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Facultad de Ciencias y Tecnologı´a, Escuela de Quı´mica, UniVersidad de Carabobo,
Edo. Carabobo, Venezuela, Facultad de Ciencias, Escuela de Quı´mica, Postgrado, UniVersidad Central de
Venezuela, Caracas, Venezuela, and Centro de Fı´sica, Instituto Venezolano de InVestigaciones Cientı´ficas
(IVIC), Km. 11, Carretera Panamericana, Apartado 21827, Caracas 1020-A, Venezuela

ReceiVed: August 20, 2002

A thermodynamic model of a fluid/liquid interface based on the redistribution of “elastic” energy as a
consequence of the contact between formerly isolated phases is proposed. The interface consists of two sub
phases adjacent to their respective bulks. Each sub-phase is capable of storing elastic potential energy. The
adsorption isotherms are reproduced in the usual way, equalizing the chemical potential of the adsorbent
between the bulk phases and the interface. In this formalism, the interfacial energy results from a sum of two
terms each belonging to a subphase and can be expressed in terms of the activity of one component of the
system in one bulk phase and at the interface.

Introduction

Still today most undergraduate textbooks of physical chem-
istry avoid thermodynamic consideration of interfaces when
treating the subject of phase equilibrium. The interfacial energy
is introduced as an additional free energy contribution: the work
that has to be done on the system at constant temperature and
pressure to increase its interface. Such additional contribution
is usually negligible in most systems because the free energy
is an extensive thermodynamic quantity, and the size of the
interface is generally small in comparison to the size of the
bulk phases. Hence, the conventional approach to the problem
avoids the complex definition of an interfacial chemical potential
for each substance, and simplifies the analytical procedure for
finding the value of their chemical potential at equilibrium (µeq).

It is clear however that whenever the adsorption process is
important a suitable definition of interfacial chemical potentials
is necessary. This is the case of long-lasting emulsions for
instance, where the stability of the dispersion is intimately
related to the total interfacial area and the surfactant surface
excess. It is also especially important for fluid/liquid systems
in general since, up to this date, it is not possible to measure
the interfacial composition simultaneously and independently
from the bulk composition. Furthermore, the analytical form
of an interfacial chemical potential is also interesting from a
more fundamental point of view. If equilibrium is reached by
equalization of the chemical potentials and the interfacial
potential is substantially different from the bulk, the properties
of the system at equilibrium could be sensibly affected by the
characteristics of the interface.

Other considerations regarding the appropriate definition of
interfacial chemical potentials concern the nature of the state
of the equilibrium itself. Starting from the Gibbs adsorption
model,1-2 almost all theoretical descriptions of surfactant
adsorption to gas/liquid and liquid/liquid interfaces commence

with the equalization of the chemical potentials between the
bulk phase(s) and the interface. Such equilibrium condition is
achieved between bulk phases counterbalancing energetic dif-
ferences with configurational entropy contributions dependent
on the local composition of the different constituents. The
presence of an interface introduces an anisotropy in the system
and generates inhomogeneities in the spatial distribution of
components. This brings an additional complication to the
equilibrium problem: interfaces are usually highly ordered, and
such an ordered state is opposed to the necessary increase of
entropy required for equilibrium.

An insightful discussion along with a review of the most
relevant aspects to be considered in the formulation of an
interfacial chemical potential can be found in ref 3. Butler was
probably the first to define such potential for the description of
the adsorption process and the energy excess occurring in the
interface.4 Among other contributions, Lucassen-Reynders3,5

introduced the concept of partial molar areas in order to ascribe
the interfacial free energyγA to each contributing molecule.
On the other hand, Cahn and Hilliard developed a completely
different model in which the interfacial free energy is expressed
as a function of the density gradient between the phases in
contact.6,7 The interface is described in this model as a diffuse
and continuous zone. Starting from the calculation of the
Helmholtz free energy arising from the referred model, and the
momentum balance condition, Carey and Scriven proposed a
formal development of the interface gradient density model,8

which was subsequently extended to the description of binary
systems.9 The validity of this model depends on the reliability
of the equations of state used, and there is no direct connection
in it between activities and chemical potentials.

On the basis of the definition of interfacial chemical potential
given by Butler, Sugimoto10,11recently proposed an alternative
formalism for understanding the interfacial tension in terms of
molecular activities. In this case, not only is the interfacial
chemical potential different from bulk but it is additionally
supposed that such initial difference cannot be overcome
preventing equalization of the chemical potentials. In that model,
Sugimoto goes back to a description of the interface as a
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discontinuous zone, assuming a liquid lattice of homogeneous
density in the whole bulk until the interfacial region is reached,
departing in this way from the continuous models for the
interface.

In the present work, we adopt the description of the interface
proposed by Sugimoto10,11consisting of two subphases (Figure
1), such that a sharp change in density occurs at the intermediate
plane (z ) 0) between them. Yet, in our case, we additionally
allow smooth modifications of density inside each of these
subphases. As will be shown below, this consideration allows
the description of equilibrium without having to recourse to a
different thermodynamic development from the one usually
followed in the description of two-phase equilibrium, i.e.,
maintaining the general condition of equal chemical potentials
for each component in different phases (regions). In our view,
the present approach enriches the understanding of the interfacial
tension in terms of the molecular activity.

The Elastic Field

It is well-known that in the presence of an interface surface-
active molecules diffuse and adsorb very quickly.12 That
response is similar to the way in which elementary charges move
in a dielectric media in the presence of an electric field. When
an electric fieldE is applied, charges move in the dielectric
creating a capacitor, inside which, the final value of the electric
field is equal toE′ ) KE, whereK is a constant dependent on
the dielectric material. Thus, the external field produces a charge
movement at a microscopic level which translates into a
macroscopic response to the perturbation: a new field of
magnitudeKE. In a liquid system, the surface-active molecules
move to the interface as soon as it is created. It is clear that the
forces that cause diffusion of surfactant molecules are chemical
in nature. This behavior is the consequence of the chemical
affinity of these molecules for the interface: Surfactants have
both a hydrophobic and a hydrophilic molecular region suf-
ficiently separated along the backbone of the molecule. Those
structures have marked affinities for nonpolar and polar
environments, respectively, and can be suitably accommodated
in the two distinct regions of the interface. Thus, those molecules
feel that the field is “on” as long as the interface exists. The
final result is an equilibrium situation in which the free energy
per surfactant molecule is equal in the bulk phases and the
interface, even though the surfactant concentration is consider-
ably higher at the interfacial layers. It is clear however that the

interfacial environment has been completely modified as a
response to this “chemical” field. The question is, Could the
interfacial tension be obtained as a function of the molecular
response of the system to the creation of an interface? The
present paper addresses this question using the fact that the
interfacial tension can be both understood as the free energy
per unit area or as the force per unit length required to increase
the interfacial area. For this purpose, we will consider fluid
phases as elastic media similar to that of a network of springs,
capable of storing energy througheffectiVe interactions, in the
same way that springs do. It is important to notice at this point
that usual models for macromolecular solutions start from a
reticule of points: molecular segments and solvent molecules
are distributed in such network, keeping fixed the geometrical
distribution of points.13-16 In the present work, we take into
account the network distortion to accommodate the excess
energy that accumulates at the interface.

To introduce the concept of anelastic field, let us first
consider each phase as a network of interconnected beads and
springs. Each bead can represent a molecule or a group of
molecules (macroscopic differential) that interacts with other
beads througheffectiVe intermolecular springs (Figure 2). The
elastic constants of these springs result from direct molecule-
molecule interactions as well as long-range many-body forces.
Within bulk phaseR, “molecules” A interact with an effective
constantKA

eff because of the local homogeneity of the sur-
roundings. Similarly, the molecules B of phaseâ interact
internally with an effective constantKB

eff as shown in Figure 2
for one-dimensional case.

When phasesR andâ are brought into contact, each original
network will be distorted as a consequence of the redistribution
of energy near the interface. The local environment of some
molecules in the vicinity of the interface will change depending
on the z position of each interfacial plane (coordinate z
perpendicular to the interface). Even in the cases in which the
local environment is similar, the short range and long-range
perturbations produce effective spring constants, a function of
the relative position of their interfacial plane (Figure 3).

Figure 3 illustrate the adhesion (contact) process between two
originally separate phases at constant temperature and pressure.
If the energy were purely elastic, the value∆zσ will change
until mechanical equilibrium. The distribution of force along
the z axis will be such that

KAB is an average force constant for the new A-B interaction.
Thus, in the vecinity ofz ) 0, the values of∆z′′A and∆z′′B will

Figure 1. According to the model of T. Sugimoto refs 10-11, the
interface can be divided into two subregionsσA andσB which extend
from z ) 0 to δA andδB respectively. These denote the small regions
in each bulk phase up to which the perturbation of the interface extends.
For completeness, the molar fraction of matrix componentA (xA) in
phasesR andâ is also shown.

Figure 2. Molecular interactions within “bulk” phases according to
an elastic modelof an interface.

KAB ∆zσ ) K′′A,eff ∆z′′A ) K′′B,eff∆z′′B (1)
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change until

Thus, the molecules will move from their initial positions in
such a manner that the perturbations will be adsorbed by the
two phasesR andâ. From mechanical equilibrium (eq 1), we
have

Consequently,ER * Eâ if K′′A,eff * K′′B,eff, as it occurs for distinct
phases. Therefore, the perturbation due to the creation of the
interface will extend from the interface to different depths within
each bulk phase, until the effect of the perturbation is negligible
and the spring constants are the same as in an isolated bulk
phase.

Because the intermolecular potential deviates appreciably
from this oversimplified harmonic oscillator model, let us
introduce the concept of the field of elastic energy, by
considering the functionsgR(z) andgâ(z) whose analytical form
depend on the composition of the system and the average
molecular distance. These functions are a measure of the
cohesive energy of an isolated-bulk system (R or â). Function
g(z) has therefore a chemical nature and includes the effects of
dipole-dipole interactions, quadrupole-quadrupole interactions,
etc., between molecules. Although the analogy between these
potential fields and its mechanical harmonic interpretation can
be carried out much further (see Appendix A), let us simplify
the present mesoscopic description of the real system by saying
that fieldg(z) acts on the three-dimensional system along thez
axis, producing isotropic distributions of force in thexy
directions perpendicular toz. Such a field acts similarly to an
electric field in the dielectric media, where the field is initially
homogeneous, but charge rearrangement can occur. In such
cases, the total energy per unit volume stored in a dielectric
material can be expressed as in ref 17

In this expression,ε0 is the permittivity of vacuum,øe is the
electric susceptibility of the dielectric material, andê is the value
of the external electric field that acts upon the system. As

Thomson formally demonstrated, density of energyEê is a free
energy (ref 17).

In the case of a magnetic fieldΠ, the energy per unit volume
is given by the expression

Here µ′0 is the magnetic permeability in a vacuum, andøM is
the magnetic susceptibility of the material. Following this
analogy, we introduce the energy per unit volume due to an
elastic field over a liquid network, which can be expressed as

In this expression,κ0 is the elastic permittivity of one pure fluid
(a measurement of the rigidity of the liquid network) andøg is
the elastic susceptibility, the sensibility of the system to changes
in the field g(z).

Although eqs 4-6 look very similar, there are certain
differences between the electric/magnetic and elastic fields
described above. First, the former fields are external, whereas
the elastic field arises from the asymmetry produced by the
phases in contact, and the intermolecular interactions. Second,
in the case of the electric field, there exist discrete charges which
move under the action of the initial field until the final state is
achieved. In the case of an elastic field, the properties of each
“spring” depend on the intrinsic properties of the molecules
(polarizability, dipole moment, etc)and the properties of the
surrounding neighbors. The field acts on the molecular distribu-
tion that, upon particle rearrangements, modify the initial value
of the field.

A close look at eq 6 shows that if the rigidity of our liquid
network increases the magnitude of the energy per unit volume
stored is higher. The susceptibility measures the effect of all
components on the system: for instance, the presence of a
surfactant changes the network significantly increasing its
flexibility, and as a consequence, the energy per unit volume
stored would be less than in the pure matrix component. In this
case, the susceptibility will vary between 0 and-1, and the
storage of the elastic potential energy will include deeper layers
within the bulk. Thus, it is clear that the interface will increase
in size with the adsorption of surfactant molecules. Furthermore,
it is clear that if sufficient surfactant is introduced in the system
the variation of the elastic field will be so high that the system
will be equivalent to a different system formerly made out of
different “springs”.

Fugacity of a Molecule in the Elastic Field of the
Interface

The energy stored in a macroscopic infinitesimal planeπ can
be calculated multiplying the total free energy per volume by
the volume of the plane:

Hereδπ andAπ are the width and the area of the macroscopic
planeπ. The “coefficient” multiplying the square of the elastic
field

is an extensive quantity, and thus can be expressed as the sum

Figure 3. Force constant variation as a function of their relative
distance to the interface. Effective constants result from many-body
interactions. Their value depend from their distance to the interface.
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of the partial molar contribution of the components of the
system:

In this expressionhi, depends on the concentrations of all
constituents of planeπ(z). In this way,hi(z) can be understood
as an intrinsic property of each molecule in that plane, which,
when appropriately multiplied by the field squared, gives as a
result the contribution of species “i” to the total potential energy
that can be stored within that plane. The exact form ofhi(z)
depends on the molecular theory employed for the description
of the partial molar free energy of component “i” in planeπ(z).
In the most general case,18 hi(z) can be approximated by a series
in the number of moles ofi (ni) per unit area of planeπ(z), Γi

(z):

Herehi (Γ(z)) depends on the concentration of all species that
constitute the plane, and such dependence is included in the
coefficientsQi. Accordingly, the energy stored in planeπ(z)
can be written as

The local concentration of molecule i in phaseR comes from
its affinity with the global fieldgR that diminishes toward the
bulk of that phase. Continuing the analogy with the electric and
magnetic fields, the absolute mobility of that molecule will
equilibrate its diffusion at a givenz coordinate

Here,Di is the coefficient of diffusion of componenti, k is the
Boltzmann constant, andui,abs is the absolute mobility defined
by ui,abs ) Vdi/Fi. In this expressionVdi is the velocity of
molecule i subject to a forceFi, generated by the global field
gR.

As implied above, the composition of each plane formerly
composed of only one matrix element, will change so that it
can equilibrate the net force that acts upon it. The response of
each plane component will depend on the local chemical
environment of that plane. For every planeπ in the interfacial
subphase of bulkR, we can write the chemical potential as

where

This expression is similar to that obtained by Hill for the case
of a ideal dilute gas in an electric field:19 µ ) µ(0) - (ê2/2)(R
+ µ0

2/3kT), whereµ(0) is the chemical potential in the absence
of electric fieldê, R is the polarizability of the gas molecule,
andµ0 is its dipole moment.

Following eqs 13 and 14

The quantity λA
0π is the standard fugacity of the matrix

component A in the planeπ, and λA
0 is the fugacity of the

component A in the bulk of phaseR. Here we take into account
that, because of the distortions of the network, the molecule of
a given planeπ(z ∼ 0) close to the interface will have an
intermolecular distance different from the bulk, and thus, their
standard fugacity will be different.

The chemical potential of substance A in the bulkR is

Now, when the absolute mobility (given by the response of the
field gR(z)) is equal to the potential of diffusion at that plane,
the chemical potentials of the bulk and the interface are equal

Thus

From which we get

So it is clear that, whenevergR(z) * 0, the activity in planeπ
will be different from the correspondent activity in the bulk of
the liquid phaseR.

Another way to derive eq 19 from the condition of equilibrium
(eq 17) is to equalize the fugacities instead of the chemical
potentials

HereλA
R andλA

π are the fugacities of component A in the bulk
R and in the planeπ. Following Lewis-Randal definition20

Or equivalently

We thus recover eq 19 from eqs 22 and 15.

Relationship between the Interfacial Tension and the
Fugacity Coefficient

The following treatment is similar to that of Sugimoto10,11

except for the fact that eq 14 would be used as the correct
expression for the standard chemical potential at the interface.

In the usual thermodynamic treatment, the interfacial tension
is introduced in the equation of the total energy as an additional
term γ Aπ: The total energy of an interfacial planeπ is then
equal to

where µi
π* ) µ0(bulk) + RT ln ai

π is usually defined as the
surface chemical potential and sometimes assumed to be the
true chemical potential.9 Here,γπ is the contribution of plane
π to the total interfacial tensionγσ, therefore:

H ) ∑
i

ni(∂H

∂ni
)

P,T,nj*ni

) ∑
i

hini (9)

hi ) Q0 + Q1Γi + Q2Γi
2 + ... + QnΓi

n (10)

Eπ ) gR
2(z)∑

i

hini ) ∑
i

gR
2(z)hini (11)

Di

kT
) uiabs

(12)

µA
π ) µA

0π + RT lnaA
π (13)

µA
0π ) µA

0(bulk) + gR
2(z)hA (14)

RT ln(λA
0π

λA
0 ) ) gR

2(z)hA (15)

µA
R ) µA

0(bulk) + RT ln aA
R (16)

µA
R ) µA

π (17)

µA
0(bulk) + RT ln aA

R )

µA
0(bulk) + gR

2(z)hA + RT ln aA
π (18)

RT ln
aA

π

aA
R ) -gR

2(z)hA (19)

RT ln λA
R ) RT ln λA

π (20)

RT ln(aA
RλA

0) ) RT ln(aA
πλA

0π) (21)

RT ln(aA
π

aA
R) ) - RT ln(λA

0π

λA
0 ) (22)

Uπ ) TSπ - PVπ + γπAπ + ∑
i

µi
π*ni

π (23)
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where∆γσ ) γσ - γ0
σ. Here,γ0

σ is the interfacial tension of
the “clean” fluid/liquid system in the absence of adsorbed
substances (see Appendix B). For phasesR andâ, it corresponds
to initial fields gR

0(z) andgâ
0(z). Term∆γk

π ) γk
π - γ0k

π measures
the change in the elastic energy accumulated in planeπk due to
adsorption.

Now, if we consider the interface as a normal thermodynamic
system described by its volume, entropy, and number of moles,2

we can also express the energy associated to planeπ as

Substitution of the expression of the chemical potential previ-
ously deduced (eqs 13 and 14) into eq 25, gives

Therefore, from eqs 23 and 26, we obtain

or equivalently10

According to eqs 27a and 27b, the interfacial tension arises as
a consequence of the perturbation of the elastic field because
of the adsorption of molecules of the other phase to planeπ(z).

On the other hand, the free energy of the planeπ can be
written as it is formulated for a conventional bulk phase

If the differential of eq 27 is compared to the classical expression

we observe that at constant temperature and pressure, there is
consistency between eqs 28 and 29, only if

This result relates the tensoactive effect of a given component
to its particular response to the elastic fieldgR(z), acting over
the planeπ(z). Notice that it is not necessary that the chemical
potentials of the interface (µi

π) and the bulk-phase (µi
R) be

different to obtain a non-zero value for the interfacial tension.
This was required by Sugimoto’s model10 in order to get a
nonzero value on the right-hand side of equation

Notice also the difference between the right-hand side of eq 27
and that of eq 31 (from Sugimoto). Furthermore, eqs 19 and 30
connect the interfacial tension contribution of one plane with
difference between activities of that interfacial plane and the
bulk-phase, in such a way that equalization of the chemical

potentials between the bulk phases and the interface can be
maintained in our model, although the activities may differ.

Interfacial Tension

Here, an expression of the interfacial tension is obtained
starting from a description of the interface similar to that
previously suggested by Sugimoto11 (see Figure 1).

Let us define the following variables:

and

Here Ni is the maximum molar density of componenti in a
plane π(z) located atz, with its normal perpendicular to the
interface, andyi is the fraction of the total area occupied by
component “i” in that plane.Vi andAi are respectively the partial
molar volume ofi and its partial molar area under the conditions
dP ) 0 and dT ) 0, andAz is the total area of the planeπ(z).

For a plane of widthδπ we have

Following the arguments given in the previous sections, the
density of each plane has to be constant, and therefore, there
has to be a dynamic equilibrium between a moleculei in the
bulk R and such a plane. Thus, the amount of molecules that
go into the plane must be equal to the amount of molecules
that come out of the plane. Taking the componentA as the
matrix element of phaseR, equilibrium can be formulated
between the bulk concentration of any molecule and the
composition of the plane

where: Ni
π ) Niσπ. Using the mass action law

It follows

Thus, using the definition of the chemical potential given by
eqs 13 and 14, we obtain

Being νi ) (NAyA/Niyi) ) ΓA/Γi, the constant of adsorption of
moleculei in planeπ, Ki

R is equal to

and also

Aσ∆γσ ) ∑
k

Aπk∆γπk (24)

Uπ ) TSπ - PVπ + ∑
i

µi
πni

π (25)

Uπ ) TSπ - PVπ + ∑
i

gR
2hini

π + ∑
i

(µ0(bulk) +

RT ln ai
π)ni

π (26)

γπAπ ) ∑ gR
2(z)hini

π (27a)

γπAπ ) ∑ (µi
π - µi

π*)ni
π (27b)

Gπ ) ∑
i

µi
πni

π (28)

dGπ ) VπdP - SπdT + Aπdγπ + ∑
i

µi
π* dni

π (29)

Aπdγπ ) ∑
i

gR
2(z)hi dni

π (30)

Aπdγπ ) ∑
i

(µi
R - µi

π) dni
π (31)

Ni ) 1
Vi(z)

yi )
Ai

π

Az
(32)

∑ ni

A
) ∑

i

δπNiyi ) ∑
i

Γi ) constant (33)

(yA
πNA

π)A(π) + (yi
πNi

π)i(R) T (yi
πNi

π)i(π) + (yA
πNA

π)A(R) (34)

(yA
πNA

π)µA
π* + (yi

πNi
π)µi

R ) (yi
πNi

π)µi
π* + (yA

πNA
π)µA

R (35)

yA
πNA

π(µA
π* - µA

R) ) yi
πNi

π(µi
π* - µi

R) (36)

RT ln
(aA

R)νiai
π

(aA
π)νiai

R ) - {νigR
2(z)hA - gR

2(z)hi} (37)

Ki
R ) exp{-

gR
2(z)(VihA - hi)

RT } (38)
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To obtain the interfacial tension, the partial contribution of each
plane (eq 30) has to be added up. Thus, eq 30 has to be
integrated fromR (z ) - ∞) to â (z ) +∞) passing through
planeπ(z ) 0), taking into account that dni ) Az Ni yi dz. If σ
) σA + σB (Figure 1), then

The relevant variations of the integrand occur in a limited region
close to the interfacial plane. A macroscopic infinitesimalε can
be used to carry out the integration aroundz ) 0, excluding
intervals the [+ε, 0] and [0, -ε]. Hence

and in this way it is possible to separate the variation of the
interfacial tension in two contributions coming from both sides
of the interfacial plane

Equidistribution of Force within Subphase σA

The force that acts over a plane should be distributed
uniformly between all bidimensional points that define the plane.
The net force that acts along coordinatezover a matrix molecule
A is equal to the net force that acts over any moleculei in the
referred bidimensional network. Whenever the molecules have
different sizes or surface densities,NA

π * Ni
π w δπNA * δπNi,

and therefore, the balance of forces yields

The preceding equation can be integrated for a given plane at
z, taking z ) -∞ as the lower limit, where the elastic field
caused by the perturbation of the interfacial boundary is zero:
gR(z ) -∞) ) 0, so

Therefore

This result allows reducing the number of variables required
describing the system.

Applying the mean value theorem, the width of subphaseσA

can be calculated

Here it has been assumed that the perturbation that exist in this
subphase is located atz ) -ε, which should carry the most
representative value (median) of each variable. If eq 46 is
substituted in the expression of the interfacial tension (eq 41)
for subphaseσA andAz ) AσA

If the matrix component is separated from other components in
the sumΣ′, we haveyA + ∑′yi ) 1. Then, eq 48 can be written
as

Because the density in each plane is constant,NAyA + ∑/ Niyi is
also constant, which implies thatγσA is a linear function of the
energy that acts upon only one component, as is shown by eq
49. Going back to our initial definition of the chemical potential
given by eq 13, we obtain from eq 19 a useful thermodynamic
relation that we can use for practical purposes

Similarly

Hence, the perturbation of the global interfacial tension can be
written in terms of an initial conditionγ0

σ

in which

Adsorption Isotherms

Except for the meaning of the elastic field variables, eq 41
is identical to that obtained by Sugimoto.10-11 Thus, the
adjustment of the present theory to the adsorption isotherms
can be carried out following the procedure detailed in ref 11.

For infinite dilution

Here Γi
σA and Γi

σB are the surface concentrations of the two
subphases. Equation 55 can be recognized as the ideal gas
equations for molecules adsorbed at the interface.

Using the equilibrium condition in a multicomponent system,
and assuming low adsorption levels in sub-phaseσA in phase
R, andσB in phaseâ

Ki
R )

(aA
R)νiai

π

(aA
π)νiai

R (39)

∆γσ )

∫-∞

0 ∑
i

gR
2(z)hiAzNiyi dz

Aσ
+

∫0

+∞∑
i

gâ
2(z)hiAzNiyi dz

Aσ
(40)

∆γσA )

∫-∞

-ε∑
i

gR
2(z)hiAzNiyi dz

AσA

(41)

∆γσB )

∫+ε

+∞∑
i

gâ
2(z)hiAzNiyi dz

AσB

(42)

∆γσ ) ∆γσA + ∆γσB (43)

d(gR
2(z)hA)

dz
)

δπNi

δπNA

d(gR
2(z)hi)

dz
(44)

∫z ) -∞

z d(gR
2(z)hA)

dz
dz )

δπNi

δπNA
∫z ) -∞

z d(gR
2(z)hi)

dz
dz (45)

NAgR
2(z)hA ) NigR

2(z)hi (46)

δσA
)

∫-∞

-ε∑
i

gR
2(z)hiNiyi dz

∑
i

gR
2(-ε)hiNiyi

(47)

∆γσA ) ∑
i

gR
2(-ε)hi(-ε)NiyiδσA (48)

∆γσA ) (NAgR
2(-ε)hA(yA + ∑/ yi))δσA (49)

∆γσA ) (-NA
RRT ln

aA
σA

aA
R )δσA (50)

∆γσB ) (-NB
â RT ln

aB
σB

aB
â )δσB

(51)

γσ ) - NA
σART ln

aA
σA

aA
R - NB

σB RT ln
aB

σB

aB
â

+ γ0
σ (52)

-(NA
R)δσA

) -NA
σA and -(NB

â)δσB
) -NB

σB (53)

γσ ) ∑′i Γi
σA RT+ ∑′i Γi

σB RT+ γ0
σ (54)

γσ - γ0
σ ) (∑′i Γi

σA + ∑′i Γi
σB)RT (55)
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Here we have

Furthermore,Ki
â has the same physical meaning as given by

eqs 38 and 39 for phaseâ, and xi
R and xi

â are the molar
fractions of componenti in the phasesR and â, respectively.
For a binary system constituted by matrix molecules A and an
arbitrary solutei dissolved in phaseR, the superficial tension
can be derived from eq 56 giving the following result:

This expression, after some arithmetic manipulation and as-
suming thatyA

σANA
σA = yi

σANi
σA, i.e., νi = 1, reproduces Szys-

kowski’s11 isotherm.

Conclusions

The thermodynamic model of a fluid/liquid interface was
presented. Among its most relevant characteristics are the
following: (i) It includes a redistribution of elastic energy
between formerly isolated phases when they are joined together
to form an interface. (ii) The description of the system suggested
by Sugimoto10,11 is fully adopted. In that view (Figure 1), the
interface consists of two subphases, each one adjacent to a bulk
phase. Each subphase can store potential energy, and the
interfacial energy can be expressed as a sum of two terms, each
belonging to a subphase. (iii) The equalization of chemical
potential as a condition of equilibrium (or quasi equilibrium) is
maintained. Equalizing the chemical potential of the absorbent
between the bulk phases and the interface reproduces the
adsorption isotherms most frequently used. (iv) The interfacial
tension can be expressed in terms of the activity of only one
component of the system at the interface.
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Appendix A: Meaning of the Elastic Field

When an elastic field produced by a normal tensionτ (dF/
A), propagates in a continuous media along thezaxis, the unitary
deformationæ can be expressed as21

where Ψ is the deformation field. The relation between the
normal tension and the unitary deformation is usually written
as

where Y is the Young’s elasticity modulus and

which looks very familiar for the case of one spring:

whereK is the elasticity modulus of the spring system, and is
simply related to the force constantk asK ) kL, whereL is the
spring length.

If the dissipation of a deformation field over a macroscopic
continuous plane located atz, with width δπ, were considered,
the force that acts on that plane would be

In this last expression,kπ is an effective force constant for plane
π in directionz. Taking into consideration that the energy that
is distributed in this plane to deform it is the same energy that
the planes stores, we arrive to a more general relationship

and so

which once evaluated gives

BecauseΨ(z) is a smooth continuous function, it can be
developed in Taylor series up to first order for lengthδπ/2
aroundz, giving the following expression

This equation allows us to associate the proposed elastic field
with a deformation field. According to eq A.I.9, the modulus
of such fieldg(z) is equal to

Appendix B: Surface Tension

In terms of the present theory, the interfacial tension is equal
to the sum of the elastic energy accumulated within each
contributing mesoscopic planeπk. Thus, the free energy of
subphaseσA is equal to

Substituting eq 30 on the right-hand side of eq B.1

γσ ) - NA
σA RT ln(1 - ∑′i Ki

Rxi
R

1 + ∑′i νiKi
Rxi

R) -

NB
σB RT ln(1 - ∑′iKi

âxi
â

1 + ∑′iν′iKi
âxi

â) + γ0
σ (56)

νi )
NA

σAyA
σA

Ni
σAyi

σA
)

ΓA
σA

Γi
σA

νi )
NB

σByB
σB

Ni
σByi

σB
)

ΓB
σB

Γi
σB

(57)

γσ ) - (NA
σA)RT ln(1 -

Ki
Rxi

R

1 + νiKi
Rxi

R) + γ0
σ (58)

γσ ) (NA
σA)RT ln(1 + Ki

Rxi
R) + γo

σ (59)

æ ) ∂Ψ
∂z

(A.I.1)

τ ) Υæ ) Υ∂Ψ
∂z

(A.I.2)

F ) ΥA
∂Ψ
∂z

(A.I.3)

F ) K
∂Ψ
∂z

(A.I.4)

Fπ ) kπδπ
∂Ψ
∂z

(A.I.5)

-
∂(g(z)2HπAπδπ)

∂z
) kπδπ

∂Ψ
∂z

(A.I.6)

g(z)2HπAπδπ )

Aπδπ∫
z+

δπ

2

z-
δπ

2
∂(g(z)2Hπ)

∂z
dz) kπδπ∫

z+
δπ

2

z-
δπ

2
∂Ψ
∂z

dz (A.I.7)

g(z)2HπAπδπ ) kπδπ(Ψ(z +
δπ

2 ) - Ψ(z -
δπ

2 )) (A.I.8)

g(z)2HπAπδπ ) kπδπ(∂Ψ(z)
∂z )δπ ) kπδπ

2(∂Ψ(z)
∂z ) (A.I.9)

g(z) ) x kπδπ

AπHπ
(∂Ψ(z)

∂z ) (A.I.10)

AσA∆γσA ) ∑
k

Aπk∆γπk (B.1)
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Once equilibrium is attained, a profile in the molar density of
speciesi from the bulk phaseR (z ) -∞) up to the interface (z
) 0) is created. It is represented by the quantityNi(z) yi(z) which
is strongly dependent on positionz

where∆zπk is the width of planeπk.
If the sum in eq B.2 is substituted by an integral over infinite

planes of with dz from bulk R (z ) -∞) up to the interface (z
) 0)

whereAz is the area of an infinitesimal planeπk(z) located atz.
In the case of an interface,σ ) σA + σB, the integration of

eq B.4 extends from bulkR (z ) -∞) to bulk â (z ) +∞),
giving

whereæ is equal toR (-∞ < z -ε) or â (+ε < z < +∞)
depending on the position of the plane inz.

References and Notes

(1) Gibbs, J. W.The Collected Works of J. W. Gibbs; Longmans:
London, 1928; Vol. 1.

(2) Gugenheim, E. A.Thermodynamics, An AdVance Treatment for
Chemists and Physicists, 2nd ed.; Wiley-Interscience: New York, 1950.

(3) Lucassen-Reynders, E. H.Prog. Surf. Membr. Sci.1976, 10, 253.
(4) Butler, J. A.; et al.J. Chem. Soc.1933, 135, 674.
(5) Lucassen-Reynders, E. H.J. Phys. Chem.1966, 70, 1777.
(6) Cahn, J. W.; Hilliard, J. E.J. Phys. Chem.1958, 28, 258.
(7) Cahn, J. W.; Hilliard, J. E.J. Phys. Chem.1959, 31, 688.
(8) Carey B.; Scriven, L. E.J. Phys. Chem.1978, 69, 5040.
(9) Zuo, Y. X.; Stenby, E. H.J. Colloid Interface Sci.1996, 182, 126.

(10) Sugimoto, T.J. Colloid Interface Sci.1996, 181, 259.
(11) Sugimoto, T.J. Phys. Chem. B1999, 103, 3593.
(12) Adamson, A. W.Physical Chemistry of Surfaces, 5th ed.; John

Wiley & Sons: New York, 1990.
(13) Silberberg, A.J. Phys. Chem.1962, 66, 1872.
(14) Silberberg, A.J. Chem. Phys.1968, 48, 2835.
(15) Scheutjens, J. M. H. M.; Fleer, G. J.J. Phys. Chem.1979, 83, 1619.
(16) Scheutjens, J. M. H. M.; Fleer, G. J.J. Phys. Chem.1980, 84, 178.
(17) Becker, R.Electromagnetic Fields and Interactions; Dover Publica-

tions Inc.: New York, 1964; p 114.
(18) Urbina-Villalba, G.; Reif, I.Colloids Surf.1996, 106, 175-190.
(19) Hill, T. An Introduction to Statistical Thermodynamics;Dover

Publications Inc.: New York, 1986; Chapter 12, p 209.
(20) Smith J. M.; Van Ness, H. C.Introduction to Chemical Engineering

Thermodynamics, 4th ed.; McGraw-Hill: New York, 1987; Chapter 6.
(21) Alonso, M.; Finn, E. J.Physics; Addison-Wesley: Reading, PA,

1971; Chapter 23, p 533.

AσA∆γσA ) ∑
k
∑

i

gR
2(z)hi(z)∆ni

πk (B.2)

∆ni
πk ) AπkNi(z)yi(z)∆zπk

(B.3)

AσA∆γσA ) ∫-∞

0
Az∑

i

gR
2(z)hi(z)Niyi dz (B.4)

Aσ∆γσ ) ∫-∞

+∞
Az∑

i

gæ
2(z)hi(z)Niyi dz (B.5)
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