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Mesoscopic Treatment of a Fluid/Liquid Interface. 1. Theory
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A thermodynamic model of a fluid/liquid interface based on the redistribution of “elastic” energy as a
consequence of the contact between formerly isolated phases is proposed. The interface consists of two sub
phases adjacent to their respective bulks. Each sub-phase is capable of storing elastic potential energy. The
adsorption isotherms are reproduced in the usual way, equalizing the chemical potential of the adsorbent
between the bulk phases and the interface. In this formalism, the interfacial energy results from a sum of two
terms each belonging to a subphase and can be expressed in terms of the activity of one component of the
system in one bulk phase and at the interface.

Introduction with the equalization of the chemical potentials between the
bulk phase(s) and the interface. Such equilibrium condition is
achieved between bulk phases counterbalancing energetic dif-
ferences with configurational entropy contributions dependent
on the local composition of the different constituents. The
fresence of an interface introduces an anisotropy in the system
and generates inhomogeneities in the spatial distribution of
components. This brings an additional complication to the
equilibrium problem: interfaces are usually highly ordered, and

Still today most undergraduate textbooks of physical chem-
istry avoid thermodynamic consideration of interfaces when
treating the subject of phase equilibrium. The interfacial energy
is introduced as an additional free energy contribution: the work
that has to be done on the system at constant temperature an
pressure to increase its interface. Such additional contribution
is usually negligible in most systems because the free energy
is an extensive thermodynamic quantity, and the size of the . X
interface is generally small in comparison to the size of the such an orde_red state IS _op_posed to the necessary increase of
bulk phases. Hence, the conventional approach to the problementropy rgquwed for eq‘ﬂ"'b”“m- ] ]
avoids the complex definition of an interfacial chemical potential ~ An insightful discussion along with a review of the most
for each substance, and simplifies the analytical procedure for'élévant aspects to be considered in the formulation of an
finding the value of their chemical potential at equilibrium. interfacial chemical potential can be found in ref 3. Butler was

It is clear however that whenever the adsorption process is probably th_e first to define such potential for the descrlptlon of
important a suitable definition of interfacial chemical potentials the adsorption process and the energy excess occurring in the
is necessary. This is the case of long-lasting emulsions for interface’” Among other contributions, Lucassen-Reynéers
instance, where the stability of the dispersion is intimately introduced the concept of partial molar areas in order to ascribe
related to the total interfacial area and the surfactant surfacethe interfacial free energyA to each contributing molecule.
excess. It is also especially important for fluid/liquid systems On the other hand, Cahn and Hilliard developed a completely
in general since, up to this date, it is not possible to measure different model in which the interfacial free energy is expressed
the interfacial composition simultaneously and independently @s @ function of the density gradient between the phases in
from the bulk Composition_ Furthermore' the ana|ytica| form contact®” The interface is described in this model as a diffuse
of an interfacial chemical potential is also interesting from a and continuous zone. Starting from the calculation of the
more fundamental point of view. If equilibrium is reached by Helmholtz free energy arising from the referred model, and the
equalization of the chemical potentials and the interfacial momentum balance condition, Carey and Scriven proposed a
potential is substantially different from the bulk, the properties formal development of the interface gradient density médel,
of the system at equilibrium could be sensibly affected by the Which was subsequently extended to the description of binary
characteristics of the interface. systemd. The validity of this model depends on the reliability

Other considerations regarding the appropriate definition of Of the equations of state used, and there is no direct connection
interfacial chemical potentials concern the nature of the state in it between activities and chemical potentials.
of the equilibrium itself. Starting from the Gibbs adsorption On the basis of the definition of interfacial chemical potential
model!2 almost all theoretical descriptions of surfactant given by Butler, Sugimo#¥-11recently proposed an alternative
adsorption to gas/liquid and liquid/liquid interfaces commence formalism for understanding the interfacial tension in terms of
molecular activities. In this case, not only is the interfacial
* To whom correspondence should be addressed. E-mail: ajcastel@ chemical potential different from bulk but it is additionally

uc.edu.ve. supposed that such initial difference cannot be overcome
T Universidad de Carabobo. . N . .
f Universidad Central de Venezuela. preventing equalization of the chemical potentials. In that model,
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_Figure 1 ACCOVO"FQ to t_he model of T._Sugimoto refs_ 301, the Figure 2. Molecular interactions within “bulk” phases according to
interface can be divided into two subregiamsandog which extend an elastic modebf an interface.

from z= 0 to da anddg respectively. These denote the small regions

in each bulk phase up to which the perturbation of the interface extends.. . . .
For completgness, tﬁe molar fraction of matrix comporferfs) in interfacial environment has been completely modified as a

phasesx and3 is also shown. response to this “chemical” field. The question is, Could the
interfacial tension be obtained as a function of the molecular
response of the system to the creation of an interface? The
discontinuous zone, assuming a liquid lattice of homogeneouspresent paper addresses this question using the fact that the
density in the whole bulk until the interfacial region is reached, interfacial tension can be both understood as the free energy
departing in this way from the continuous models for the per unit area or as the force per unit length required to increase
interface. the interfacial area. For this purpose, we will consider fluid
In the present work, we adopt the description of the interface phases as elastic media similar to that of a network of springs,
proposed by Sugimotbconsisting of two subphases (Figure capable of storing energy througffectve interactions, in the
1), such that a sharp change in density occurs at the intermediatessame way that springs do. It is important to notice at this point
plane ¢ = 0) between them. Yet, in our case, we additionally that usual models for macromolecular solutions start from a
allow smooth modifications of density inside each of these reticule of points: molecular segments and solvent molecules
subphases. As will be shown below, this consideration allows are distributed in such network, keeping fixed the geometrical
the description of equilibrium without having to recourse to a distribution of points3-16 In the present work, we take into
different thermodynamic development from the one usually account the network distortion to accommodate the excess
followed in the description of two-phase equilibrium, i.e., energy that accumulates at the interface.
maintaining the general condition of equal chemical potentials  To introduce the concept of aelastic field, let us first
for each component in different phases (regions). In our view, consider each phase as a network of interconnected beads and
the present approach enriches the understanding of the interfaciasprings. Each bead can represent a molecule or a group of

tension in terms of the molecular activity. molecules (macroscopic differential) that interacts with other
beads througteffectie intermolecular springs (Figure 2). The
The Elastic Field elastic constants of these springs result from direct molecule

molecule interactions as well as long-range many-body forces.
Within bulk phasen, “molecules” A interact with an effective

response is similar to the way in which elementary charges move(:C)r‘St"?‘r'tK/(iff pegause of the local homogeneity c_)f the sur-
in a dielectric media in the presence of an electric field. When "oundings. Similarly, ‘the molecules B of phageinteract

an electric fieldE is applied, charges move in the dielectric internally with an effective constaiitz” as shown in Figure 2
creating a capacitor, inside which, the final value of the electric for one-dimensional case. , o

field is equal toE' = KE, whereK is a constant dependent on ~ When phases and; are brought into contact, each original
the dielectric material. Thus, the external field produces a chargeN€twork will be distorted as a consequence of the redistribution
movement at a microscopic level which translates into a ©f energy near the interface. The local environment of some
macroscopic response to the perturbation: a new field of molecules in thg vicinity of tht=T |nterfape will change dependlng
magnitudeKE. In a liquid system, the surface-active molecules ©n the z position of each interfacial plane (coordinate z
move to the interface as soon as it is created. It is clear that thePerpendicular to the interface). Even in the cases in which the
forces that cause diffusion of surfactant molecules are chemicallC@l environment is similar, the short range and long-range
in nature. This behavior is the consequence of the chemical Perturbations produce effective spring constants, a function of
affinity of these molecules for the interface: Surfactants have the relative position of their interfacial plane (Figure 3).

both a hydrophobic and a hydrophilic molecular region suf- _F|_gure 3 illustrate the adhesion (contact) process between two
ficiently separated along the backbone of the molecule. Those Originally separate phases at constant temperature and pressure.
structures have marked affinities for nonpolar and polar f the energy were purely elastic, the valde” will change
environments, respectively, and can be suitably accommodatedntil me_cha_mcal equilibrium. The distribution of force along
in the two distinct regions of the interface. Thus, those molecules the z axis will be such that

feel that the field is “on” as long as the interface exists. The

final result is an equilibrium situation in which the free energy Kag AZ = Kj o AZy = Kg ¢iAZs 1)

per surfactant molecule is equal in the bulk phases and the

interface, even though the surfactant concentration is consider-Kag is an average force constant for the newBiinteraction.
ably higher at the interfacial layers. It is clear however that the Thus, in the vecinity ok = 0, the values ofAzx and Az3 will

It is well-known that in the presence of an interface surface-
active molecules diffuse and adsorb very quicklyThat



Mesoscopic Treatment of a Fluid/Liquid Interface J. Phys. Chem. A, Vol. 107, No. 6, 200377

Az ® Thomson formally demonstrated, density of eneligys a free
energy (ref 17).
Ko % Azy’ In the case of a magnetic field, the energy per unit volume
is given by the expression
K eff % Az 1
En= E“'o(l + XM)H2 )

g Here uo is the magnetic permeability in a vacuum, angl is
the magnetic susceptibility of the material. Following this
analogy, we introduce the energy per unit volume due to an
elastic field over a liquid network, which can be expressed as

E, = 5ol + 28 ©)

Figure 3. Force constant variation as a function of their relative
distance to the interface. Effective constants result from many-body
interactions. Their value depend from their distance to the interface.

In this expressiongg is the elastic permittivity of one pure fluid
(a measurement of the rigidity of the liquid network) gnds
the elastic susceptibility, the sensibility of the system to changes

change until in the field g(2).
Although eqgs 46 look very similar, there are certain
K off differences between the electric/magnetic and elastic fields
Az; = g‘eﬁAz’A' (2 described above. First, the former fields are external, whereas

the elastic field arises from the asymmetry produced by the
phases in contact, and the intermolecular interactions. Second,
in the case of the electric field, there exist discrete charges which
move under the action of the initial field until the final state is
achieved. In the case of an elastic field, the properties of each

Thus, the molecules will move from their initial positions in
such a manner that the perturbations will be adsorbed by the
two phasesx andf. From mechanical equilibrium (eq 1), we

have . N .
“spring” depend on the intrinsic properties of the molecules
(K Az”)2 K (polarizability, dipole moment, et@nd the properties of the
= 1 BaeBoa) DAl 3 surrounding neighbors. The field acts on the molecular distribu-
B 2 " TRt . . . L
B.eff B eff tion that, upon particle rearrangements, modify the initial value
. . o of the field.
Consequentlyk, #= Eg if K3 et = KB err, as it occurs for distinct A close look at eq 6 shows that if the rigidity of our liquid

phases. Therefore, the perturbation due to the creation of thenetwork increases the magnitude of the energy per unit volume
interface will extend from the interface to different depths within  stored is higher. The susceptibility measures the effect of all
each bulk phase, until the effect of the perturbation is negligible components on the system: for instance, the presence of a
and the spring constants are the same as in an isolated bulksurfactant changes the network significantly increasing its
phase. flexibility, and as a consequence, the energy per unit volume
Because the intermolecular potential deviates appreciably stored would be less than in the pure matrix component. In this
from this oversimplified harmonic oscillator model, let us case, the susceptibility will vary between 0 and, and the
introduce the concept of the field of elastic energy, by storage of the elastic potential energy will include deeper layers
considering the functiong,(z) andgs(2) whose analytical form  within the bulk. Thus, it is clear that the interface will increase
depend on the composition of the system and the averagein size with the adsorption of surfactant molecules. Furthermore,
molecular distance. These functions are a measure of theit s clear that if sufficient surfactant is introduced in the system
cohesive energy of an isolated-bulk systemmof 3). Function the variation of the elastic field will be so high that the system
g(2) has therefore a chemical nature and includes the effects ofwill be equivalent to a different system formerly made out of
dipole—dipole interactions, quadrupetguadrupole interactions,  different “springs”.
etc., between molecules. Although the analogy between these
potential fields and its mechanical harmonic interpretation can Fugacity of a Molecule in the Elastic Field of the
be carried out much further (see Appendix A), let us simplify Interface
the present mesoscopic description of the real system by saying
that fieldg(2) acts on the three-dimensional system alongzthe
axis, producing isotropic distributions of force in they
directions perpendicular ta Such a field acts similarly to an

The energy stored in a macroscopic infinitesimal plarean
be calculated multiplying the total free energy per volume by
the volume of the plane:

electric field in the dielectric media, where the field is initially 1 )
homogeneous, but charge rearrangement can occur. In such E. =§Ko(1+Xg)ga 0,.A, (1)
cases, the total energy per unit volume stored in a dielectric
material can be expressed as in ref 17 Hered, andA, are the width and the area of the macroscopic
1 planes. The “coefficient” multiplying the square of the elastic
E.= 560(1 +19E° 4) field
_1
In this expressiongg is the permittivity of vacuumye is the H= 5"0(1 + Xg)énAn (8)

electric susceptibility of the dielectric material, ab@ the value
of the external electric field that acts upon the system. As is an extensive quantity, and thus can be expressed as the sum
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of the partial molar contribution of the components of the
system:

oH
"= Zni(a)P,T,njzn - Zhini (9)

In this expressionh;, depends on the concentrations of all
constituents of plan&(z). In this way,hij(2) can be understood

as an intrinsic property of each molecule in that plane, which,
when appropriately multiplied by the field squared, gives as a

result the contribution of species’‘to the total potential energy
that can be stored within that plane. The exact formhi(d)

Castellanos et al.

component A in the planer, and /12 is the fugacity of the
component A in the bulk of phage Here we take into account
that, because of the distortions of the network, the molecule of
a given planer(z ~ 0) close to the interface will have an
intermolecular distance different from the bulk, and thus, their
standard fugacity will be different.

The chemical potential of substance A in the balks

us = uS(bulk) + RTIn &% (16)

Now, when the absolute mobility (given by the response of the
field gu«(2)) is equal to the potential of diffusion at that plane,

depends on the molecular theory employed for the descriptionthe chemical potentials of the bulk and the interface are equal

of the partial molar free energy of componeiitifi planez(2).
In the most general cas&hi(z) can be approximated by a series
in the number of moles df(n;) per unit area of plana(z), T

(2):

h=Qy+ QI + QI+ ..+ QI (10)

Hereh; (I'(2)) depends on the concentration of all species that

Hp = Up (17)

Thus

u3(bulk) + RTIn a% =

ua(bulk) + g %(2)h, + RTIn a; (18)

constitute the plane, and such dependence is included in therrom which we get

coefficientsQ;. Accordingly, the energy stored in plangz)
can be written as

E"=g,’ (@) hn = Y g.°(9hn, (11)

The local concentration of molecule i in phaseomes from
its affinity with the global fieldg, that diminishes toward the

bulk of that phase. Continuing the analogy with the electric and

magnetic fields, the absolute mobility of that molecule will
equilibrate its diffusion at a givem coordinate
D.

k_T uiabs (12)
Here,D; is the coefficient of diffusion of componentk is the
Boltzmann constant, ang apsis the absolute mobility defined
by Uians = Val/Fi. In this expressionVy is the velocity of
molecule i subject to a forcE;, generated by the global field
Yo-
As implied above, the composition of each plane formerly
composed of only one matrix element, will change so that it

can equilibrate the net force that acts upon it. The response of
each plane component will depend on the local chemical

environment of that plane. For every plamén theinterfacial
subphase of bulk, we can write the chemical potential as

ur = u% + RTIna} (13)

where

up" = up(bulk) + g,*(2)h, (14)
This expression is similar to that obtained by Hill for the case
of a ideal dilute gas in an electric fieldu = u(0) — (£%2)(a
+ uo®3KT), whereu(0) is the chemical potential in the absence
of electric field&, a is the polarizability of the gas molecule,
anduo is its dipole moment.

Following eqgs 13 and 14

(074
RTIn(liO) = 0,22,

A

(15)

The quantity/lg'7 is the standard fugacity of the matrix

&
RTIn o
an

= —g,/(h, (19)

So it is clear that, wheneveg,(2) = 0, the activity in planer
will be different from the correspondent activity in the bulk of
the liquid phasen.

Another way to derive eq 19 from the condition of equilibrium
(eq 17) is to equalize the fugacities instead of the chemical
potentials

RTIn A3 = RTIn A} (20)
Here 1, andA; are the fugacities of component A in the bulk
a and in the planer. Following Lewis-Randal definitioR®

RTIn(a%42) = RTIn(@zA%") (21)
Or equivalently
a, A
RTIn[-2| = - RTIn|=- (22)
ai AA

We thus recover eq 19 from eqs 22 and 15.

Relationship between the Interfacial Tension and the
Fugacity Coefficient

The following treatment is similar to that of Sugimété?
except for the fact that eq 14 would be used as the correct
expression for the standard chemical potential at the interface.

In the usual thermodynamic treatment, the interfacial tension
is introduced in the equation of the total energy as an additional
termy A% The total energy of an interfacial planeis then
equal to

U"=TS — PV + y"A" + Zﬂ?*n;”‘ (23)
|

whereu” = u°bulk) + RT In & is usually defined as the
surface chemical potential and sometimes assumed to be the
true chemical potentidlHere,y™ is the contribution of plane

m to the total interfacial tensiop?, therefore:
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ANy’ = ZA”kAy”k (24)

whereAy? = y? — y°. Here,y’ is the interfacial tension of
the “clean” fluid/liquid system in the absence of adsorbed
substances (see Appendix B). For phasesdg, it corresponds
to initial fields g5(2) andg}(2). TermAyy = yi — yg, measures
the change in the elastic energy accumulated in plarde to
adsorption.

Now, if we consider the interface as a normal thermodynamic
system described by its volume, entropy, and number of nfoles,
we can also express the energy associated to pteae

UT=TS — PV + S (25)
I

Substitution of the expression of the chemical potential previ-
ously deduced (eqs 13 and 14) into eq 25, gives
U'=TS - PV + Sghn"+ S (°(bulk) +
RTIn a)n" (26)
Therefore, from eqs 23 and 26, we obtain
yAT=Y g l@h (27a)

or equivalently®

VR= Y ! (27b)

According to egs 27a and 27b, the interfacial tension arises as
a consequence of the perturbation of the elastic field because

of the adsorption of molecules of the other phase to pigae
On the other hand, the free energy of the planean be
written as it is formulated for a conventional bulk phase

G =Y un (28)
I

If the differential of eq 27 is compared to the classical expression

dG™ = V'dP — S'dT + A"dy” + Zﬂf* dn”  (29)

we observe that at constant temperature and pressure, there is

consistency between eqs 28 and 29, only if

Ady™ ="y gi(2)hy; dny’ (30)
|

This result relates the tensoactive effect of a given component

to its particular response to the elastic figlgz), acting over
the planer(2). Notice that it is not necessary that the chemical
potentials of the interfaceu{) and the bulk-phaseuf) be
different to obtain a non-zero value for the interfacial tension.
This was required by Sugimoto’s moéfein order to get a
nonzero value on the right-hand side of equation

A'dy™ = (i — w) dn’ (31)
I
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potentials between the bulk phases and the interface can be
maintained in our model, although the activities may differ.

Interfacial Tension

Here, an expression of the interfacial tension is obtained
starting from a description of the interface similar to that
previously suggested by Sugimétdsee Figure 1).

Let us define the following variables:

_ 1
N = Vi(2)
and
_A

Here N; is the maximum molar density of componenin a

plane 7(2) located atz, with its normal perpendicular to the

interface, andy, is the fraction of the total area occupied by

componenti” in that planeV; andA are respectively the partial

molar volume of and its partial molar area under the conditions

dP = 0 and d = 0, andA; is the total area of the plane(2).
For a plane of widthbr we have

5

=—= % J,Ny, = ) I, = constant (33)
A IZ 171 IZ I

Following the arguments given in the previous sections, the
density of each plane has to be constant, and therefore, there
has to be a dynamic equilibrium between a moledue the

bulk o and such a plane. Thus, the amount of molecules that
go into the plane must be equal to the amount of molecules
that come out of the plane. Taking the componAras the
matrix element of phaset, equilibrium can be formulated
between the bulk concentration of any molecule and the
composition of the plane

(VANDAGT) + (NDi () < (N () + (VANDA() (34)
where: N” = Nio,.. Using the mass action law
VANDR + (N = (NN + ENDwa - (35)
It follows

YANR(R = 1) = YN = ) (36)
Thus, using the definition of the chemical potential given by
egs 13 and 14, we obtain

@'

RTIn

— {79,°@h, — g,°@h}

(ap)"'a’

Being vi = (Naya/Niyi)) = I'A/T7j, the constant of adsorption of
moleculei in planes, K is equal to

(37)

Notice also the difference between the right-hand side of eq 27

and that of eq 31 (from Sugimoto). Furthermore, egs 19 and 30 KO —
connect the interfacial tension contribution of one plane with i
difference between activities of that interfacial plane and the

bulk-phase, in such a way that equalization of the chemical and also

2 — N
exp{ _ ga (Z)(UihA hl)} (38)

RT
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<o (az)”faz
(aD)"a

To obtain the interfacial tension, the partial contribution of each

(39)

Castellanos et al.

f, 7: Zgaz(z)hiNiYi dz
5 = T

On

(47)
S g (—ehNy,

plane (eq 30) has to be added up. Thus, eq 30 has to be

integrated fromo (z = — ) to  (z = +o) passing through
planesx(z = 0), taking into account thatml= A, N; y; dz If o
= oa + og (Figure 1), then

Ay’ =

0 +o0
f,ngaz(z)hiAzNiyi dz fo Zg/)’z(z)hiAzNiyi dz
I 1
+

(40)
A’ A’

The relevant variations of the integrand occur in a limited region
close to the interfacial plane. A macroscopic infinitesimean

be used to carry out the integration arouner 0, excluding
intervals the f¢, 0] and [0, €]. Hence

f ;: Z 9. (QhANy, dz
Ay =—— (41)
A%
L7 9/ @hANy, dz
Ay = (42)
A%

and in this way it is possible to separate the variation of the
interfacial tension in two contributions coming from both sides
of the interfacial plane

Ay’ = Ay"r + Ay (43)

Equidistribution of Force within Subphase aa

The force that acts over a plane should be distributed

uniformly between all bidimensional points that define the plane.
The net force that acts along coordinatever a matrix molecule
A is equal to the net force that acts over any molecurethe

referred bidimensional network. Whenever the molecules have

different sizes or surface densitidg; = N" = 0,Na = 9,N;,
and therefore, the balance of forces yields

d@,@hy _ 6,N, d(g,’(2h)
iz  o,N, dz (a4)

The preceding equation can be integrated for a given plane at

z, takingz = —o as the lower limit, where the elastic field

caused by the perturbation of the interfacial boundary is zero:

Ju(z= —) =0, so

. d@, Dy i

e

Therefore

_ 6:rN| z
0Ny z=

d(g,’(@h)
dz

dz (45)

NAE‘JaZ(Z) =N, @az(z) h

This result allows reducing the number of variables required
describing the system.

Applying the mean value theorem, the width of subphase
can be calculated

(46)

Here it has been assumed that the perturbation that exist in this
subphase is located at= —e¢, which should carry the most
representative value (median) of each variable. If eq 46 is
substituted in the expression of the interfacial tension (eq 41)
for subphasera andA; = A%

Ay = Zgaz(_e)hi(_e)Niyié(fA (48)

If the matrix component is separated from other components in
the sum¥', we haveya + >'yi = 1. Then, eq 48 can be written
as

Ay™ = (Nago (=N + Y YO

Because the density in each plane is constagt, + 5/ Ny is

also constant, which implies thata is a linear function of the
energy that acts upon only one component, as is shown by eq
49. Going back to our initial definition of the chemical potential
given by eq 13, we obtain from eq 19 a useful thermodynamic
relation that we can use for practical purposes

(49)

. anTin A
Ay™ = [=NaRTIn —|5,, (50)
A
Similarly
Ay = (—N{; RTIn %)a% (51)

Hence, the perturbation of the global interfacial tension can be
written in terms of an initial conditionyg

a

¥’ = — NZRTIn = — N2 RTIn
al'l
A

0B

%+ v (52)

in which

~(NDo,, =—NZ and  —(Ng)s, =—-N& (53)

Adsorption Isotherms

Except for the meaning of the elastic field variables, eq 41
is identical to that obtained by Sugimdtol! Thus, the
adjustment of the present theory to the adsorption isotherms
can be carried out following the procedure detailed in ref 11.

For infinite dilution

Y=Y ITPRT+ TP RT+ g

Y = vs= (ST + S TRT

Here I'7* and T'}® are the surface concentrations of the two
subphases. Equation 55 can be recognized as the ideal gas
equations for molecules adsorbed at the interface.

Using the equilibrium condition in a multicomponent system,
and assuming low adsorption levels in sub-phagén phase
o, andog in phase

(54)

(55)
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§ KX where Y is the Young’s elasticity modulus and
y'=—=NARTIn[1 - e
1 ) iviks F=ya?¥ (A.1.3)
Z,Kﬁ 0z
NZ RTIn[1 — o (56
° 1+ z’ 'K,ﬂxf 70 (56) which looks very familiar for the case of one spring:
Here we have F— K% (A.1.4)
NUAyfl rUA NUByUB FOB
v, = gA /jA o S BB = —Z (57) whereK is the elasticity modulus of the spring system, and is
N7y, 1y Ni y* T simply related to the force constanasK = kL, whereL is the

8 . . ) spring length.
FurthermoreKi" has the same physical meaning as given by |f the dissipation of a deformation field over a macroscopic
egs 38 and 39 for phasg, and x* and X’ are the molar  continuous plane located atwith width 6., were considered,

fractions of componernitin the phases. andj, respectively. the force that acts on that plane would be
For a binary system constituted by matrix molecules A and an

arbitrary solute dissolved in phase, the superficial tension

can be derived from eq 56 giving the following result: F.= k76”f oz (A15)

K% In this last expressiork, is an effective force constant for plane
KO + %o (58) st in directionz. Taking into consideration that the energy that
ViR % is distributed in this plane to deform it is the same energy that
the planes stores, we arrive to a more general relationship

Y= (NZA)RTIn(l -

This expression, after some arithmetic manipulation and as-
suming thaty"N* = y*N™, i.e., i = 1, reproduces Szys- 3(9@°H.A.0.)

kowski’s!! isotherm. 3111

= = K0, (A.1.6)

9= (NHRTIN(L + K&E) + 2 59
Y= (NORTINA+KX) +95 (69

9@°HA0, =

Conclusions

The thermodynamic model of a fluid/liquid interface was
presented. Among its most relevant characteristics are the
following: (i) It includes a redistribution of elastic energy A0, f
between formerly isolated phases when they are joined together
to form an interface. (ii) The description of the system suggested
by Sugimotd®!!is fully adopted. In that view (Figure 1), the ~ Which once evaluated gives
interface consists of two subphases, each one adjacent to a bulk 5 5
phase. Each subphase can store potential energy, and the 2 _ Yx) _ _ Y
interfacial energy can be expressed as a sum of two terms, each 9@ HA0, = k“"é”(lp(z * 2) III(Z 2 )) (A.18)
belonging to a subphase. (iii) The equalization of chemical
potential as a condition of equilibrium (or quasi equilibrium) is BecauseW(2) is a smooth continuous function, it can be
maintained. Equalizing the chemical potential of the absorbent developed in Taylor series up to first order for length2
between the bulk phases and the interface reproduces thearoundz, giving the following expression
adsorption isotherms most frequently used. (iv) The interfacial ) (3w
tension can be expressed in terms of the activity of only one 2 _ Z) _ ( Z)
component of the system at the interface. 9@ H A, = K0z ( 02 =ki0z 0z (A1.9)

z—— (9() )

o
A\
dz=k,0, [ ;2
Tf”% 0z
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Appendix A: Meaning of the Elastic Field k.o, (31;;(2))
When an elastic field produced by a normal tensiq=F/ 9@ = AH, (A.1.10)
A), propagates in a continuous media alongzhbgis, the unitary
deformationg can be expressed?s Appendix B: Surface Tension
oW In terms of the present theory, the interfacial tension is equal
~ Tz (A.l1) to the sum of the elastic energy accumulated within each

contributing mesoscopic plang. Thus, the free energy of
where W is the deformation field. The relation between the subphases, is equal to
normal tension and the unitary deformation is usually written
as AT Ay = ZA”kAy”" (B.1)
3111

T=Ye= Y (A1.2) Substituting eq 30 on the right-hand side of eq B.1
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ATy = Zzgf(z)hi(z)m?k (B.2)

Once equilibrium is attained, a profile in the molar density of

species from the bulk phase. (z= —) up to the interfacez
= Q) is created. It is represented by the quantifz) yi(z) which
is strongly dependent on positian

AN = A"N(2y(DAz, (8.3)

whereAz,, is the width of planer.

If the sum in eq B.2 is substituted by an integral over infinite

planes of with & from bulk o (z= —) up to the interfacez

AeAy*= [OAS GF@Oh@Ny iz (B4)

whereA; is the area of an infinitesimal plang(z) located at.

In the case of an interface,= oa + o8, the integration of
eq B.4 extends from bulkt (z = —) to bulk  (z = +),
giving

KAy = [TTAS 9 @Dh@Ny dz (85

Castellanos et al.

where ¢ is equal toa (— < z —¢) or  (+e€ < z < +o0)
depending on the position of the planezn
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