chlorine atoms shows that there is a tail
on the low energy side of the hydrogen atom translational
distribution. This arises from energy transfer from the H atom
into internal motions of the remaining HCl monomer. This
comes from both inelastic scattering and reactive collisions. One
feature that has been discussed in the context of photodisso-
ciation of HCl in argon clusters is the chattering of the hydrogen
atom between the two heavy partners.47 These collisions will
lead to a tail in the chlorine kinetic energy distribution to higher
energies. The fact that this peak extends only 500 cm-1 reflects
the fact that there is rarely more than one collision between the
hydrogen and chlorine atoms occurring after photodissociation.

Finally, we consider the angular distribution for the dissociat-
ing hydrogen and chlorine atoms in Figure 7. Since the transition
moment is assumed to lie along the HCl bond that is broken,
the angles that are used to plot the angular distributions in Figure
7 are defined to be the angles between the asymptotic velocity
of the atoms and the orientation of the HCl molecule att ) 0.
When the free HCl monomer is broken, there is little interaction
between the hydrogen atom and the remaining ClHCl system.
As a result the hydrogen atom angular distribution is narrow
and peaked atθ ) 0. In contrast, the hydrogen atom angular
distribution is much broader when the hydrogen bonding HCl
monomer is broken. This shift results from both the inelastic
and reactive collisions. In the case of the chlorine distributions,

Figure 4. Plots of the angular momentum distributions att ) 0 (black
squares) and at the end of the simulations (white circles) for (a) the
hydrogen bonding HCl monomer when the free monomer bond is
broken and (b) the free HCl monomer when the hydrogen bonding
HCl bond is broken.

Figure 5. Representative trajectories are plotted for the cases when
the hydrogen bonding HCl bond is broken. In both cases, the positions
of the chlorine atoms are represented by circles and the hydrogen atoms
are shown with squares. The positions of the four atoms are plotted
every 12 fs.
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the distributions are peaked atθ ) π. In contrast to the hydrogen
atom angular distributions, the distribution when the free HCl
monomer is dissociated is broader than the contribution from
the dissociation of the hydrogen bonding HCl. This provides
further evidence of the fact that the hydrogen atom does not
undergo more than one or two collisions with the Cl atoms after
the hydrogen bonding HCl bond is broken. In the case of the
dissociation of the free HCl monomer, the formation of a Cl-
HCl complex that can rotate prior to dissociation leads to the
broadening of the angular distribution.

In contrast to the hydrogen atom kinetic energy distributions,
neither the chlorine atom kinetic energy nor the angular
distributions have been measured. Experimental studies of these
properties would provide a measure of the energy transfer from
the hydrogen atom to the other species in the complex, and
through this additional information about the amplitude of the
vibrational motions of the HCl monomers in the dimer. In the
case of the angular distributions, differences between the
measured distributions for the chlorine and hydrogen atoms
would provide more information about the role of the Cl-HCl
complex in these systems.

Summary and Conclusions

In this paper we described the results of our study of the
photodissociation dynamics of (HCl)2. In comparing the results
of this work to those obtained experimentally, we find that the
vibrational and angular momentum distributions for the HCl
product are in excellent agreement. Since both of these
distributions are found to closely resemble the motions of the
two HCl molecules in the dimer, the good agreement between
the experimental and calculated distributions provides a stringent
test on the potential of Elrod and Saykally.18 This agreement
also helps further verify that the distributions that were reported
by Valentini and co-workers result from the photodissociation
of the dimer8 and not from processes involving bimolecular
reactions or larger clusters. Finally, the agreement also provides
verification that the DMC based methods used to generate the
initial phase space distributions for the classical trajectories
provide an efficient and effective approach, at least for processes,
like the present system, in which the dynamics is prompt.

We also investigated the final distributions for the chlorine
and hydrogen atoms after the photodissociation. Again, the
agreement with experiment is good,7,10,11 but because the
structures observed in the experiment correspond to quantized
energy levels of the Cl-HCl complex only qualitative agreement
can be achieved from classical studies of the dynamics. In
addition, on the basis of an analysis of the connections between
the dynamics and the calculated distributions, we believe that

Figure 6. Plots of the kinetic energy distributions for the (a) hydrogen and (b) chlorine atoms. In all case, the full distribution is plotted in thick
black lines. Dotted lines are used to show the fraction of the probability arising from the case when the free HCl monomer is broken, while long
dashed lines are used to represent the case when the hydrogen bonding HCl bond is broken. Finally, the part of the kinetic energy distribution that
results from reactive trajectories is plotted with short dashed lines. For comparison, the corresponding distributions that result when the secondHCl
molecule was not present are plotted with a thin solid line. In (c) and (d) we expanded they-axis on (a) and (b) in order to make the small features
more visible.

Figure 7. Plots of the angular distributions for the (a) hydrogen and
(b) chlorine atoms. In all cases, the full distribution is plotted thick
black lines. Dotted lines are used to show the fraction of the probability
arising from the case when the free HCl monomer is broken, while
long dashed lines are used to represent the case when the hydrogen
bonding HCl bond is broken. Finally, the part of the kinetic energy
distribution that results from reactive trajectories is plotted with short
dashed lines.
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analysis of the chlorine atom kinetic energy distribution and
the angular distributions of the chlorine and hydrogen atoms
would provide further insights into the nature of the Cl-HCl
complex that is formed upon photodissociation. Further, analysis
of the red tail on the kinetic energy distribution for the hydrogen
as well as the angular distribution should provide information
about the fraction of the complexes that are undergoing inelastic
or reactive collisions, following photodissociation. This, in turn
would provide valuable information about the transition state
region of the H+HCl potential surface.
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