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Combination of the reaction energy, a thermodynamic index, with structural descriptors, such as the force
constants associated with the reactant and products potential wells, allows us to define a new index that
quantifies the position of the transition state and classifies reactions in terms of their Hammond or anti-
Hammond character. Switching from the classical restricted Hammond behavior to a general behavior, in
which the position of the transition state is not only conditioned by energy comparisons, occurs through
adding a new term accounting for the structural effects in the potential-energy function. It is shown that these
effects strongly influence the position of transition states but leave the barrier height practically unchanged.
Analysis of 27 chemical reactions of different types, such as rotational isomerizations, SN2, and intramolecular
reordering reactions, provides strong support to the model presented here.

1. Introduction

The Hammond postulate (HP)1 is a central concept in physical
chemistry because of the constraints it establishes on the position
of a transition structure in terms of the energies of reactants
and products. Indeed, the HP asserts that the transition state
(TS) on a single-step reaction will be located nearer the
stationary state with the higher energy content. In other words,
exothermic reactions will have anearly barrier, while endo-
thermic reactions are supposed to presentlatebarriers. Although
its qualitative nature is evident, the HP has been invoked
extensively as a tool to get insights about the structure of the
TS from the knowledge of reactants and products. A word of
caution is to be considered here;2 the HP, as originally stated,
does not necessarilly hold when the activation energy is big
compared to the reaction energy.

Various formulations and variations of the HP have been
proposed over the years, and there exist several principles and
theories that may be regarded as quantitative formulations of it
(see ref 3 and references therein). Among them, the Leffler
postulate4 has been named by Murdoch5 an “extended Hammond
Postulate”. Leffler’s postulate asserts that the partial derivative
of the energy barrier with respect to the reaction energy equals
the position of the TS, that along a reduced reaction coordinate
defines the Brønsted coefficient. It is worth mentioning a very
successful approach by Miller6 that leads to an expression for
the position of the TS that is independent of the functional form
of the reaction coordinate. Agmon3 recovered Miller’s expres-
sion using the bond order as a reaction coordinate for simple A
+ BC f AB + C reactions. To the best of our knowledge,
Miller’s expression seems to be the most successful approach
in quantifying the HP from a purelyclassicalpoint of view.

Among more recent approaches, it is worth mentioning the
use of similarity indexes to quantify the vague notion oflate
andearly TS. Within these, Cioslowski7 proposed a similarity
index based on the reduced first-order density matrices that
accounts for the structural distance between two species.

Although structural distance is in itself a slippery concept, it
has been widely used within different existing approaches.8

Because structural distance is not uniquely defined, it cannot
give exact accounting for the HP. Furthermore, the nonunique-
ness of the structural distance definition allows dramatic changes
in the relative location of a TS with respect to reactants and
products, and hence, stating that a particular process “violates
the Hammond postulate” is dangerous because the very same
process that violates it under a given definition of the structural
distance may perfectly hold under another one. Arteca and
Mezey9 stated, while studying molecular shapes and its changes
along reaction paths, that “the reinterpretation of the Hammond
Postulate according to similarity defined by shape descriptors
may reclassify some reactions, showing a formal violation
according to the standard formulation”. The bottom line of this
line of argument is that we must accept that while the HP seems
to hold on a particular framework, it may fail according to
another one. One way around it would be to accept a particular
choice of similarity and provide a model flexible enough to
accurately account for the cases that follow the HP, as well as
for those that do not.

In this article, expressions that quantify what we call extended
Hammond postulate (EHP) through the position of the transition
state are proposed. Within this model, Hammond as well as
anti-Hammond processes are accounted for; both behaviors can
be rationalized through the topological properties of the potential
energy surface in the directions that lead to the transition
structure in theN-dimensional configurational space.

It is widely accepted that the force constants associated with
the reactants and product potential energy wells are responsible
for the anti-Hammond behavior.10,11 Indeed, small changes in
the force constants may modify the topology of the energy
profile along the reaction coordinate enough to overcome the
tendency imposed by thermodynamics through the Hammond
postulate. The explicit consideration of force constants of
reactants and products is what makes our model flexible enough
to account for the EHP. While the HP is based on the reaction* To whom correspondence should be addressed. E-mail: atola@puc.cl.
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energetics only, the EHP also considers the force constants
associated with the reactant and product potential wells.

The EHP herein outlined attempts to classify reactions as
Hammond or anti-Hammond through qualitative and quantitative
descriptors readily available from the present analysis. A
generalized, quantitative version of the Hammond postulate
should be applicable to every kind of process. Indeed, our
approach is applicable even in cases in which the reaction energy
is rather small when compared to the activation energy, one of
the most important drawbacks of the original postulate.2

This article is organized as follows. After succinctly introduc-
ing the reader to the model potential used throughout the article,
the general results leading to a flexible description of the reaction
profile are presented. During such analysis, we introduce indexes
capable of classifying and quantifying the EHP through the
position of the transition structure. In section 3, the theoretical
models used in the calculations and parameters necessary for
analyzing different chemical processes are discussed. Section
4 presents applications of the EHP to rotational isomerizations
and other chemically interesting processes. Section 5 contains
our concluding remarks.

2. Theoretical Model

2.1. Torsional Potential.In previous articles,12-15 the usage
of symmetry-adapted limited Fourier series (LFS) expansions
as an appealing choice for describing rotational isomerization
processes was discussed. Such conformational functions along
a torsional angleR were conveniently expressed as follows:

where∆V0 ) V(RP) - V(RR) is the reaction energy andkP and
kR are the force constants associated with the reactant (R) and
product (P) potential wells.

It is useful to define the reduced reaction coordinate (RRC),
ω, which for the case of rotational isomerizations can be
expressed as follows:15

Applying the inverse transformation to eq 1, we obtain

It is interesting to note that eq 5 can be regarded as a general
potential function describing the energy evolution along a RRC
for a general single-barrier process. Only whenω is given by
eq 4, the symmetry-adapted LFS expansion for the torsional
potential arises. Hence, eq 5 is a general potential that for
particular choices of the RRC takes the apropiate form for that
particular problem. Moreover,V0[ω] has been successfully used
for the rationalization of various chemical processes, although

the explicit RRCs were not known in most cases.16 Indeed, we
have previously described an approach,15-17 based on the
potentialV0[ω], for quantifying the Brønsted coefficient,â, a
parameter that gives the position of the TS along the reaction
coordinate:

whereâ quantifies the HP because any shift from the value 0.5
depends only on the sign of∆V0, that is, for exothermic reactions
∆V0 < 0 leads toâ < 1/2 while for endothermic reactions∆V0

> 0 impliesâ > 1/2, in consistency with what is expected from
the HP.

V0[ω] is also consistent with the Leffler’s postulate, which
ensures that the derivative of the activation energy∆Vq with
respect of the overall energy change∆V0 equals the position of
the transition state:4

Replacing the expression forâ in V0[ω], we obtain an expression
that quantifies the energy barrier,∆Vq, that is consistent with
the Hammond and Leffler postulates:

This expression is the Marcus equation.18 It must be stressed
that all of these quantities depend only upon two parameters,
KV and∆V0, so the above formulas provide useful and rather
simple tools for characterizing the transition state of Hammond
processes.15-17

2.2. Characterization of Hammond and anti-Hammond
Processes.Let us go further and use the whole potential function
(eq 5) to define the coefficientγ through the first derivative of
eq 5 evaluated atω ) 0.5, the midpoint between reactants and
products:

Note thatγ can be seen as a structural and thermodynamic index
because it includes the overall change of both the force constants
through ∆k0 ) kP - kR and the total energy through∆V0.
Evidently, the sign ofγ indicates whether the TS is located
nearer the products (positiveγ) or nearer the reactants (negative
γ). Then, for the case of endothermic processes (∆V0 > 0), we
have (see Figure 1a)

whereâ0 stands for the actual position of the TS of the reaction.
For exothermic processes (∆V0 < 0), it can be similarly stated
that (Figure 1b)

Note that the signs ofγ and∆V0 are the same for Hammond
cases while they are opposite for anti-Hammond ones; therefore,

V(R) ) V0(R) + V1(R) (1)

V0(R) ) 1
2
∆V0(1 - cosR) + 1

4
(kR + kP)(1 - cos2 R) (2)

V1(R) ) 1
4
(kR - kP - ∆V0)(1 - cos2 R)cosR (3)

ω(R) ) 1
2
(1 - cosR) ω ∈ [0, 1] (4)

V[ω] ) V0[ω] + V1[ω] (5)

V0[ω] ) ∆V0ω + KVω(1 - ω) KV ) kP + kR (6)

V1[ω] ) (∆k0 + ∆V0)ω(1 - ω)(2ω - 1)

∆k0 ) kP - kR (7)

dV0[ω]

dω |
ω)â

) 0 w â ) 1
2

+ ∆V0

2KV
(8)

∂∆Vq

∂∆V0
) â ) 1

2
+ ∆V0

2KV
(9)

V0[â] ≡ ∆Vq ) 1
4
KV + ∆V0

2
+

(∆V0)2

4KV
(10)

dV[ω]
dω |ω)0.5

) 1
2
(3∆V0 + ∆k0) ) γ (11)

γ > 0 w â0 > 0.5 (Hammond process)

γ < 0 w â0 < 0.5 (anti-Hammond process)

γ < 0 w â0 < 0.5 (Hammond process)

γ > 0 w â0 > 0.5 (anti-Hammond process)

3988 J. Phys. Chem. A, Vol. 107, No. 19, 2003 Bulat and Toro-Labbe´



one can safely claim that for Hammond processes

while for anti-Hammond processes

a result that is summarized as follows:

Note that also whenγ ) 0 and thenγ/∆V0 ) 0 the reaction is
always anti-Hammond unless∆V0 ) 0 andkR ) kP because
symmetric reactions lie within the Hammond type of reactions,
as confirmed by eq 9. In such a case, the indexγ/∆V0 is not
defined.

It is quite clear by now that what corrects the rigidity of the
potentialV0[ω] is the explicit consideration of an additional
degree of freedom, namely,∆k0, through the inclusion of
V1[ω]. Figure 2a) shows the effect of such a parameter by
plotting the family of curves spanned by a fixed set of{∆V0,
KV} (arbitrarily taken as∆V0 ) 1 andKV ) 10) values while
allowing ∆k0 to vary from -0.8KV to 0.8KV in a 0.2KV step
thus obtaining∆k0 ) -8, -6, ..., 0, ..., 6, 8. Note in Figure 2
the case∆k0 ) -∆V0 (thick line) in which V[ω] ) V0[ω]

because∆V0 + ∆k0 ) 0 and thenV1[ω] ) 0. Note that
according to the∆k0 value (for a given{∆V0, KV}) a particular
process might present either alate or anearly TS.

It is also worth noting that the value of the potential atω )
0.5 is independent from∆k0, which turns out to be quite obvious
becauseV1[0.5] ) 0 (V[0.5] ) V0[0.5] ) 1/4KV + 1/2∆V0). So
far, the pointω ) 0.5 presents two remarkable properties,
namely, a derivative that qualitatively classifies a given process
through theγ index and a value for the potential that is
independent of∆k0.

Another conclusion drawn from Figure 2 is that while∆k0

strongly influences the TS position, it has little effect on the
barrier height. Indeed, takingV0[ω] as reference (thick line, with
the TS atâ ) 0.55), as shown in Figure 2a, a-0.8KV value for
∆k0 locates the TS position at 0.39 (roughly 30% from the
reference value of 0.55), while the change in the barrier height
amounts roughly to 4%. On the other hand, using∆k0 ) 0.8KV,
we obtain the position of the TS at 0.68 (roughly a 24% change)
and the change in∆Vq goes up to 17%. It must be stressed that
such variations are limiting cases and in practice the∆k0/KV

values are negative for endothermic cases and positive for
exothermic reactions because fordeeperpotential wells force
constants are expected to be quite high. In fact, we could further
constrain the∆k0 values to the interval [-KV, 0] for ∆V0 > 0
reactions while to [0,KV] for ∆V0 < 0 cases because

Figure 1. Sketch of (a) endothermic and (b) exothermic (s) Hammond
and (- - -) anti-Hammond processes. Figure 2. Curve family (a) spanned by fixed{∆V0, KV} and-0.8KV

e ∆k0 e 0.8KV. V0[ω] at {∆V0, KV} is shown by the thick line. The
circles show the position of the TS. The horizontal gray line is located
at V[0.5] ) V0[0.5] ) KV/4 + ∆V0/2. Panel b shows a close up of the
TS region of panel a narrowing the range of∆k0 within the interval
-0.8KV e ∆k0 e 0.γ

∆V0
) 3∆V0 + ∆k0

2∆V0
> 0

γ
∆V0

) 3∆V0 + ∆k0

2∆V0
< 0

γ/∆V0 γ > 0 γ < 0

∆V0 > 0 Hammond anti-Hammond
∆V0 < 0 anti-Hammond Hammond
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Hence, as seen in Figure 2b (∆k0 ∈[-KV, 0], ∆V0 > 0), we
should expect small variations for the barrier heights (less than
4%). It should be stressed that such variations on∆k0 tend, in
general, to shift the TS position toward the anti-Hammond
behaviors.

2.3. The Brønsted Coefficient.In the previous section,
interesting information concerning the type of process was
obtained with the sole usage of three parameters (kR, kP, and
∆V0). Now, an expression for the Brønsted coefficient by
maximizingV[ω] can be obtained:

Note thatâ′ * â becauseâ was obtained fromV0[ω]. Solving
for â′ and choosing the correct solution of the quadratic
equation, we obtain the following expression accounting for the
position of the TS:

The fact thatâ′ is a maximum is ensured because the second

derivative ofV[ω] at â′ is given by-2x3(∆V0+∆k0)γ+KV
2,

and hence, for real values ofâ′, it necessarily corresponds to a
maximum. In the present framework, an analytic expression for
∆Vq presents no practical interest because of the complicated
expression that is encountered by puttingâ′ into V[ω]. Never-
theless, the numerical values ofâ′ can be introduced in eq 5
providing values for the energy barrier (∆V′q) that are compa-
rable to those obtained through the use of eq 10.

In a recent article,19 it has been shown that a good ap-
proximation toâ′ can be obtained through the use of bifurcation
theory (BT); this leads to

This is a very important result because it shows a linear
relationship between the position of the TS andγ/KV, which
suggests that theγ coefficient may be used not only to classify
but also to quantify the EHP through the position of the TS.
Even more, by substitutingâBT into V[ω], one obtains an
expression for the energy barrier (∆VBT

q ), which can be conve-
niently expressed in terms of the Marcus equation (∆Vq):

Note that these expressions, eqs 13 and 14, are consistent with
theV[ω] separation intoV0[ω] andV1[ω], that is, when∆k0 +
∆V0 ) 0 then V[ω] ) V0[ω] and the Marcus equation is
recovered from eq 14 whileâ is recovered from eq 13. The
expression forâBT in terms ofâ,

is seen as a correction toâ by the term (∆V0 + ∆k0)/(4KV),
which may become quite important, while the perturbation to
the Marcus equation shown in eq 14 is quite small. Hence,
within this new framework, the Marcus equation continues to
be reliable.

It is interesting to note the similar structure that both the HP-
and EHP-consistent indexes (â andâBT) present:

where f[ω] corresponds to eitherV0[ω] or V[ω]. When using
V0[ω], the above expression leads toâ (eq 9); the thermody-
namic index∆V0 in eq 9 is replaced by a combined structural-
thermodynamic indexγ when the complete potential function
V[ω] is used instead, thus switching from the HP to the EHP
behaviors.

2.4. Extension to Nonrotational Systems.So far, strictly
speaking, all of these results are mainly applicable to rotational
systems, for which the potential was originally proposed.12

Nevertheless, as stated in section 2.1, the expression forV[ω]
can be seen as a generalized potential function in a RRC, which
takes specific functional forms when specific RRCs are used,
as is the case for rotational isomerizations. The main difficulty
in applying our results to nonrotational processes is the
calculation of force constants for reactants and products. While
for rotational isomerization a simple formula is readily avail-
able,15 for other kinds of reactions the scheme is more
complicated. Evidently, it would be desirable to be able to use
ab initio or experimental force constants.

Evidently, when one uses the Marcus equation to estimate
KV, from the knowledge of the reaction and activation energies,
the coordinate system is the generalized RRCω. If we were
able to determine the individual force constants (or just∆k0) in
the same coordinate system, we would avoid the need for
explicit expression for the RRC, as eq 4 for the rotational cases;
this is not a simple task. Fortunately, this situation can be
circumvented when noting that∆k0 can be expressed as follows:

This expression for∆k0 is quite convenient because the value
obtained for it is consistent with the coordinate system for the
KV value (for example, arising from the Marcus equation).

Murdoch,5 when analyzing the conditions leading to Miller’s
expression for the TS position,6 stated that “Theoretically, it is
quite mysterious why the barrier position should be independent
of the specific functional form of the reaction coordinate and
should depend only on the barrier height and the reaction
thermodynamics”. This is precisely what happens also with
Marcus equation, and hence, the use of it for the estimation of
KV and∆k0 through eq 16 makes itindependentof the reaction
coordinate. This fact reinforces the relation ofâBT with empirical
indexes such as the Brønsted coefficient. This is truly the case
because our proposal is to treatâBT as a correction toâ arising
from V0[ω].

Using eq 16, we may rewriteâBT as

which is the expression used in the estimation of the TS position

1
2

+ 1
2KV

(df [ω]
dω )

ω)0.5

∆k0 ) KV(Ck - 1

Ck + 1) Ck )
kP

kR
(16)

âBT ) â + ∆V0

4KV
+ 1

4(Ck - 1

Ck + 1) (17)

∆V0 > 0 f kP e kR f ∆k0 < 0

∆V0 < 0 f kP g kR f ∆k0 > 0

dV[ω]
dω |ω)â′

) 0

â′ ) 1
2

+
x6(∆V0 + ∆k0)γ + KV

2 - KV

6(∆V0 + ∆k0)
(12)

â′ ≈ âBT ) 1
2

+ 3∆V0 + ∆k0

4KV
) 1

2
+ γ

2KV
(13)

V(âBT) ≡ ∆VBT
q )

∆Vq +
(∆k0 + ∆V0)

4KV (∆k0 + 5∆V0

4
- γ3

KV
2) (14)

âBT ) 1
2

+ ∆V0

2KV
+ ∆V0 + ∆k0

4KV
) â + ∆V0 + ∆k0

4KV
(15)
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for nonrotational systems withKV coming from the Marcus
equation and∆k0 from eq 16.

3. Computational Methods

Different model chemistries were used to address different
kinds of problems throughout this article. Indeed, because very
different processes are herein studied, the theoretical methods
range from Hartree-Fock to coupled-cluster techniques. Table
1 shows the different reactions studied, the level of calculations
employed to address each of them, and the corresponding
references on each subject. Figure 3 sketchs the different kinds
of processes studied. For all calculations, we have used the
Gaussian 98 package20 to perform full geometry optimizations
at each stationary state of all systems; frequency calculations
indicated whether they correpond to local minima or first-order
saddle points.

The force constants (kR)transandkP)cis) for rotational isomer-
izations were obtained through the following expression, which
required additional points on the PES:12-15

whereNp is the number of computed energy points used to fit
local potential wells at R and P,V(Ri) is the energy at the point
Ri andCi,n are the elements of the inverse matrix [cos(iRn)]-1.
It has been shown that thekR/P values are, to a good approxima-
tion, independent ofNp and usingNp ) 2 leads to quite good
results out of few energy points. Considering that the trans
isomer is defined to be atR ) 0° and hence the cis isomer to
be atR ) 180°, kR ) kt can be determined from the energy
pointsR1 ) 0° andR2 ) 10°, while kP ) kc can be estimated
from the energy pointsR1 ) 170° andR2 ) 180°.15

Throughkt and kc, the parametersKV and ∆k0 are readily
estimated, and hence,γ, â, â′, andâBT can be estimated through
eqs 11, 8, 12, and 13, given the reaction energy∆V0 from the
ab intio calculations. The energy barrier may be estimated from
eqs 10 and 14. Alternatively,KV may be estimated from eq 10

if ∆Vq is known from the ab initio calculations. In such a case,
∆k0 may be estimated through eq 16 with the dimensionless
ratioCk ) kP/kR estimated from ab initio frequency calculations
at R and P. Consequently, the values forγ, â, â′, andâBT can
be reevaluated. These two methodologies are used throughout
the numerical estimations when appropriate.

Reactions R1-R17 correspond to rotational isomerizations.
The data for R1-R5 has been taken from previous studies15 in
which the force constants,kR andkP, have been estimated using
eq 18. The force constants for reactions R6-R17 have been
determined by both eq 18 and the ab initio calculations. The
remaining reactions, that is, R18-R27, correspond to SN2
reactions (R18), intramolecular proton transfers (R19-R21, R24,
and R25), and rotational isomerizations (R22, R23, R26, and
R27). For all of these reactions, the force constants have been
estimated from ab initio frequency calculations.

While for rotational isomerizations the RRC is explicitly
defined and depends only on the dihedral angle, its optimized
value at the TS may be used in eq 4 to estimate the actual
position of the TS along the RRC,â0. The estimated values for
the Brønsted coefficient must be compared with the reference
â0 value. As for nonrotational processes, there is no RRC

TABLE 1: Studied Processes and Model Chemistries

number reactant product method refs

R1 t-HSNS c-HSNS HF/6-31G(d,p) 15
R2 t-FSNO c-FSNO HF/6-31G(d,p) 15
R3 t-CHO-CHO c-CHO-CHO HF/6-31G(d,p) 15
R4 t-CFO-CHO c-CFO-CHO HF/6-31G(d,p) 15
R5 t-CClO-CHO c-CClO-CHO HF/6-31G(d,p) 15

R6 t-CHO-CHO c-CHO-CHO HF/6-311G(d,p) 21
R7 t-CFO-CHO c-CFO-CHO HF/6-311G(d,p) 21
R8 t-CClO-CHO c-CClO-CHO HF/6-311G(d,p) 21
R9 t-CHO-CHO c-CHO-CHO HF/6-311++G 21
R10 t-CFO-CHO c-CFO-CHO HF/6-311++G 21
R11 t-CClO-CHO c-CClO-CHO HF/6-311++G 21
R12 t-CHO-CHO c-CHO-CHO HF/6-311++G(d,p) 21
R13 t-CFO-CHO c-CFO-CHO HF/6-311++G(d,p) 21
R14 t-CClO-CHO c-CClO-CHO HF/6-311++G(d,p) 21
R15 t-CHO-CHO c-CHO-CHO B3LYP/6-311++G(d,p) 21
R16 t-CFO-CHO c-CFO-CHO B3LYP/6-311++G(d,p) 21
R17 t-CClO-CHO c-CClO-CHO B3LYP/6-311++G(d,p) 21

R18 Cl- + CH3F ClCH3 + F- B3LYP/6-311++G(df,pd) 22
R19 H2CC: HCCH CCSD/6-311G(d,p) 23
R20 HONS HSNO HF/6-31G(d) 24
R21 H2SO HSOH HF/6-31G(d) 24
R22 t-HOCdSH c-HOCdSH HF/6-311G(d,p) 12
R23 t-HOCdSH c-HOCdSH B3LYP/6-311G(d,p) 12
R24 t-HOCdSH t-HOdCSH HF/6-311G(d,p) 25
R25 t-HOCdSH t-HOdCSH B3LYP/6-311G(d,p) 25
R26 t-HOdCSH c-HOdCSH HF/6-311G(d,p) 12
R27 t-HOdCSH c-HOdCSH B3LYP/6-311G(d,p) 12

kR/P ) -∑
n)1

Np

∑
i)1

Np

n2Ci,n cos(nRR/P)V(Ri) (18)

Figure 3. Reactions considered in the present study. For R3-R17,
when X ) H the reactions are R3, R6, R9, R12, and R15, when X)
F the reactions are R4, R7, R10, R13, and R16, and when X) Cl the
reactions are R5, R8, R10, R14, and R17.
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expression; hence,â0 is not defined, and our reference will be
defined in terms of the following structural distance:

whereD i,j
X are the elements of the distance matrix for structure

X and N is the number of atoms inX. Because the distance
matrix hasN(N - 1)/2 distinct elements and anyN-nuclei
structure has 3N - 6 degrees of freedom, it is evident that the
distance matrix completely specifies a rigid body becauseN(N
- 1)/2g 3N - 6 for all N g 3 (in fact, whenN > 4, it specifies
an overrigid body). This definition can be shown to correspond
to a metric of a 3N - 6 configurational space. The measure of
the relative distance from reactants to TS,

should be comparable to the Brønsted coefficient. Althoughτ
does not correspond to theadVancement of the reactionat the
TS because this later should be related to the length of the
reaction path, it should in general provide a reference for the
relative TS position.

4. Results and Discussion

4.1. Rotational Isomerization Reactions: R1-R17. The
Barrier Height and the HP BehaVior. It was stated in section
2.2 that the barrier height should not be affected by the
correctionV1[ω] to the model potentialV0[ω] (see Figure 2).
Table 2 shows the calculated (∆V0

q) and estimated energy
barriers (through both eqs 10 and 14, entries∆Vq and ∆VBT

q ,
respectively). It is quite obvious that the term that is summed
up to the Marcus equation to yield∆VBT

q (eq 14) is fairly small
because practically there is no variation from the∆Vq values.
This result confirms the statement of section 2.3 suggesting that
unlike the TS position the height of the barrier is not affected
by structural parameters such as∆k0.

While the Hammond or anti-Hammond character of a given
process may be determined by observing the TS position along
the RRC and the sign of∆V0, the newly proposed coefficients
γ andγ/∆V0 provide a precise characterization of the processes
in terms of the HP. Table 2 also showsâ0 (theactual location
of the TS),γ, andγ/∆V0 indexes (force constants through eq

18, shown in Table 3). Except for R1 and R2, all reactions are
endothermic,∆V0 > 0 (see Table 3); accordingly, through the
HP, we should expect the TS for R1 and R2 to beearly and
those for R3-R17 to belate. We see that this is not the case
for reactions R1 and R2 withâ0 > 0.50 and R10, R11, and
R17 with â0 < 0.50. Note that theγ/∆V0 index successfully
identifies those reactions as anti-Hammond processes (see the
type entry); this confirms the reliability ofγ/∆V0 as a qualitative
index.

Note that, strictly speaking, reactions R4, R8, and R14, for
which the TS is located midway between reactants and products
(with ∆V0 * 0), correspond also to anti-Hammond behaviors;
our γ/∆V0 index fails in assigning the right behavior to these
reactions. Evidently, when the TS is close toâ ) 0.5, theγ
index should be close to zero (see theγ value for R4). Hence,
small numerical error in the estimation of the force constants
may easily shiftγ from a negative to a positive value or vice
versa. Although theγ value for R4 is small, indicating a TS
around 0.5, it is not the case for R8 and R14. Nevertheless, if
the ab initio force constants are used to estimateγ, theγ/∆V0

values for R8 and R14 are reevaluated to 0.02 and-0.21. This
better qualitative classification is clearly a consequence of the
more accurateγ index, which provides a better agreement with
the â0, as seen in Table 3.

The Brønsted Coefficient.Table 3 shows the reaction energy,
the force constants (through eq 18),â0, and the Brønsted
coefficients from eqs 8, 12, and 13,â, â′, andâBT, respectively.
The value in parentheses under theâBT entry is estimated from
the ab initio force constants (not shown).

As seen from Table 3, theâ coefficient, which follows from
a HP-consistent potential function, assignslateor earlybarriers
to all processes according to Hammond’s postulate, although
some of them are not Hammond-like processes as can be seen
from the type assignment.â′ andâBT present almost identical
numerical values, although the later is a drastic approximation
to â′. This is, in general, a consequence of the range of validity
of âBT in the parameter space. Although it will not be discussed
here, it is worth mentioning that chemical reactions, within the
range studied in this article, span a very narrow subspace of
the parameter space, which coincides with the also narrow
subspace of validity of the BT approximation.19

It is noteworthy thatâBT successfully estimates all of the
rotational barriers to belateor earlyaccording to the Hammond
or anti-Hammond character of the processes, except in the case
of R8 and R14. The values in parentheses under the entryâBT,

TABLE 2: Calculated and Estimated Energy Barriers, TS
Positions, and Type Assignment According toγ/∆V0a

system ∆V0
q ∆Vq ∆VBT

q â0 γ γ/∆V0 type

R1 12.63 13.38 13.38 0.53 0.69-4.60 aH
R2 12.76 13.89 13.87 0.52 0.81-0.36 aH
R3 7.81 7.22 7.04 0.60 4.50 0.79 H
R4 5.29 4.45 4.44 0.50 0.03 0.03 H
R5 5.33 4.80 4.71 0.52 0.75 0.31 H
R6 6.84 6.18 6.16 0.58 5.34 0.98 H
R7 4.55 3.88 3.86 0.51 1.51 0.86 H
R8 4.09 3.60 3.52 0.50 1.28 0.58 H
R9 6.83 6.40 6.20 0.57 4.54 0.81 H
R10 4.17 3.29 3.28 0.48 -0.19 -0.25 aH
R11 3.79 3.22 3.12 0.49 -0.17 -0.09 aH
R12 6.41 5.89 5.84 0.65 5.34 0.95 H
R13 4.12 3.41 3.37 0.52 1.41 0.75 H
R14 3.36 2.74 2.62 0.50 0.91 0.45 H
R15 5.95 4.93 4.97 0.61 4.72 1.05 H
R16 3.19 2.43 2.44 0.52 1.16 1.13 H
R17 2.58 1.91 1.86 0.47 -0.13 -0.13 aH

a Energies in kcal mol-1.

TABLE 3: Calculated and Estimated TS Positions (Brønsted
Coefficients) and Type Assignments According toâ0

a

system ∆V0 kR kP â0 â â′ âBT type

R1 -0.15 26.00 27.83 0.53 0.50 0.51 0.51 aH
R2 -2.21 25.83 34.07 0.52 0.48 0.51 0.51 aH
R3 5.69 11.74 3.66 0.60 0.68 0.66 0.65 H
R4 0.80 9.25 6.90 0.50 0.52 0.50 0.50 aH
R5 2.43 9.86 4.06 0.52 0.59 0.53 0.53 H
R6 5.44 8.43 2.78 0.58 0.74 0.74 0.74 (0.63) H
R7 1.76 7.00 4.73 0.51 0.58 0.57 0.56 (0.52) H
R8 2.19 6.77 2.76 0.50 0.62 0.57 0.57 (0.50) aH
R9 5.60 9.72 1.99 0.57 0.74 0.72 0.69 (0.62) H
R10 0.77 7.11 4.42 0.48 0.54 0.49 0.49 (0.48) aH
R11 1.88 7.33 1.36 0.49 0.61 0.49 0.49 (0.44) aH
R12 5.63 7.44 1.22 0.65 0.83 0.83 0.83 (0.67) H
R13 1.87 6.15 3.36 0.52 0.60 0.58 0.57 (0.52) H
R14 2.01 5.26 1.05 0.50 0.66 0.58 0.57 (0.48) aH
R15 4.48 6.16 2.15 0.62 0.77 0.77 0.78 (0.61) H
R16 1.03 4.14 3.37 0.52 0.57 0.58 0.58 (0.51) H
R17 0.96 4.33 1.20 0.47 0.59 0.49 0.49 (0.42) aH

a Energies in kcal mol-1; force constants in kcal mol-1 rad-2.

d(A,B) ) ∑
i

N

∑
j<i

(D i,j
A - D i,j

B)2 (19)

τ )
d(R,TS)

d(R,TS) + d(TS,P)
0 < τ < 1 (20)
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which were determined from ab initio force constants withω1

as the active normal mode, in most cases improve the results
and in particular in the case of R8 and R14. While it might
appear evident that this improvement is due to the more accurate
force constant ratioCk from the ab initio calculations, part of
the improvement actually comes from a better estimate ofKV

when obtained from the Marcus equation.
4.2. Intramolecular Reordering Reactions: R18-R27.

Table 4 shows the energies of reactant, transition state, and
products of the R18-R27 reaction set. Along with them, the
normal vibrational mode that leads rectants and products into
TS is shown; these normal modes have frequencyν and force
constantsk. As outlined in section 2.4,KV arises from the
Marcus equation (using calculated∆Vq) and Ck, the ratio
between the ab initio force constants. Remember thatτ is an
index defined through the distance matrix (eq 20), whereasâ
and âBT arise from V0[ω] and V[ω] potential functions,
respectively. Values ofâ andâBT should be compared with the
referenceτ index. For R22, R23, R26, and R27â andâBT have
to be compared with the value in parentheses under theτ entry,
which corresponds toâ0, because these reactions also correpond
to rotational isomerizations.

In general, there is good agreement between bothâ andâBT

and theτ index, although theâBT values are in better agreement
with τ specially in R18-R21. For those cases, the mean absolute
deviation (MAD) of â and âBT from τ is 0.09 and 0.03,
respectively. Within the rotational processes (R22, R23, R26,
and R27), the deviation with respect toτ is 0.04 for bothâ and
âBT. Nevertheless, when compared with theâ0 values (in
parentheses),âBT shows a far better agreement thanâ (MAD
equals 0.01 and 0.04, respectively). For R24 and R25 theâ

andâBT are quite similar, while theτ index deviates from them
in almost the same amount. Note that R24 and R25 correspond
to the same proton-transfer reaction at different levels of theory.

The overall good agreement ofâBT with τ is indeed an
interesting result, although it should be noted that comparisons
should not be taken too far because of the very different nature
of these two indexes.

5. Concluding Remarks

An extension of the Hammond postulate that includes
structural information in the characterization of the Hammond
or anti-Hammond behavior of chemical reactions was presented.
It has been shown that the inclusion of the force constants
associated with reactants and products through an additional
structural parameter makes the difference between the HP and
the EHP; the thermodynamic tendency imposed by the HP is
modulated, or surpassed, by the structural characteristics of
products and reactants.

It has been shown that switching from HP to EHP behaviors
through adding a new term in the potential energy function
strongly influences the TS position through the structural-
thermodynamic indexγ, which determinesâBT, but has little
effect on the barrier height. The Marcus equation for the energy
of the transition state remains, to a large extent, valid within
the EHP scheme.

The theoretical development presented is strongly supported
by the numerical results allowing a complete characterization
of different types of chemical reactions.
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TABLE 4: Estimated TS Positions (Brønsted Coefficients)a

system species energy active mode ν k Ck KV âBT τ(â0) â

R18 R 0.00 ω4 943.4 5.09
TS 27.40 0.23 34.1 0.94 0.96 0.90
P 27.03 ω4 392.7 1.1724

R19 R 0.00 ω1 268.2 0.06
TS 5.13 6.40 84.3 0.30 0.33 0.25
P -42.69 ω4 750.8 0.36

R20 R 0.00 ω5 1230.1 1.90
TS 39.82 0.48 174.9 0.38 0.30 0.48
P -8.01 ω4 1927.7 0.92

R21 R 0.00 ω3 1208.1 1.06
TS 39.20 1.08 216.7 0.39 0.39 0.43
P -32.39 ω4 1341.3 1.15

R22 R 0.00 ω2 723.0 0.42
TS 14.53 0.43 44.5 0.51 0.55 (0.52) 0.57
P 6.34 ω2 521.9 0.18

R23 R 0.00 ω2 693.1 0.40
TS 15.56 0.44 49.92 0.49 0.55 (0.51) 0.56
P 5.81 ω2 520.6 0.18

R24 R 0.00 ω1 509.2 0.73
TS 44.84 0.88 184.3 0.47 0.59 0.49
P -2.48 ω2 474.3 0.64

R25 R 0.00 ω1 466.1 0.59
TS 31.34 0.93 128.2 0.48 0.60 0.49
P -1.45 ω2 431.0 0.54

R26 R 0.00 ω1 422.4 0.13
TS 8.79 0.66 32.8 0.48 0.45 (0.48) 0.52
P 1.19 ω1 355.6 0.09

R27 R 0.00 ω1 428.3 0.13
TS 9.98 0.71 37.5 0.48 0.46 (0.49) 0.52
P 1.18 ω1 374.7 0.10

a Energies in kcal mol-1; force constants in mdyn A-1; frequencies in cm-1.
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