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In this paper, we present theory and implementation of the first method which combines coupled cluster and
molecular mechanics (CC/MM) theory. By introducing the interactions between the solute (QM) and the
solvent (MM) molecules into a coupled cluster Lagrangian, we calculate interaction and solvation energies of
condensed phase molecules. Also, we derive a hierarchy in the coupling between the two subsystems and
thereby study the importance of including the solvent polarization directly into the optimization conditions of
the solute wave function for calculation of energies. The method is tested on the water dimer. Furthermore,
calculations of the interaction and solvation energies of liquid water are presented.

I. Introduction

In recent years, the use of combined quantum mechanics and
molecular mechanics force fields (QM/MM)1-6 has been shown
to be very successful for the description of condensed phase
problems in chemistry. The success of this method is due to
the fact that the QM/MM method allows for a detailed
description of the interesting part of the system (QM), whereas
the solvent or surrounding medium (MM) may be described
using a much coarser method. In this way we may describe
large systems in an effective manner. This is important because
of the increasing interest in calculation of properties in biological
systems. Another reason for the importance of such methods is
the fact that most chemistry takes place in condensed phases
and the QM/MM method matches conceptually our way of
thinking of the system as a solute embedded in a solvent.

In the QM/MM approach, the interactions between the two
subsystems are usually modeled using classical expressions for
the interactions between charges and induced charges or induced
dipole moments. Furthermore, to account for dispersion and
short-range exchange-repulsion effects, a van der Waals term
is included in the interaction operator. The interactions between
the two subsystems may be treated using the commonly used
mean-field approach, but direct-field interaction approaches have
also been considered.7-10

Many of the presented QM/MM models combine semiem-
pirical electronic structure methods and molecular mechan-
ics4,5,11,12but the use of ab initio correlated and uncorrelated
descriptions of the QM system has also been presented13-26

together with density functional theory (DFT).27,28Also, quan-
tum mechanics have been combined with interatomic potential
functions.29-31 Other hybrid methods include the use of ab initio
quantum chemical calculations combined with the extended

reference interaction site model (RISM) for the liquid state32,33

and the effective potential method by Day et al.34

In this paper, we present theory and implementation of the
first QM/MM method which combines coupled cluster (CC)
and molecular mechanics, the CC/MM model.

The coupled cluster method has previously been shown to
be among the most successful electronic structure methods for
molecules in a vacuum.35,36For example, very accurate calcula-
tions of molecular equilibrium structures have been reported
using the coupled cluster method.37 Furthermore, the CC method
allows for a systematic increase in accuracy using a hierarchy
of CC methods, CCS, CC2, CCSD, CC3,38,39etc. (or SCF, MP2,
CCSD, CCSD(T) if only ground-state static properties are
studied). Thus, the combination of coupled cluster theory and
molecular mechanics allows us to extend this hierarchy of CC
methods from vacuum towards the condensed phase.

Recently, theory and implementation of the CC method
coupled to a dielectric continuum has been reported.40,41

However, in this model, the short-range interactions are poorly
described and the discrete nature of the surrounding medium is
completely neglected. The incorporation of short-range effects
may be obtained using a semi-continuum model,42-45 in which
some of the surrounding molecules are included in the quantum
system. However, the computational complexity is greatly
increased compared to the continuum model.

By using the CC/MM model we may, at relatively low
additional computational cost, introduce an improved molecular
coupling between the two subsystems and thereby avoid the
great computational expense associated with a semi-continuum
calculation. Thereby, we also avoid the difficulty of splitting
the total wave function into a solute and a solvent part in order
to calculate nonlocalized properties such as the polarizability
and hyperpolarizability tensors.46

The introduction of polarization effects in QM/MM theory
has previously been shown to be of great importance.11,12,17,47-49

To perform a systematic analysis of the importance of including
polarization effects directly into the optimization of the wave
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function, we introduce a hierarchy of four QM/MM models. In
each model, we describe the QM system using a correlated CC
wave function but the coupling to the MM environment is
treated at different levels of theory. To extract the importance
of electron correlation in the QM system, we also perform HF/
MM17 calculations of the interaction and solvation energies.
Therefore, we can combine the different hierarchies; a hierarchy
of CC models for the correlated description of the QM system,
a hierarchy for the one-electron basis set, and another hierarchy
concerning the coupling between the two subsystems. We note
that a hierarchy concerning the coupling between the two
subsystems has been proposed before but at the semiempirical
level of theory.50 Furthermore, the hierarchy described in this
work differs from the one in ref 50 because we are more
interested in the description of the perturbation of the wave
function due to a polarizable MM region.

The general aspects of the theory for CC/MM mean-field and
direct-field methods in relation to derivation of energies and
response functions has been discussed in ref 10. The focus of
the present manuscript is on the implementation and significance
of a Lagrangian approach when developing a coupled cluster
molecular mechanics method. We report theory and the first
implementation and test calculations of ground-state energies
for liquid water at the CCSD level of theory. Knowing the
present performance of coupled cluster methods, it is clear that
the numerical results obtained from a coupled cluster molecular
mechanics method are benchmark results at the present stage.

In section II, we present theory for the QM/MM model, and
the equations for the calculation of the polarization and
interaction energies are considered. Furthermore, we introduce
coupled cluster theory, and the optimization conditions for the
CC/MM wave function are derived. In section III, we outline
the computational details concerning the implementation of the
CCSD/MM model. Section IV contains results for a study of
the water dimer, and in section V, we present calculations of
liquid water. Finally, section VI contains a summary and a
discussion of future work using the CCSD/MM model.

II. Theory

This section presents the theoretical background for the CC/
MM method and is divided into three parts. In section A, we
present the QM/MM model including polarization effects, in B
the theory of the coupled cluster wave function in a vacuum,
and in C the theory of the CC/MM method.

A. QM/MM with Polarization Effects. In the QM/MM
approach, the total Hamiltonian is decomposed into three
contributions2-4,11

where ĤQM is the usual many-body vacuum Hamiltonian,
ĤQM/MM represents the interaction Hamiltonian, andĤMM

describes the classically treated part of the total system, which
is represented by moleculr mechanics (MM). In this paper, we
are mainly interested in the representation and calculation of
the interaction term. Employing a mean-field description10 of
this interaction, we may decompose the interaction Hamiltonian
into the following contributions:

The first term, Ĥel, represents the electrostatic interactions
between the electrons and the nuclei in the QM system and the
partial charges in the MM system. This term is described using

quantum mechanics. Thus,Ĥel is modeled as a simple Coulomb
interaction

where the electronic contribution is written as

and the energy due to the interaction of the MM partial charges
and the QM nuclei is written as

The indexs runs over all of the sites in the MM system which
is usually all of the MM atoms andqs is the charge at sites.
The vectorRBn is the position vector for thenth (QM) nucleus,
andZn is the corresponding nuclear charge. The position vector
for site s is labeledRBs, and the position vectors for the (QM)
electrons are denotedrbi. The set{|φq〉} represents the molecular
orbitals. The quantityÊpq is a one-electron excitation operator
written in terms of creation (âpσ

† ) and annihilation (âpσ) opera-
tors

whereσ refers to the projected spin.
To model dispersion and short-range exchange repulsion

effects, a van der Waals term,Ĥvdw, is included in the interaction
operator. Here, we choose to make use of a 6-12 type Lennard-
Jones potential

In eq 7 the indexa (m) refers to the center of mass of each
MM (QM) molecule. These sums may easily be extended to
summations over sites in the MM and QM molecules. However,
usually when describing solvation processes the quantum system
only consists of one QM molecule and in this case the sum
over m drops out of eq 7.

Finally, to model the MM polarization of the QM system
and vice versa, we use a semiclassical description of polarization
where a polarization term,Ĥpol, is included in the interaction
Hamiltonian

In eq 8 the operatorR̂ra is the QM electronic electric field
operator

and En(RBa) is the electric field, due to the QM nuclei, at the
center of massa of each MM molecule

Ĥ ) ĤQM + ĤQM/MM + ĤMM (1)

ĤQM/MM ) Ĥel + Ĥvdw + Ĥpol (2)

Ĥel ) -∑
s)1

S

N̂s + ES,N
el,nuc (3)

N̂s ) ∑
pq

〈φp| qs

|RBs - rbi||φq〉Êpq ≡ ∑
pq

npq
s Êpq (4)

ES,N
el,nuc) ∑

s)1

S

∑
n)1

N qsZn

|RBs - RBn|
(5)

Êpq ) ∑
σ

âpσ
† âqσ (6)

Ĥvdw ) ∑
a)1

A

∑
m:center[ Ama

|RBm - RBa|12
-

Bma

|RBm - RBa|6] (7)

Ĥpol ) -
1

2
∑
a)1

A

µa
ind·(R̂ra + En(RBa)) (8)

R̂ra ) ∑
pq 〈φp| rbi - RBa

| rbi - RBa|3
|φq〉Êpq≡ ∑

pq

tpq
a Êpq (9)
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The vector,µa
ind, is the induced dipole moment at the center of

massa of each MM molecule. In a linear approximation, the
induced dipole moment is related to the total electric field,
Ea

total

wherera is the polarizability tensor at the center of mass of
each MM molecule. The total electric field has four contributions

whereEs(RBa) is the electric field due to the MM partial charges
and the last term represents the electric field due to the other
induced dipole moments. Note that eq 8 is slightly different
from the corresponding equation in our previous work.10 This
is due to the fact that we have chosen to include the interaction
energy between the MM induced dipoles and the MM partial
charges in the MM energy. Hence, the MM energy may be
decomposed into a intramolecular term,EMM

intra, and an intermo-
lecular contribution,EMM/MM . The intermolecular MM Hamil-
tonian is written as

where the termEMM/MM
vdw is the van der Waals MM/MM energy.

Note that the dependence ofHMM/MM on the QM system through
the induced dipole is illustrated by writingHMM/MM as a
functional of the wave function,|Ψ〉. Even though this energy
contribution is included in the MM energy, we explicit consider
the effect of the last term in eq 13 in the optimization of the
wave function. The important point to note here is that if the
interaction energy between the MM induced dipoles and the
MM partial charges is included in the MM energy we do not
need to consider the induced dipole moments in the situation
where the QM system is replaced by a classical molecule (called
pa

ind in ref 10) in order to decompose the interaction energy
into physical recognizable energy contributions.

In a mean-field approximation, the induced dipole moment
is, in each iteration of the optimization of the wave function,
calculated according to eqs 11 and 12. This means, that the
induced dipole moment becomes independent of the electronic
degrees of freedom. Therefore, the induced dipole moment
entering eq 8 becomes an ordinary vector andnot a vector of
electronic operators.

By taking the expectation value of eq 2 and making use of
eq 11, we obtain the following expression for the total interaction
energy

where the vectorEa
ns(RBa) and the energy termEind

ns are calcu-
lated according to

and

Here,Es(RBa) represents the electric field at the center of mass
a of each MM molecule due to the partial MM charges

and the field due to the induced dipole moments,Eind(RBa), is
written in terms of the dipole tensor,Taa′

where

The summation restrictions ∉ a used in eq 17 is due to the
fact that only sitess not found in the molecule with center of
massa is to be included in the summation. The polarization
contribution to the total interaction energy is given as

We note that the total induction energy of the system consists
of Epol in eq 20 together with interaction between the induced
moments and the field due to the MM partial charges (last term
in eq 13), whereas the dispersion energy is included in the van
der Waals term.

In this paper, we set up two hierarchies of QM/MM models;
one concerning the electronic description of the QM system
and one concerning the coupling between the QM and MM
system. For the hierarchy concerning the coupling of the two
subsystems, we introduce the following four models:

In model A, we neglect the MM polarization; that is, we keep
only Ĥel and Ĥvdw in the expression for the interaction
Hamiltonian,ĤQM/MM.

In model B, we neglect the MM polarization in the optimiza-
tion of the QM/MM wave function, but we calculate, using this
wave function, the polarization energy as theexpectationValue
of eq 8; that is, we use the wave function obtained without the
MM polarization to calculate the polarization energy as well as
the induction contribution to the MM energy, eq 13. In this
approach, we also neglect the contribution to the electric field
from the induced dipole moments (the last term in eq 12).
Therefore, the induced dipole moments are determined in a
noniterative manner.

In model C, we proceed as in model B and use the wave
function obtained without MM polarization, but in this case,
we include the full solution to the set of equations for the
induced dipole moments; that is, we use an iterative procedure
to calculate the induced dipole moments and obtain for the
polarization energy

Oind
ns ) -

1

2
∑
a)1

A

[(En′(RBa))
Tra{En(RBa) + Es(RBa) + Eind(RBa)}]

(16)

Es(RBa) ) ∑
s∉a

qs(RBa - RBs)

|RBa -RBs|3
(17)

Eind(RBa) ) ∑
a′*a

Taa′µa′
ind (18)

Taa′ ) 1

|RBa -RBa′|3[3(RBa -RBa′)(RBa -RBa′)
T

|RBa -RBa′|2
- 1] (19)

Epol ) -
1

2
∑
a)1

A

〈R̂ra〉
Tra{〈R̂ra〉 + Oa

ns(RBa)} + Oind
ns (20)

Epol
C ) -

1

2
∑
a)1

A

µa
ind·(〈R̂ra〉 + En(RBa)) (21)

En(RBa) ) ∑
n)1

N Zn(RBa - RBn)

|RBa -RBn|3
(10)

µa
ind ) ra‚Ea

total (11)

Ea
total ) 〈R̂ra〉 + En(RBa) + Es(RBa) + Eind(RBa) (12)

HMM/MM [|Ψ〉] )

1

2
∑

s, s′(s*s′)

S qsqs′

|RBs - RBs′|
-

1

2
∑
a)1

A

µa
indEs(RBa) + EMM/MM

vdw (13)

EQM/MM ) Evdw + Eel + Epol ) Evdw + ES,N
el,nuc-

∑
s)1

S

〈N̂s〉 -
1

2
∑
a)1

A

〈R̂ra〉
Tra{〈R̂ra〉 + Oa

ns(RBa)} + Oind
ns (14)

Oa
ns(RBa) ) 2En(RBa) + Es(RBa) + Eind(RBa) (15)
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Again we note that there is an additional induction energy
contribution because of the MM system through eq 13. Finally,
in model D, we introduce the solvent polarization in the
optimization of the CC/MM wave function.

Using these four models, we derive a hierarchy of CC/MM
models, and we may study the importance of including the MM
polarization in the calculation of interaction energies.

B. Coupled Cluster Theory for States in a Vacuum.In
this subsection, CC theory for the vacuum case is described.

The CC wave function ansatz is given by51,52

with

The tµi parameters are the excitation amplitudes andτ̂µi are the
correspondingi-electron excitation operators. The state,|HF〉,
is the Hartree-Fock reference wave function. The CC energy
may be calculated as

and the amplitude equations are given as

where〈µi| ) 〈HF|τ̂µi

† , 〈µi|νj〉 ) δµ,νδi,j.
This parametrization of the CC wave function possesses the

flexibility to represent the full configuration interaction (FCI)
wave function when the cluster expansion in eq 23 includes all
possible electronic excitations in the molecular system. Truncat-
ing the expansion leads to a series of approximate CC models.
Truncating the cluster expansion after the second term, i.e.,T̂
) T̂1 + T̂2, defines the coupled cluster singles and doubles
(CCSD)53 model.

Because the energy and wave function parameters are
determined by projection, the CC method is nonvariational.
However, it is possible to introduce a variational Lagrangian54-57

where the vectorth contains the Lagrangian multipliers and the
vector e(t) is the amplitude equations. We require that the
Lagrangian is simultaneously stationary with respect tot andth
and we obtain

with 〈Λ| defined as

When these equations are fulfilled, the Lagrangian gives the
CC energy. By using this Lagrangian technique, we may show

that in CC theory an expectation value for a real operator is
evaluated according to the asymmetric expression

C. Coupled Cluster/Molecular Mechanics Wave-Function.
In the previous subsections, we have described QM/MM energy
contributions and the CC theory for molecules in a vacuum.
The problem is how to combine these equations. This is
complicated by the fact that the CC methodology is not
variational. For a variational method one would straightfor-
wardly optimize the energy with the additional QM/MM energy
contributions. We solve this nontrivial problem by using the
concept of a variational Lagrangian. This has the advantage of
ensuring the correct limit when the cluster expansion is not
truncated. This limit is for example not guaranteed if simply
an additional effective QM/MM one electron operator is
introduced into the CC equations.

To derive the optimization conditions for the CC/MM wave
function, we extend the vacuum CC Lagrangian by augmenting
it with the interaction term in a way similar to the approach
where the CC method is coupled to a dielectric continuum.40,41

This is simply done by adding the vacuum Lagrangian and the
CC/MM interaction energy but in a form where we have
introduced the CC expectation values (eq 30). The CC/MM
Lagrangian becomes10

Note, that this Lagrangian is nonlinear in both thet and th
parameters.

As in the vacuum case, we require that this Lagrangian is
stationary with respect to both thet and th parameters and by
introducing the one-electron interaction operator,T̂g

where

we obtain the optimization conditions for the CC/MM wave
function

and

Note that because theT̂g operator depends on both thet and th
parameters we find that eqs 34 and 35 are coupled. Clearly,
this represents an additional complication compared to the
corresponding optimization conditions for a molecule in a
vacuum. It is also important to note that because the CC/MM
method is nonvariational the CC/MM total energy is generally

|CC〉 ) exp(T̂)|HF〉 (22)

T̂ ) T̂1 + T̂2 + T̂3 + ‚‚‚ + T̂n ) ∑
i)1

n

∑
µi

tµi
τ̂µi

(23)

ECC ) 〈HF| Ĥ exp(T̂)|HF〉 (24)

eµi
) 〈µi| exp(-T̂)Ĥ exp(T̂)|HF〉 ) 0 (25)

LCC(t, th) ) ECC(t) + ∑
i,µi

thµi
eµi

) ECC(t) + the(t) (26)

0 )
∂LCC(t, th)

∂ thµi

) eµi
(t) ) 〈µi| exp(-T̂)Ĥ exp(T̂)|HF〉 (27)

0 )
∂LCC(t, th)

∂tνj

)
∂ECC(t)

∂tνj

+ ∑
i,µi

thµi

deµi
(t)

dtνj

) 〈Λ|[Ĥ, τ̂νj
]| CC〉

(28)

〈Λ| ) (〈HF| + ∑
i,µi

thµi
〈µi|)exp(-T̂) (29)

〈X̂〉 ) 〈Λ|X̂| CC〉 (30)

LCCMM(t, th) )

〈Λ| ĤQM|CC〉 - ∑
s)1

S

〈N̂s〉 -
1

2
∑
a)1

A

〈R̂ra〉
Tra[〈R̂ra〉 +

Oa
ns(RBa)] + Evdw + ES,N

el,nuc+ Oind
ns + EMM(t, th) (31)

T̂g ) -∑
s)1

S

N̂s - ∑
a)1

A [〈Λ| R̂r a|CC〉 +
1

2
Ea

ns(RBa)]T

raR̂r a (32)

Ea
ns(RBa) ) 2En(RBa) + 2Es(RBa) + Eind(RBa) (33)

∂LCCMM(t, th)

∂ thµi

) 〈µi| exp(-T̂)[ĤQM + T̂g]exp(T̂)| HF〉 ) 0

(34)

∂LCCMM(t, th)

∂tνi

) 〈Λ|[ĤQM + T̂g, τ̂νi
]| CC〉 ) 0 (35)
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not bounded from below by the exact total energy. Here, exact
total energy refers to the corresponding total energy calculated
using a full configuration interaction/molecular mechanics (FCI/
MM) wave function for a given one-electron basis set. Because
the lack of such a lower bound has not been shown to be a
problem for vacuum CC calculations, we do not expect this to
be a problem in the case of a CC/MM wave function. In the
limit of a full cluster expansion, the CC/MM method has the
flexibility to represent the FCI/MM results. Thus, the CCSD/
MM method becomes exact (for a given one-electron basis set)
for a two-electron QM system coupled to a force field.

In the above derivations of the CC/MM wave function
optimization conditions, we used theunrelaxedapproach. By
introducing orbital relaxation, a corresponding orbital relaxed
CC/MM wave function approach could be derived. However,
because the relaxed approach has been shown to spoil the pole
structure of the CC response functions,57 we prefer to work
within the unrelaxed formulation of the CC/MM model in the
treatment of the polarization term.

III. Implementation

The CC/MM method is implemented in a local version of
the Dalton program package58 at the CCSD level of theory. As
noted before, the CCSD/MM optimization equations fort and
th are coupled because of the introduction of theT̂g operator.
Different approaches can be adopted for their solution. On one
hand, one could iterate the solution oft and th simultaneously.
On the other hand, one could for a givenT̂g operator solve them
as were they completely decoupled and then perform some
“outer” iterations on theTg operator (to be detailed now). Both
strategies should of course converge to the same solution but
potentially at different costs.

Our procedure for solving the equations is most in line with
the second of the above strategies, but with some additional
features. This choice was made initially because it agreed best
with the existing program structure and required fewer changes
to the existing modularity. Below, we also discuss its efficiency.
The basic procedure is illustrated in Figure 1. From a set oft
andth parameters, we construct theT̂g operator, and treating this
as fixed, we may solve thet equations and thereafter theth
equations (depending on thet parameters) as in the vacuum
case but with modified one-electron integrals. This gives a new
set of t and th parameters, and theT̂g operator can then be
updated. Restarting with the newt and t parameters, this
procedure may be continued until convergence is obtained in
these so-called “outer” iterations. As input for thet and t
parameters, we may use amplitudes from a previous vacuum,
dielectric solvent, or another QM/MM calculation with the same
QM configuration, or we may simply start from vacuum MP2
amplitudes. In each iteration, we also need to update the induced
dipole moments,µa

ind, which can be calculated using eq 11.
However, because the induced dipole moments depend on the
induced electric field, this equation has to be solved iteratively.
The computational cost of solving the induced moment equa-
tions will typically be small compared to the cost of solving
the CC equations.

When solving thet andth equations iteratively through a set
of outer iterations, we may choose between different strategies.
We may continue the iterations in thet equations until
convergence is obtained and then use this set oft parameters
in the solution of theth equations which in turn also are iterated
until convergence is obtained. However, from a computational
point of view, it seems more favorable only to perform a few
iterations (nitt) in the t equations and then use this set oft

parameters in the solution of theth equations. Also, in the solution
of the th equations, we only perform a few iterations (nittbar).
With these sets of (un)convergedt and th parameters, we now
update theT̂g operator and repeat the solution of thet and th
parameters until convergence is obtained in both thet and the
t parameters and of course with respect to the outer iterations.
The number of iterations can be limited in various ways: we
have simply introduced the numbersnitt andnittbar as input values,
allowing us to experiment and test this functionality as will be
described now.

In Table 1, we have shown the results for a series of
calculations of a water molecule (the QM system) surrounded
by 127 other water molecules (the MM system). The MM
parameters are as given in section IV and the basis set used is
the aug-cc-pVTZ basis set.67 In Table 1,nitt is the maximum
number of iterations in the solution of thet equations andnittbar

is the corresponding maximum number of iterations in the
solution of theth equations. In the last column,∞ means that
thet equations are iterated to convergence before theth equations
are solved. Also, these equations are iterated to convergence
before the update of theT̂g operator. The symbolNouter is the
total number ofmacroiterations, i.e., updates of theT̂g operator.
The termNit is the total number of “inner iterations” which is
used as a measure of the cost- the number of times we have
taken the most time-consuming steps.

The nonlineart equations are solved by a DIIS algorithm
(direct inversion in the iterative subspace) where in each iteration
we have to evaluate the vector function in eq 34 with the given
trial t. The number of iterations taken is added toNit. After the
solution of thet equations, some intermediates are calculated
as a necessary precursor for the efficient solution of theth
equations. The cost of the calculation of all intermediates are
the same order of magnitude as one iteration in thet equations,
and an additional one is added toNit to account for this. Then
the linearth equations are solved by a linear equation solver
requiring the transformation of the Jacobian in each iteration.
The cost of one Jacobian transformation is, as the previously

Figure 1. Illustration of the CC/MM wave function optimization
procedure.
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calculated intermediates, roughly of the same order of magnitude
as one iteration in thet equations. The number of iterations
taken is added toNit. On convergence,Nit is roughly proportional
to the cost of the calculation.

Compared to a vacuum CC calculation, the cost of a CC/
MM calculation may be more expensive with the same QM
system because of two primary effects: (i) more iterations are
required and (ii) each iteration takes longer time. The remaining
contribution is, at least for the cases we have studied so far, of
less importance. In each iteration in CCSD, we have a number
of terms which we for brevity denote asN6 scaling terms where
N is the number of orbitals. All of the CC/MM contributions
scales according toN5 so their computational scaling is more
modest. However, one should note that they are repeated a
number of times depending on the number of sites and center
of masses for the polarizability. The calculation of the QM/
MM vector function for this example is about 50% more
expensive than for a vacuum calculation.

As seen from Table 1, the total number of iterations is
minimized if the maximum number of iterations in the solution
of the t equations are 3 and theth equations are 4. Decreasing
the number of maximum iterations increases the total number
of iterations and in the situation wherenittbar ) 2 andnitt ) 2 or
3 the total number of iterations exceeds that in the case where
nitt ) nittbar ) ∞.

The total number of iterations necessary for calculating the
energy for a water molecule in a vacuum is found to be 11. In
order also to calculate the dipole moment, the total number of
iterations (Nit including t, th and intermediates) increases to 28
(with similar thresholds and accuracy). In the QM/MM case,
we need, to obtain the energy, to solve for both thet and th
parameters because of the introductionT̂g operator. This also
means that in order to calculate first order properties, like the
dipole moment, we do not need to solve any extra equations.
This is different from the vacuum case where the energy may
be calculated with only knowledge of thet parameters. Hence,
the vacuum calculation to be compared with the numbers in
Table 1 is that for the dipole moment. Thus, we find that the
introduction of the MM environment causes the total number
of iterations to increase about a factor of 2 or less (from 28 to
49) compared to the vacuum case when choosing the maximum
number of iterations properly.

Let us finally comment on this situation compared to an
algorithm for the simultaneous solution oft and th (a set of
coupled nonlinear equations). To evaluate eqs 34 and 35 in each
iteration, we require 3 units according to the counting done with
Nit (1 for t, 1 for preparing intermediates with the particulart,
and finally 1 for theth part). In our example, 11t and 16th were
needed. Taking 16 as a rough guess of the number of iterations
required in such an algorithm, we end up with a count of 48
almost as the best choice in the implemented algorithm. So even
though potentially more efficient, to gain important speed up
compared to our algorithm, reconsideration of the algorithm with
respect to construction of intermediates and other aspects must

also be taken into account. Note that in this case we have
searched for the optimal combination for solving the equation.
Naturally, one would not do that in general. However, the choice
appears not to be very difficult and sensitive. Thereby, reason-
able good convergence is obtained usingnitt ) nittbar ) 3, 4, or
5.

The QM/MM integrals are calculated using the integral code
in Dalton.58 We need to calculate both potential energy integrals

and electric field integrals

The only extension of the already existing code is thatRBs and
RBa refer to sites and center of masses, respectively, outside the
QM region. However, this problem is not difficult to solve since,
as seen from eqs 36 and 37, the only input we need is the value
of qs and the relative distances between the partial charges or
induced dipole moments and the QM electrons. This has been
presented in ref 17. In the optimization of the CC/MM wave
function, the energy can be calculated, according to eq 31, within
each macro-iteration, i.e., every time theT̂g operator has been
updated.

IV. The Water Dimer

In this section, we illustrate the CCSD/MM formalism on
the water dimer. Here, we calculate the interaction energy as a
function of the O-O distance and compare the CCSD/MM
results with the corresponding ab initio results where both water
molecules are treated at the CCSD level of theory. The water
dimer has been used in a number of previous benchmark studies
of QM/MM methods.9,59,60We emphasize that the MM param-
eters used are not optimized for use in dimer calculations and/
or QM/MM calculations so the model is not fitted to the
particular application. It should also be noted that we consider
the water dimer not because it is easy to describe by QM/MM
methods but rather because it is a really challenging benchmark
system for QM/MM methods and of fundamental interest.

A. Computational Details. In the calculations, we have used
the CCSD(T) intermolecular optimized geometry from ref 62
where the water monomer geometry has been frozen at the
experimental monomer geometry.63 The parameters used for the
MM molecule are given as64 Ama ) 2.083× 106 a.u.,Bma )
45.41 au,Rj ) 9.718 au,qH ) 0.3345, andqO ) - 0.669. A
one-dimensional potential energy surface scan has been calcu-
lated as single-point energies by displacing the molecules, with
all angles fixed, along the axis through the oxygen atoms. This
is illustrated in Figure 2. In Figure 2, the notation of donor and
acceptor used through out this paper is illustrated. The term

TABLE 1: Total Number of Iterations ( Nit) as a Function of the Maximum Number of Iterations in the Solution of the t (nitt )
and th (nittbar ) Equationsa

nitt 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 6 ∞
nittbar 2 2 3 4 5 3 4 5 6 3 4 5 6 3 4 5 6 7 ∞
Nouter 25 25 9 6 5 9 6 5 5 9 6 5 5 9 6 5 5 5 5
Nit

b 112 119 58 49 50 61 52 53 58 64 55 56 61 67 59 59 64 69 94

a The QM system consists of a water molecule and 127 other water molecules represent the MM part of the system. The basis set used is the
aug-cc-pVTZ basis set.b Thresholds used in the calculations are 10-7 for the change in the “vacuum” energy term in two iterations for the
t equations and 10-7 for the norm of the residual in theth equations. The change in energy, norm oft and norm oft in two subsequent outer
iterations are all required to be smaller than 10-6 for convergence.

npq
s ) 〈φp| qs

|RBs - rbi||φq〉 (36)

tpq
a ) 〈φp| rbi -RBa

| rbi -RBa|3|φq〉 (37)
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donor is used for the molecule donating a proton to the hydrogen
bond, whereas the term acceptor is used for the molecule
accepting a proton in the hydrogen bond.

B. Results and Discussion.Calculations have been performed
at the CCSD/MM level of theory employing the cc-pVDZ and
the aug-cc-pVTZ basis sets. This was done to investigate the
effects of including diffuse functions and more polarization
functions in the basis set. Either the proton acceptor or the proton
donor molecule has been represented as the QM system. The
CCSD/MM energy is shown in Figures 3 and 4 and the different
energy contributions are addressed in Figures 5-8. For com-
parison, a full quantum mechanical calculation of the dimer at
the CCSD level of theory employing the aug-cc-pVTZ basis
set and a full molecular mechanical (MM) calculation were
performed. The corresponding interaction energies are shown
in Figure 3 and for the quantum mechanical results with and
without the “counterpoise correction” (CPC).65

In Figure 3, it is seen that theEQM/MM curve with the acceptor
as the QM system reproduces the potential energy surface of
the quantum mechanical calculations fairly well but overesti-
mates the attractive part of the energy between the two
molecules. This leads to a shortening of the equilibrium distance
RO-O from 5.58 to 5.28 au (5%) compared to the CCSD(CPC)
results. The MM curve has about the same equilibrium distance
as theEQM/MM curve of the QM acceptor, but the interaction

energy is underestimated compared to the quantum mechanical
curves. The CC/MM curve, with the acceptor as the QM system,
gives a better description of the interaction energy, producing
a curve lying between the two quantum mechanical curves. The
shortening of the equilibrium distance is expected to be partially

Figure 2. The water dimer. The water molecule denoted “donor”
donates a proton, whereas the molecule denoted “acceptor” accepts a
proton in the formation of the hydrogen bond between the two
molecules. In calculating the interaction energy, the water molecules
are displaced along the axis connecting the two oxygen atoms.

Figure 3. Comparison of the total interaction energy of the water dimer
calculated at different levels of theory. The QM and QM/MM results
are obtained using the aug-cc-pVTZ basis set. (-‚-) CCSD calculated
interaction energy. (‚‚‚) CCSD calculated interaction energy with
“counterpoise correction”. (- - -)EQM/MM with the proton donor as the
QM molecule. (s) EQM/MM with the proton acceptor as the QM
molecule. (- - - -) MM calculated interaction energy.

Figure 4. Comparison ofEQM/MM calculated with different basis sets.
(‚‚‚) The proton donor as the QM molecule with the cc-pVDZ basis
set. (- - -) The proton donor as the QM molecule with the aug-cc-pVTZ
basis set. (-‚-) The proton acceptor as the QM molecule with the cc-
pVDZ basis set. (s) The proton acceptor as the QM molecule with
the aug-cc-pVTZ basis set.

Figure 5. Two contributions to the van der Waals term. (s) The
repulsive component of the potentialA/R.12 (- - -) The attractive
component of the potential (the dispersion term)B/R.6

Figure 6. (s) van der Waals energy.
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because of the use of parameters found for liquid water which
has been shown to overestimate the dimer interaction.59 When
the donor molecule is represented by quantum mechanics, the
curve is lowered by 3.8mEh at the minimum of the energy
curve. This corresponds to a lowering of 50% in the interaction
energy compared to the QM acceptor case. The corresponding
equilibrium distance is shortened to 4.87 au or by 13% compared
to the CCSD(CPC) distance.

In Figure 4, it is seen that theEQM/MM curve of the QM
acceptor molecule is almost unaffected when diffuse functions
are included in the basis set, whereas it strongly effects the QM
donor curve. Probably, this is due to the lack of short-range
repulsion from the MM system in the wave function. In the
CC/MM model, the dispersion and the short-range repulsion
energies are modeled by the Lennard-Jones potential shown in
Figures 5 and 6, but no short range repulsion effects enter the
optimization conditions of the electronic wave function. There-

fore, the electrons are not prevented from entering regions where
they actually should be repelled by electrons of the solvent
molecules.

In the QM acceptor case, the electrons are allowed to be
located closer to the MM donor when diffuse functions are
included in the basis set. This results in a small lift in the
electrostatic energy which is seen in Figure 7. From Figure 8,
we note that the polarization energy is lowered because the
electrons interact stronger with the induced dipole moment at
the center of mass of the donor. The changes are of the same
size and cancel each other leavingEQM/MM almost unaltered as
seen in Figure 3.

When describing the donor molecule by quantum mechanics,
the electrostatic potential acting on the electrons is different
from the case of the QM acceptor above. When diffuse functions
are included in the basis set, the electrons are pulled toward
the protons, because no short-range repulsion effects are
included in the wave function optimization. This results in a
substantial lowering of the electrostatic energy as seen in Figure
7. Also, the polarization energy is lowered as the electrons are
drawn closer to the center of mass of the acceptor. This is seen
in Figure 8. The overallEQM/MM is lowered as an effect of
including diffuse functions in the basis set as seen in Figure 3.

The above discussion is supported by investigations per-
formed by studying the dependence of the dipole moment and
the electronic second-order moments. Other groups have found
this change in energy when representing the donor or acceptor
as the QM system in QM/MM models.9,59,60 The calculated
energy differences are smaller than what is found in this work
using the aug-cc-pVTZ basis set. Probably, this is due to the
lack of diffuse functions in the basis sets used in refs 9 and 59.
However, as shown in ref 60 and discussed in ref 61, the
permutational asymmetry in the interaction energy of the water
dimer may be corrected by including explicitly the short-range
repulsion into the wave function. However, a better representa-
tion of the MM molecules incorporating higher order multicenter
multipole contributions to the electrostatic potential and the use
of distributed polarizabilities (including anisotropies) would
probably also reduce the asymmetric character in the interaction
energy. Also, one could use partial charges not restricted to be
located at the atomic sites and chosen such as to reproduce
higher order electric moments correctly.

In conclusion, our results clearly show that caution should
be taken in the construction of QM/MM calculations, as the
QM/MM interface is not free of introducing artifacts, the size
of which depends critically on details of the calculation. Using
the cc-pVDZ basis set without diffuse functions and neglecting
the MM polarizability in the CC/MM model the energy
difference between the QM donor and QM acceptor is reduced
to about 0.1mEh which is only one-third of the difference
calculated in ref 59 using similar sized basis sets and without
polarization. This only serves to illustrate that our methodology
is not inherently worse than the common standard in this respect.
Of course, using a smaller and more inaccurate basis set and
neglecting important interactions is not a solution to the problem
in general.

V. Energetic Study of Liquid Water

Having discussed the water dimer, we now turn our attention
to a much larger sample consisting of 128 water molecules,
where one of them is treated using quantum mechanics and the
other 127 water molecules represent the MM part of the system.

A. Computational Details. All of the calculations are
performed at the experimental gas-phase geometry of the water
monomer.64

Figure 7. Electrostatic contribution to the interaction energy, compared
for different basis sets. Also, the MM calculated values are shown.
(‚‚‚) The proton donor as the QM molecule with the cc-pVDZ basis
set. (- - -) The proton donor as the QM molecule with the aug-cc-pVTZ
basis set. (-‚-) The proton acceptor as the QM molecule with the cc-
pVDZ basis set. (s) The proton acceptor as the QM molecule with
the aug-cc-pVTZ basis set. (- - - -) MM calculated electrostatic
interaction energy.

Figure 8. Polarization contribution to the interaction energy, compared
for different basis sets. Also the MM calculated values are shown.
(‚‚‚) The proton donor as the QM molecule with the cc-pVDZ basis
set. (- - -) The proton donor as the QM molecule with the aug-cc-pVTZ
basis set. (- ‚ -). The proton acceptor as the QM molecule with the
cc-pVDZ basis set. (s) The proton acceptor as the QM molecule with
the aug-cc-pVTZ basis set. (- - - -) MM calculated polarization energy.
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In this work, we define an average geometry for the water
cluster, and using this average geometry, we perform one QM/
MM calculation.

The average geometry is obtained from molecular dynamical
(MD) simulations performed for a box containing 128 water
molecules utilizing periodic boundary conditions together with
a spherical cutoff distance of 10.0 Å and a neighbor list
technique with automatic check of the update interval. The cutoff
distance is not used in the QM/MM calculations. The temper-
ature and the pressure were kept constant using 298 K and 0.103
MPa as external values utilizing a scaling procedure. After
equilibration of the sample, the simulation time for each
trajectory was 20 ps. The total number of trajectories is 8000,
starting from different initial velocity distributions.66 The
average geometry of the water sample is obtained from a
Boltzmann sampling involving the 8000 trajectories.

The parameters are taken from ref 64 and are the same as
for the water dimer. All of the QM/MM calculations employ
the correlation consistent (aug)-cc-pVXZ (X) D,T,Q) basis
set.67

The solvation energy is obtained according to

where the subscripts QM/MM and Vac refer to the QM/MM
and vacuum optimized wave functions, respectively, and where
the term∆EMM/MM is defined as

As in ref 10,pa
ind is the induced dipole moments in the case

where the QM system is absent and replaced by a classical
molecule. Thus,∆EMM/MM represents the QM induced interac-
tion energy in the MM system. When calculating the sumΣa)1

A

µa
indEs(RBa), the contribution from the molecule previously

described using quantum mechanics is excluded. Thus, in this
sense, this particular classical molecule may be viewed as a
spectator molecule. However, in order not to treat relaxation
effects in the water cluster directly, it is important to include
the effect of this classical molecule in the determination of the
classically induced dipole moments,pa

ind.
To investigate the importance of inclusion of polarization

effects in the MM system, we perform, using the CCSD/MM
model, four series of calculations using model A, B, C, and D.
Furthermore, to show the importance of electron correlation in
the QM system, we compare, using model D, the HF/MM17

and CCSD/MM results.
Finally, to compare the QM/MM approach to other models,

we have also calculated the solvation energy of liquid water
using the dielectric continuum model.40,68In these calculations,
a water molecule is embedded in a spherical cavity with a radius
equal to 4.0 au and surrounded by the dielectric continuum
characterized by a static dielectric constant equal to 78.54 au.68

Furthermore, in the multipole expansion of the solute charge
distribution, we include moments up toLmax ) 10.

B. Results.Table 2 contains a comparison of the correlated
CCSD/MM and the uncorrelated HF/MM results for the
interaction and solvation energies. Furthermore, we have
calculated and listed each contribution to the interaction energy
separately. From this table, it is observed that the largest effect
of solvation is found using a uncorrelated description. This is
also known from the corresponding continuum calculations40,68

and from earlier work using the MCSCF/MM wave function
description of a solvated water molecule17 where overestimation
of the solvation and interaction energy is interpreted to be due
to the large ionic component in the HF wave function. From
Table 2, we find that the largest deviations are found using the
smallest basis set and that the solvation energy is most sensitive
to correlation effects. This deviation is found to be at least 6%.

Table 3 contains the results for the interaction energy of water
in water. The interaction energy has been split up into three
contributions, the van der Waals part,Evdw, the electrostatic
contribution,Eel, and the polarization contribution,Epol. Fur-
thermore, we have, using eq 38, calculated the solvation energy
and, using eq 39, the QM induced interaction energy in the MM
system.

From Table 3, we first note that each energy contribution
(except the van der Waals term) is quite sensitive to the inclusion
of diffuse functions in the basis set. Probably this appears
because the diffuse functions tend to lower the QM electron-
electron repulsion energy and that the inclusion of diffuse
functions in the basis set allow the QM electrons to be located
closer to the MM system with the possibility of lowering the
corresponding interaction energy.

When studying the hierarchy of QM/MM models (model A,
B, C, and D), we find that model A underestimates all the energy
contributions, compared to model D (except the van der Waals
term which does not depend on electronic wave function
parameters), which results in an overall underestimation of the
solvation energy. This is clearly due to the total neglect of
polarization effects in the MM part of the system.

In models B and C, we also find this underestimation of the
interaction energies (EQM/MM); that is, the wave function obtained
without the MM polarization cannot account for all polarization
effects, but the results are greatly improved compared to model
A. Thus, we find that the calculation of polarization energy using
even the quite simplified treatments improves the results
significantly.

From Table 3, we also note that the results obtained using
model B do not differ much from the corresponding results using
model C. However, including the iterative determination of the
induced dipole moments (model C) slightly lowers the polariza-
tion energy resulting in a overall lowering of the corresponding
interaction energy of about 0.5%. Thus, we find that in the
approach where the wave function is obtained without the MM
polarization the electric field due to the induced dipole moments,
and hence an iterative determination of the corresponding
induced dipole moments, may be neglected.

TABLE 2: Ground State QM/MM Energy Contributions for Liquid Water Calculated Using Model D (in au)

theory basis set EQM/MM Evdw Eel Epol ∆EMM/MM Esol

HF/MM aug-cc-pVDZ -0.041697 0.009455 -0.042204 -0.008948 -0.000349 -0.034752
CCSD/MM aug-cc-pVDZ -0.040156 0.009455 -0.040969 -0.008642 -0.000288 -0.032703
HF/MM aug-cc-pVTZ -0.043164 0.009455 -0.043287 -0.009332 -0.000435 -0.035362
CCSD/MM aug-cc-pVTZ -0.042160 0.009455 -0.042474 -0.009141 -0.000401 -0.033776
HF/MM aug-cc-pVQZ -0.043546 0.009455 -0.043565 -0.009436 -0.000462 -0.035497
CCSD/MM aug-cc-pVQZ -0.042798 0.009455 -0.042948 -0.009305 -0.000443 -0.034164

ESol ) 〈ĤQM + ĤQM/MM〉QM/MM - 〈ĤQM〉Vac + ∆EMM/MM

(38)

∆EMM/MM ) -
1

2
∑
a)1

A

(µa
ind - pa

ind)Es(RBa) (39)
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The polarization energy is, in all the calculations, negative
which reflects that the polarization effects tend to stabilize the
system. Even though the electrostatic contribution is dominating,
the polarization energy contributes as much as up to 25% of
the total interaction energy. Thus, the introduction of polarization
effects is crucial for accurate calculations. Additionally, polar-
ization effects are important when calculating molecular proper-
ties.

From Table 3, we observe that∆EMM/MM calculated using
model B (∆EMM/MM

B) always is less than∆EMM/MM calculated
using either model A, C, or D. Thus, even though the interaction
energy decreases monotonically when going from model A to
model D, the solvation energy need not to behave the same
way. Actually, using the smallest basis set, the solvation energy
calculated using model B (Esol

B ) is less than the solvation
energy calculated using model D. Generally, we find thatEsol

B

< Esol
C which is a consequence of the noniterative nature of the

B model. In models B, C, and D, we also find that the van der
Waals energy is of similar magnitude, but of opposite sign, as
the polarization energy. Thus, these two contributions tend to
cancel each other. This cancellation has also been observed in
other works.13,17,47

Finally, when comparing the solvation energy calculated using
the QM/MM and continuum model, we find that the continuum
results are underestimated about a factor of 4 compared to the
results obtained using model D. A large discrepancy is expected,
especially for a molecule as polar as water, because of the
neglect of specific intermolecular interactions in the continuum
model.68

VI. Discussion and Summary

In this paper, we have derived and implemented the combined
CC/MM wave function approach at the CCSD level of theory,
the CCSD/MM method.

The use of CC methods in QM/MM calculations is certainly
an improvement in accuracy on the QM part compared to
standard QM/MM methods. Traditionally, an improvement in
accuracy of the wave function model also warrants the use of
a larger one-electron basis set for obtaining a balanced calcula-
tion with respect to accuracy and cost. However, the first test
calculation on the water dimer shows clearly that larger basis
sets may increase the magnitude of some undesired artifacts of
the QM/MM link. This is a general problem using simple MM

methods, and it is not unique to our CC/MM method, but the
problem may become more obvious and its solution more
important for accurate QM methods such as CCSD. In any case,
the improvement of the effective operators describing the QM/
MM link is an important subject of further research.

We have derived a hierarchy of CC/MM models in which
the coupling terms are treated more elaborately going from level
A to D. Finally, we have shown using a test sample consisting
of 128 water molecules that both polarization and correlation
effects are important in an accurate calculation of the interaction
and solvation energies. For the calculations of polarization
energies, we found that model B and C, in which the obtained
wave function excludes the MM polarization, actually gives
quite good results when compared to model D where the MM
polarization effects are directly included in the optimization of
the wave function. However, as we will discuss in a future paper,
the introduction of the MM polarization directly into the wave
function optimization condition is important for obtaining
accurate results for many molecular response properties calcu-
lated within the QM/MM approach.72

In this paper, we have used a static approach for the
calculation of interaction and solvation energies; that is, we have
used the final averaged MM configuration from the MD
simulation to performoneQM/MM calculation. Alternatively,
we could perform a QM/MM calculation for each configuration
in the MD simulation and then obtain the final results by
averaging over all the QM/MM calculations. Even though the
last method is quite time-consuming, it has the very important
property that the effect of the MM molecules is treated in a
dynamical way. A more pragmatic intermediate approach would
be to perform the MD simulation using the MM force field and
only sample a limited number of configurations.

The derived CC/MM method is quite general. For example,
it allows for a construction of a semi-CC/MM model, in which
a first solvation shell is included in the QM calculation while
the rest of the solvent molecules are treated classically. This
approach would be more time-consuming, but it allows for an
even better description in particular of dispersion and short-
range exchange-repulsion effects compared to the CC/MM
method. In future work, we will consider possibilities to include
short-range repulsion effects in the optimization condition of
the wave function. Finally, the CC/MM model allows for the

TABLE 3: Ground State CCSD/MM(X) (X ) A, B, C) Energy Contributions for Liquid Water (in au) and Dielectric
Continuum (DC) Solvation Energies.

model basis set EQM/MM Evdw Eel Epol ∆EMM/MM Esol

A cc-pVDZ -0.026777 0.009455 -0.036233 0.000000 -0.023941
B cc-pVDZ -0.033233 0.009455 -0.036233 -0.006456 -0.000536 -0.030933
C cc-pVDZ -0.033409 0.009455 -0.036233 -0.006631 0.000209 -0.030364
D cc-pVDZ -0.035868 0.009455 -0.038092 -0.007231 0.000060 -0.030753
DC cc-pVDZ -0.006985
A aug-cc-pVDZ -0.028560 0.009455 -0.038015 0.000000 -0.024414
B aug-cc-pVDZ -0.035958 0.009455 -0.038015 -0.007399 -0.000729 -0.032540
C aug-cc-pVDZ -0.036156 0.009455 -0.038015 -0.007596 -0.000023 -0.032033
D aug-cc-pVDZ -0.040156 0.009455 -0.040969 -0.008642 -0.000288 -0.032703
DC aug-cc-pVDZ -0.007681
A aug-cc-pVTZ -0.029594 0.009455 -0.039050 0.000000 -0.024983
B aug-cc-pVTZ -0.037312 0.009455 -0.039050 -0.007717 -0.000793 -0.033494
C aug-cc-pVTZ -0.037517 0.009455 -0.039050 -0.007923 -0.000096 -0.033002
D aug-cc-pVTZ -0.042160 0.009455 -0.042474 -0.009141 -0.000401 -0.033776
DC aug-cc-pVTZ -0.007778
A aug-cc-pVQZ -0.029935 0.009455 -0.039390 0.000000 -0.025214
B aug-cc-pVQZ -0.037741 0.009455 -0.039390 -0.007806 -0.000813 -0.033833
C aug-cc-pVQZ -0.037949 0.009455 -0.039390 -0.008014 -0.000118 -0.033347
D aug-cc-pVQZ -0.042798 0.009455 -0.042948 -0.009305 -0.000443 -0.034164
DC aug-cc-pVQZ -0.007858
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construction of a continuum-CC/MM model where the QM/
MM system is embedded in a dielectric continuum.69-71
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