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An analytic and mathematically variational linear-combination-of-atomic-orbitals density-functional method
that allows arbitrary scaling of the Slater-Gáspár-Kohn-Sham exchange-correlation potential about each
atom is described. The method can be made exact in the separated-atom limit. It is based on robust and
variational fitting, which is reviewed and extended to fast-multipole methods. The Slater-Roothaan method
requires four basis sets and delivers a total energy that is independent of all fitting errors through first order.
A database of atomic Gaussian basis sets is used to construct inputs for a standard set of 56 molecules. That
database contains our basis sets as well as the DGauss DZVP2 double-ú and 6-311G triple-ú polarized Gaussian
basis sets for fitting molecular orbitals. Another two subdatabases contain the s- and non-s-type basis sets for
fitting the charge density and the exchange-correlation potentials, which are related to the cube root of a
partitioned density and its square. A bond-centered basis function can be added to all fitting bases via software.
Eight different fitting basis sets are studied. Using the Hartree-Fock values ofR, these molecules are overbound
on average, but using a uniformR ) 0.7, these molecules are underbound on average, independent of fitting
basis. Mixing exact exchange will not obviously improve the method.

Introduction

Traditional ab initio physical chemists use the word varia-
tional to describe energies that rigorously bound the exact energy
from above. One good thing that can be said about the Hartree-
Fock (HF) energy is that it bounds the nonrelativistic, Born-
Oppenheimer energy from above. Because of the vastly
influential work of Peter Pulay,1 the word variational now almost
never appears in the physical chemistry literature in a meaningful
context, because all physical chemical computer codes are
mathematically variational with respect to orbital coefficients.
With Gaussian orbitals, the energy must be variational in order
to have reliable forces. This development means that if no part
of the electronic energy is approximated then the code gives a
completely mathematically variational energy. It also means that
if any part of the electronic energy is fitted then the code delivers
an energy that is not mathematically variational unless the fit
is variational as defined in this work.

Approximate Kohn-Sham2 energies must differ from the
Schrödinger energy if the Schro¨dinger energy is the exact
Kohn-Sham (KS) energy. A variational result for one energy
does not necessarily provide an upper bound to another energy.
This work considers energies that differ, but differ only in
second order in a fitted quantity. Such fitted energies are called
robust.

Gaussian-based ab initio quantum chemistry (AIQC) has
embraced KS density-functional theory (DFT). The strength of
AIQC has been that the theory involves no three-dimensional
(3-D) numerical integration, i.e., is analytic. The energy of the
most popular AIQC method B3LYP,3 which mixes HF and DFT,
however, can only be computed using 3-D numerical integration.
The problems associated with numerical integration in AIQC
are well-known.4-9 This work extends the purview of analytic
AIQC to a method that has asymptotic properties similar to
XR,10 but avoids the muffin-tin approximation and preserves
the variational principle.

If there were no problem with numerical integration in
quantum chemistry, then the preferred basis might become
numerical atomic orbitals, which are the product of spherical
harmonics and numeric radial functions about each atom. Such
basis functions are used in the DMOL approach to DFT.11 These
basis functions ensure an exact solution to the DFT equations
in the separated-atom limit. Because molecular orbitals decay
exponentially with distance far from a molecule and have cusps
at the nuclei, one can probably achieve an equally satisfactory
solution of the numerical DFT equations using a slightly larger
basis of Slater-type-orbitals (STO’s) as in the ADF code,12

Gaussian type orbitals are correct neither close to the nuclei
nor far from any nucleus. Thus, an accurate solution of
Schrödinger’s equation or any of its various simplifications
requires a very large number of Gaussian-type-orbital (GTO)
basis functions. Fortunately GTO’s are much more localized
than STO’s or numerical wave functions, and one can readily
use a very large GTO basis set. In practice, however, one uses
rather small GTO basis sets together with the variational
principle, which ensures that the computed energy is accurate
through first order in the error made by using a small number
of GTO’s to fit the molecular orbitals. The variational principle
is essential to the current success of Gaussian-based quantum
chemistry and likely to be essential to any future that Gaussians
might have in quantum chemistry. This work extends variational
use of rather small GTO basis sets to fit both the molecular
orbitals and the electronic potential. The atomic potentials are
independently variable through a parameter,R, for each element,
which could be adjusted to give exact separated-atom limits.
These parameters are not optimized in this work. Instead
traditional values are used and the mathematical stability of this
new nonlinear method demonstrated.

Slater invented the precursor13 to DFT as a method that is
computationally faster than HF. The significant computational
difference between DFT and HF is that in the former all
electrons see the same local, KS potential, whereas in the latter
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every electron sees a differential potential due to the otherN -
1 electrons. It is both efficient and natural to fit the KS potential
to linear-combination-of-atomic-orbitals (LCAO) form in any
LCAO DFT method.14-16 One can, however, defeat Slater’s
purpose by treating the KS potential using the N4 methods that
are efficient and natural in GTO approaches to HF.17-20 Fitting
all of the KS potential except the long-ranged Coulomb terms
to LCAO Gaussian form ensures that that part of the potential
dies off rapidly with distance from any atom just like the
corresponding atomic component of a molecular orbital does.

A large and growing number of quantum mechanical opera-
tors can be treated analytically using robust and variational
fitting7,21-24 This work defines a new analytic and variational
density-functional method called the Slater-Roothaan (SR)
method. The names are chosen because it is based on Slater’s
XR method,10 but it is also analytic and variational via extension
of the methods of Roothaan.25

The next section describes fitting charge distributions robustly
and variationally. The method is applied to fitting multipole
moments of charge distributions. The third section describes
fitting the 4/3 power of a function robustly and variationally.
The following section describes the origin of the XR method
and modern applications. The fifth section combines these fitting
methods into the SR method, which is completely analytic and
variational in all fitting basis sets. The density is partitioned
according to atomic center. The geometric mean of the atomic
R’s multiply each two-center part of the density. Preliminary
work suggests that the SR method is acceptably insensitive to
choice of fitting bases26 and that it is stable enough to follow
DFT chemical dynamics at identically zero electronic temper-
ature.27 It approximates as close as possible the old nonvaria-
tional multiple-scattering XR method. That section also describes
all the major fitting basis sets that have been published and
uses them in double-ú and triple-ú calculations on a standard
test set of molecules. A final section discusses the results
obtained using the SR method.

Robust and Variational Fitting of Charge Densities

In KS DFT the electronic energy,

is (apart from the kinetic energy) a functional of the total density,
F(r ), which is in turn the sum of both spin densities,

wherenis is the occupation of theith molecular orbital,uis(r ),
of spin s. It also depends on the standard one-electron part,f1,
of electronic structure theory (kinetic energy, nuclear attraction,
and applied electric field in the Born-Oppenheimer, nonrela-
tivistic limit), the self-Coulomb repulsion of the density, and
the spin-dependent exchange and correlation functional,Exc. The
notation,〈a||b〉, represents half of the Coulomb energy of charge
distributiona(r ) in the electric field of another charge distribu-
tion b(r ). Variation of this energy with respect to an orbital,ui,
constrained by Lagrange multipliers,εij, to be orthogonal to the
remaining orbitals yields the KS equations,

in variational form, whereVxcis the functional derivative ofExc

with respect toniui
/ui. In this expression the eigenvalue matrix,

εij, has been diagonalized by a unitary transformation of the
orbitals, which is always possible in DFT because the Kohn-
Sham potential is local or multiplicative.

This work concerns fitting the KS potential to GTO’s
analytically. In the following an overbar represents a fitted
quantity, and∆ indicates the difference between exact and fitted
quantities. One way to fit the KS potential is to fit separately
the charge density,Fj, and the exchange-correlation potential,
Vjxc.

No matter how the charge density is fit, one can compute
the Coulomb energy of the electronic charge distribution that
is accurate through first order in the error made due to fitting.
A unique robust Coulomb energy is generated using only the
exact and fitted charge densities,21

Thus, the error in making this approximation for the Coulomb
energy is the self-Coulomb energy of the difference between
the exact and fitted charge density,∆F ) F - Fj. The error is
nonnegative because it is an energy,25 and it will decrease as
the quality of the fit increases. For use in quantum chemistry,
one must take a complete variation of this robust Coulomb
energy,

If the fitting basis has full variational freedom, then the last
term vanishes and one can freely interchange the exact and fitted
quantities, which areF andFj in this case. If the fitting basis is
incomplete, however, then a stationary fitted energy requires
that the full variation, the right-hand side of eq 5, be used to
generate the corresponding Fock matrix. Alternatively, the
energy also remains variational if the Fock matrix is unchanged,
but the fit is determined by setting the variation of the energy
with respect to the fit (last term) in eq 5 to zero. This latter
approach is taken throughout this work, except for the case of
multipole moments, which have independent definition. If this
second, minimalist strategy is used to ensure variationality, then
the fit is said to be variational.

Hereini, j, k, etc. label basis functions, and subscripts indicate
the basis set when necessary. Zeroing the variation of the
robustly fitted Coulomb energy with respect to the LCAO
coefficients gives the simplest variational fit,

This expression contains the inverse of the Coulomb repulsion
matrix, which by definition satisfiesδik ) ∑j〈i||j〉-1〈j||k〉. This
robust and variational fit of a charge distribution is called by
others the resolution of the identity (RI) method.28,29 As will
be shown, this terminology incorrectly suggests the need for
complete basis sets and high precision arithmetic.

An unconstrained fit, such as eq 6 is seldom used in traditional
DFT calculations. Instead codes typically allow the user to
constrain the fit to contain the proper amount of charge,N )
ci〈i〉, whereN is the number of electrons and〈i〉 is the charge
of ith fitting basis function. The fit is obtained using a Lagrange
multiplier λ14-16

where satisfying the constraint implicitly givesλ.

E ) ∑
i

ni〈ui|f1|ui〉 + 〈F||F〉 + Exc(Fv,FV) (1)

Fs(r ) ) ∑
i

nisuis
/ (r )uis(r ) (2)

〈ui|f1|δui〉 + 2〈r||ui
/δui〉 - 〈Vxc|ui

/δui〉 ) εi〈ui|δui〉 (3)

〈F||F〉 ≈ 〈F||F〉 ≡ 2〈Fj||F〉 - 〈Fj||Fj〉. ) 〈F||F〉 - 〈∆F||∆F〉 (4)

δ〈F||F〉 ) 2〈Fj||δF〉 + 2〈δFj||F - Fj〉 (5)

〈i||F - Fj〉 ) 〈i||F〉 - ∑
j

cj〈i||j〉 ) 0 w ci ) ∑
j

〈i||j〉-1〈j||F〉

(6)

ci ) ∑
j

〈i||j〉-1[〈j||F〉 + λ〈j〉] (7)
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So far nothing has been said about the functional form to
which the charge density is robust and variationally fit.
Gaussians are used in quantum chemistry because the product
of two Gaussians is a third Gaussian centered on the line joining
the original two,

If both centers are the same, then the exponent of the final
Gaussian is the sum of the exponents of the original two. IfR
) â then the exponent is doubled. Thus, it is natural to fit the
charge density to atom-centered Gaussians that have exponents
between twice the smallest and twice the largest s-type
exponents in the orbital basis for each atom. An s-type charge-
density-fitting basis, which has roughly the same flexibility as
the orbital basis, is obtained by simply scaling all the exponents
by a factor of 2.21 This basis will be called the scaled s-typeFj
basis in the following.

Because of the long-range nature of the Coulomb force, the
Coulomb potential, rather than the charge density, can be fit to
Fourier series30,31and/or multipole fields9,32,33in periodic crystals
and for large molecules.34,35 Equations 4 and 7 deliver robust
and variation fits if the Coulomb potential is fit to short-ranged
Gaussians and a few long-range functions.36-39 One can
optimize both the long-ranged37 and short-ranged39 parts of these
mixed basis sets. For calculations on small or compact systems,
the same accuracy requires more fitting functions if the potential
is fit than if the charge density is fit.36,37 Obviously, potential
fitting wins over charge density fitting for large enough systems
described by a single global fitting basis.39 It is better still to
use multiple fitting basis sets rather than one large global fitting
basis to fit the Coulomb interactions of large systems.

The Coulomb interaction between two charge distributions
can be recast to include a quadratic error term involving both
fits,23,24

Ignoring only the quadratic error yields an interaction energy
that is symmetric and robust,

If the two charge distributions are sufficiently removed that they
do not overlap, then the smallest number of terms arise if the
Coulomb interaction is treated using the Gaussian or continuous
fast multipole method.40-43 It is convenient to define the
interaction energy of approximations to two charge densities
through multipole-moment cutoffsL1 andL2,

where theNl1l2 are normalization constants, Yˆ l,m(a) ) alYlm(â)/

x(l + m)!(l - m)! is a solid harmonic, andal1m1 ) 〈Ŷ l1m1Fa〉
and bl2m2 ) 〈Ŷ l2m2Fb〉 are the strengths of each multipole. For
the evaluation of these derivatives see refs 44 and 45. In this
case, the fit can either be considered to be of the charge density,

in which case the two fits are the two multipole moments, or
of the field, in which case the fits are of the multipole fields.
The robust fit,

contains more multipole interactions than either of the first two
terms on the right-hand side of this equation because each entire
density feels the multipole fields of the other. The third term
removes double counted terms.

Three changes are necessary to a fast-multipole code to make
it robust and give variational energy. First, make certain that
all expressions involving multipoles were treated symmetrically.
Second, add to the energy the easily computed Coulomb energy
of the multipoles interacting with each other. Third, all of eq 5
must be used to construct the Fock matrix; i.e., it must be
reflected in a fitting-modified KS potential.

The Robust and Variational LCAO Three-Fourths-Power
Functional

One can take the cube root (and other roots23) of a function,
f(r ), using robust and variational fitting. Letx(r ) be an LCAO
approximation to the cube root of the function and lety(r ) be
an LCAO approximation to the square ofx or equivalently an
LCAO approximation to the2/3 power of f. For any such fits,
the associated errors can be defined,

The robust approximation to the4/3 power of f(r ) using these
two fits,

is unique, however. Ifx andy approximate the cube root and
cube root squared off, then one-third of this equation less the
quadratic terms will yield a better, i.e., robust approximation
to the4/3 power of f.7,22

Setting the variation of the4/3 power functional with respect
to x(r ) to zero, i.e., making it variational,

determinesx in the absence of constraint. If thex basis is
complete, then its solution,

implicitly givesx. If, on the other hand, thex basis is incomplete,
then this equation is only an approximation. It becomes exact
when projected against any of thex basis functions, which is
eq 15, if that variation is taken with respect to anx LCAO
coefficient. We use the constraint that the integral off andxy
be the same. Setting the variation of the4/3-power functional
with respect toy(r ) to zero, i.e., making it, too, variational
implicitly determinesy,

If the y basis is complete, then its solution,

gives y(r ). If the y basis is incomplete, then this equation is
only an approximation. It becomes exact when projected against

exp(-R(r - a)2 - â(r - b)2) )

exp[- Râ
R + â

(a - b)2 - (R + â)(r - Ra + âb
R + â )2] (8)

〈Fa||Fb〉 ) 〈Fa||Fjb〉 + 〈Fja||Fb〉 - 〈Fja||Fjb〉 + 〈∆Fa||∆Fb〉 (9)

〈Fa||Fb〉 ) 〈Fa||Fjb〉 + 〈Fja||Fb〉 - 〈Fja||Fjb〉 (10)

〈Fa||Fb〉 ≈ 〈Fja
L1||Fjb

L2〉 ) ∑
l1)0

L1

∑
m1)-l1

l1

al1m1∑
l2)0

L2

Nl1l2 ∑
m2)-l2

l2

×

bl2m2
Ŷ l1,m1

(∇a)Ŷ l2,m2
(∇b)

1

|a - b|
(11)

〈Fa||Fb〉 ≈ 〈Fa||Fjb
L2〉 + 〈Fa

L1||Fb〉 - 〈Fa
L

1||Fjb
L2〉 (12)

f1/3(r ) ) x(r ) + ∆x(r )

f2/3(r ) ) y(r ) + ∆y(r )
(13)

3f4/3(r ) ) 4f(r )x(r ) - 2x2(r )y(r ) + y2(r ) + order(∆2) (14)

0 ) 〈δx| f - xy〉 (15)

f(r ) ) x(r )y(r ) (16)

0 ) 〈δy|x2 - y〉 (17)

y(r ) ) x2(r ) (18)
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any of they basis functions, which is eq 17 if the variation is
taken with respect to ay LCAO coefficient. Solving that
equation eliminatesy,

Also, givenx, one can define a scalar,

and from it a vector by variation,

and from that a matrix by another variation,

Thus, one can solve the constrained LCAO4/3-power problem
using Newton-Raphson, if a scalar and vector are defined
toward satisfying the constraint

A Newton-Raphson step is simply

where the Lagrange undetermined multiplier is implicitly
determined by satisfying the constraint

Gradients of this functional for the special case off being the
density are given in refs 46 and 47.

This problem is nonlinear, but the self-consistent-field (SCF)
method was developed to solve nonlinear problems. Thus, there
is no additional problem with including this functional in any
quantum-chemical method that requires SCF solution. Of course,
all SCF calculations do not converge at times, a problem that
has no solution other than trying a different starting point or
adjusting mixing parameters. We start from superposed atomic
potentials as approximate KS potentials. That gives the density
and orbitals, which in turn allow us to determine a newf and
thus a new KS potential. In the calculations described below
the new KS potential is mixed with roughly half of the old SCF
potential. Toward the end of the SCF process the DIIS
procedure48 is begun to speed convergence.

Slater-Gáspár-Kohn-Sham Exchange Functional and
Xr

In a homogeneous electron gas the electronic quantum
numbers are linear momentum and spin.49 Dirac-averaged HF
exchange for each spin over all momentum up to the highest
occupied orbitals, which due to the isotropic nature of the
approximation, form a spherical Fermi surface in momentum

space. Integrating the average exchange energy yields the total
exchange energy

Slater realized that this density-functional approximation for
exchange would greatly simplify HF because every electron
would see the same potential.13

HF spin-unrestricted calculations are suspect because they
favor high spin. For crystals spin-unrestricted calculations are
quite important, however, as they provide a quantitative theory
of magnetism, which is caused by an excess number of electrons
of one spin due to electronic exchange interactions. For
properties that are dependent on the electronic structure in the
vicinity of the Fermi energy (average of the HOMO and LUMO
energy levels), a variational approach is superior to a complete
averaging. Ga´spár50 and later Kohn-Sham2 used a variational
approach to determine the density-functional exchange energy.
They obtained two-thirds of Dirac’s exchange energy. Thus, a
parameterR has been introduced to define the XR exchange
energy for up spin,

XR energies are obtained by replacingExc in eq 1 with this
expression and minimizing this energy in an SCF calculation.
Schwarz fixedR by equating the XR and HF energies for atoms
in a spin-restricted calculation.51 The HFR varies monotonically
from 0.97804 for H to 0.70383 for Nb. The correspondingR’s
for spin-unrestricted calculations vary from 0.77627 for H to
0.69248 for Rn.52 HF theory is exact for H, and for heavier
atoms, the difference between the HFR and the values ofR
that would give the exact total electronic energy are quite small.
This is because correlation energies are much smaller than
exchange energies, which in DFT include the self-Coulomb
interaction of all orbitals.

Thus, the theory has widest applicability if each element is
allowed to have its ownR, which is the case in the original
applications.10 This was accomplished via the muffin-tin ap-
proximation,52 in which the potential is approximated as being
spherically symmetric near each atom and constant in between.
That model dissociates correctly if the muffin-tin spheres grow
in size with distance between atoms. In the separated-atom limit,
the calculation could reproduce the atomic calculation. That is
not the case with HF.

In HF theory, the separated-atom limits lie artificially very
high in energy due to the inclusion of ionic character in the HF
wave function.53 Thus, HF binding energies are much too low
and HF vibrational frequencies are too high. Thus, nonDFT ab
initio frequencies are scaled by a factor less than one. In a study
of 1066 frequencies, all ab initio scaling factors are less than
all DFT scaling factors, even allowing hybrid functionals to be
included in either set, and all are less than one.54 The
revolutionary advantage of the XR method10 was that it was
fast, it was based on first-principles, and it allowed molecules
to dissociate correctly. The disadvantage was that its KS
potential was discontinuous. Thus, the energy was hard to define
and evaluate,55 and no variational principles were developed.
Thus, the muffin-tin approximation has been abandoned in
quantum chemistry, and the first nonmuffin-tin DFT codes
adopted the compromise value of 0.7.14 If a single value ofR
can be used, then variational calculations are possible using the
Gaussian basis set to fit the orbitals and the KS potential.21

yi ) ∑
jy

〈iyjy〉
-1〈jyxx〉 (19)

X ) ∑
iyjy

〈xxiy〉〈iyjy〉
-1〈jyxx〉 (20)

Xi ) δX ) 4∑
jyky

〈ixxjy〉〈jyky〉
-1〈kyxx〉 (21)

Xij )
1

2
δXi ) ∑

kyly

2〈ixjxky〉〈kyly〉
-1〈lyxx〉 + 4〈kyixx〉〈kyly〉

-1〈lyjxx〉

(22)

n ) 〈f〉 andNi ) ∑
jyky

〈ixjy〉〈jyky〉
-1〈kyxx〉 (23)

∆xi ) ∑
j

Xij
-1(〈jxf〉 - Xj + λNj) (24)

∑
i

∆xiNi ) n - ∑
i

xiNi (25)

E〈HFx〉 ) - 9
4( 3

8π)1/3
〈F4/3〉 (26)

Exv ) - R9
4( 3

4π)1/3
〈Fv

4/3〉 (27)
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XR energies in which the values ofR vary from atom to atom
can be estimated from uniformR calculations.56 The approach
of correcting a uniformR calculation can be extended to
generate good thermochemistry with a small computation
effort.57-59 It should be useful to develop an analytic and
variational XR-like method that precisely recovers the total
energy of atomized molecules. The SR method is such a method,
but this work will not address optimizingR.

The Slater-Roothaan Method and Basis Sets

In any LCAO approach the density, eq 2, may be expanded
in terms of an LCAO density matrixPij multiplying products
of atomic orbitals,

By definition the atomic orbitals,φ, are centered on atoms, so
LCAO quantum chemistry is replete with methods that associate
density with individual atoms. Mulliken population analysis is
one. In it, each density matrix element is associated with two
atoms equally, half to the atom of the first index and the other
half to the atom of the second index. In this work it is simpler
computationally to use the geometric mean of the twoR’s to
define f,

where s indicates spin, and the function,

includesRi, the value ofR of the atom on which atomic orbital
i is centered. For a single center eq 29 squares this quantity
and determiningx andy variationally raise that to the4/3 power
to give the constant of eq 27. In this, one of many full and
variational implementations of analytic XR, the R associated
with cross terms in the density matrix is the geometric mean of
the two atomicR’s. In the separated-atom limit no part of the
density matrix is on two different atoms. Thus, SR separates
into atoms, with independent values ofR in that limit.

The full SR energy is written,

where the orbitals,Fj,and x and y for both spins are to be
determined variationally. This work considers the only the
smallest of molecules. Thus, it is appropriate to make each
LCAO fit global. All fits, including the two exchange-correlation
fits, are constrained in these calculations. The functional form
of f can be quite general and thus enable a wide variety of
different LCAO XR-like density-functional methods.

Computational Methods and Basis Sets

The SR method is implemented by storing in code the atomic
values of R and loading the three-eighths power of the
appropriate value into an extension of the array that stores the
nuclear charges. That array is used to multiply the two orbitals
in the integral off and the three-center overlap integrals〈ixjφkφ〉.
The gradient code47,60,61needs a similar change in the evaluation

of the gradients of the three-center overlap integrals. The
variational process takes care of the rest.

Our gradients are precise for fractional-occupation-number
solutions,62 but DFT is problematical in cases of degeneracy.
Thus, all calculations have been performed in the highest
symmetry for which the Kohn-Sham equations have integral-
occupation-number, unrestricted solutions. All geometries have
been optimized using the Broyden-Fletcher-Goldfarb-Shanno
method,63 which sometimes does not converge for a diatomic
molecules because it hops back and forth between two separa-
tions. Other than that, SCF convergence and geometry optimiza-
tion was never a problem.

Unfortunately, the derivative code is quite slow, and opti-
mization of large fullerenes such as C240

64 or carbon nanotube
segments using polarized basis sets is not practical at this time;
however, better derivative methods are known65 but not yet
optimally implemented.66

A standard set of molecules containing first- and second-
row atoms67 includes 54 molecules in 56 electronic states. The
geometry of these molecules are all optimized in about an hour
on a PC, and are easily used for a simple test of the feasibility
of SR calculations. Table 1 gives the spin-polarized values of
R linearly interpolated, where necessary, from ref 52. Our code
uses solid-harmonic Gaussians.68 Thus, the smallest standard
orbital basis set with polarization functions that it can readily
use is 6-311G**,69,70 which was downloaded from PNNL.71

These were entered into an orbital database for use with our
code via the UNIX operating system. Our orbital basis sets,
which tend to be bigger due to less contraction, are also entered
into that database.

Our work has spawned a number of research efforts. Fitting
is being established in quantum chemistry and there are several
choices for fitting basis sets. A package of orbital,Fj, and
exchange-correlation basis (for fitting the VWN local-density
functional72) was optimized73 for use with DGauss.74 The
DGauss valence double-ú (DZ) orbital basis set DZVP2 has
been added to our orbital database and is used for comparison
with valence triple-ú (TZ) 6-311G**. Ahlrichs’ group has
generated another valence TZ orbital basis set and a matched
RI-J basis for fitting the charge density in the Turbomole
program.75,76 These bases have been downloaded. The orbital
basis set is not used, and the RI-J fitting bases are labeled “RIJ”
in the following.

An SR calculation requires three fitting basis setsFj, x andy.
This work examines only eight different combinations chosen
to span the space from large to small basis sets. The errors in
an SR calculation correlate with the amount of energy that that
basis set affects. The biggest error is due to orbital-basis-set
incompleteness. The second biggest error is due to an incomplete
Fj basis. That error is always positive; and we will see that for
a fixed orbital basis the atomization energy is always higher
for the smallest fitting basis sets. The easiest way to improve
any basis set is to add bond-centered s-type functions. These
practical functions cut down on the need for high-angular

F(r ) ) ∑
ij

Pijφi(r )φj(r ) (28)

fs(r ) ) ∑
ij

R(i)R(j)Pij
s
φi(r )φj(r ) (29)

R(i) ) [3Ri( 3
4π)1/3]3/8

(30)

E ) ∑
i

ni〈ui|f1|ui〉 + 2〈F||Fj〉 - 〈Fj||Fj〉 - ∑
s)v,V

4

3
〈fsxs〉 -

(1/3)〈xs
2ys〉 +

2

3
〈ysys〉 (31)

TABLE 1: Spin-Polarized HF r Values52 for the Atoms
Used in This Study51

element R element R

H 0.776 27 F 0.735 87
Li 0.771 57 Na 0.73
Be 0.768 23 Si 0.727 51
B 0.762 06 P 0.726 13
C 0.753 31 S 0.724 75
N 0.745 22 Cl 0.723 26
O 0.741 88
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momentum functions to fit these nodeless quantities. If one
bond-centered function is used for each fitting basis set, then it
is best to choose the exponent 1.0 au for theFj basis and 0.3 au
for the other two bases. The use of these bond-centered functions
will be indicated by yes in the “Bond” column of the following
tables.

The next choice concerns atom-centered fitting functions that
have zero angular momentum, i.e., s-type functions. This type
of basis function is special because our calculations start from
overlapping atomic potential. Starting coefficients are needed
only for this type of fitting function, which must be input. We
can get s-type bases from any orbital basis set by scaling:21 by
two to fit the charge density, by2/3 to generate the s-typex
basis, and by4/3 to generate the s-typey basis. This we do and
attach the atomicFj andx fitting coefficients (without exponents,
which are generated by software) to all orbital basis sets. This
basis and coefficients are overridden if some other s-type basis
is input. Such alternative s-type fitting basis sets require the
input of exponents as well as a set ofFj atomic coefficients and
a set ofx fitting coefficients for two spins. (Onlyy exponents
are used in the SR method.)

In this work the s-type basis set choice is between scaled
orbital exponents and the s-type part of the Turbomole RI-J
basis. This choice is labeled by “Scaled” and “RIJ” in the
following, and it only affects theFj basis. All calculations use
scaledx and y s-type bases. The RIJ basis is the smaller of
these two bases. As optimized, the RIJ bases are contracted,
but they were optimized for a different orbital basis than that
used in this work. Thus, all s-type fitting functions are
uncontracted in this work.

The final choice of fitting functions is potentially quite
significant because it represents different philosophies between
the developers of DGauss and Turbomole. Each exponent of
angular momentumL actually represents 2L + 1 fitting functions
that allow the angular momentum to point in arbitrary directions.
If an even-tempered set of exponents were chosen based on
representative bond distances, then the number of fitting
functions would rapidly get out of hand as the maximum angular
momentum increased. Consequently, the DGauss basis functions
are arbitrarily limited toL < 3. In the following these basis set
are labeled “A2”, because they are so named in a file called
BASIS originally distributed with the DGauss74 and deMon77

codes. These basis sets have different exponents for different
basis sets. To keep things simple and show that SR calculations
are reliable, however, the DGauss charge-density exponents are
used in all fitting basis sets. There is a basis called “A2”
downloadable from PNNL. It is larger, and is called “A3” in
BASIS for first-row atoms. The A2 basis set is efficient like
the early Gaussian basis sets in using the same exponents for
the s, p, and d basis sets, but unlike the early Gaussian basis
sets it does not use contractions.

The entire RI-J basis used with a Turbomole TZ orbital basis
is expected to be accurate to 0.02 mH for nonspherically
symmetric atoms, which cannot be achieved without higher
angular-momentum fitting functions, and the total fitting error
less than one mH for small molecules.76 For atoms that have
open shell electrons of angular momentumL, the density must
have components of angular momentum 2L. Therefore, for
second-row atoms with polarized orbital basis functions, the
RI-J fitting basis hasg functions. The basis is made manageable
by reducing the total number of fitting functions through
contraction for p and d bases. These basis set are labeled
“RIJ” in the following. Specifically, the number of func-
tions for stretches of the periodic table for A2 followed by

RIJ in parentheses, with contractions in square brackets,
are: H 1p (2p1d); Li 2p1d (2p2d1f); Be 3p3d (2p2d1f); C-F
3p3d (3p3d1f), Na 4p4d (4p4d1f[2p2d1f]); and Si-Cl 4p4d
(6p5d1f1g[3p2d1f1g]). Thus, the ratio of basis size A2:RIJ
for the elements used in this work are as follows: H, 3:11; Li,
11:23; Be, 24:23; C-F, 24:31; Na, 32:23; Si-Cl, 32:35. In total,
eight fitting bases are used in this work.

Becke67 compellingly demonstrated both theoretically, through
the adiabatic connection formula that relates the electron-
electron interactions of KS noninteracting and interacting
densities, and numerically, through a study of 54 molecules in
56 electronic states, that mixing HF and local density functional
(LDF) calculations would cure LDF overbinding. Overbinding
had been known to be a serious problem with LDF calculations
for a long time, but XR does not share the problem.21 This fact
is demonstrated in Table 2, which compares atomization
energies using the biggest fitting bases (bond-centered and scaled
s-type and RIJ non-s-type fitting functions). Becke did not list
his LDF results. They have been reconstructed in the third
column by multiplying his half-and-half results by two and
subtracting his exact (HF) exchange results. The trend for all
these molecules is apparent in the average (last row). The half-
and-half model (not Becke’s best) has an average absolute error
of 6.5 kcal/mol,67 and it will be taken as close enough to be
treated as exact in analyzing this table. On average, HF
underbinds by 70 kcal/mol and LDF overbinds by as much.
The table also includes three analytic and variational XR
calculations. The fifth column uses the 6-311G** basis and HF
values ofR. The last column is identical except for using the
DGauss DZ basis. The biggest difference between the last two
columns is for BeH. The range in BeH DZ dissociation energies
using the eight fitting bases is 0.046-0.053 H. The TZ range
is 0.089-0.093 H. Perhaps this difference is due to the fact
that the TZ basis has five p exponents compared to one for the
DZ basis. In comparison to Becke’s work, the last three columns
of Table 2 are quite similar. As a rule they correlate better to
the half-and-half method then to the two extremes. Exceptions
to this rule are H2, LiH, and H2, which are very close to HF,
and F2, which is closer to LDF.

Discussion

Table 3 globally compares the eight fitting bases when used
with the 6-311G** orbital basis and ifR is 0.7 everywhere.
The mean and mean absolute errors relative to experiment78

are compared. The biggest spreads in mean atomization error
occur if there is either no bond functions, 2.2 kcal/mol, or if
the A2 basis set is used, 1.9 kcal/mol. The total spread in
atomization energy error is 2.6 kcal/mol. Treating the choice
of fitting basis as introducing uncertainty, then these calculations
underbind by 4.2( 0.9 kcal/mol. The spread in mean absolute
energies, 0.5 kcal/mol, is relatively small.

Table 4 considers using the HF values ofR with two orbital
basis sets. Now all calculations indicate overbinding. 6-311G**
overbinds by 5.8( 1.1 kcal/mol and the DGauss DZVP2 basis
overbinds by 3.2( 0.8 kcal/mol. All spreads are larger than if
a uniformR value is used. The biggest spreads occur if no bond-
centered function is used or if the A2 basis is used. The mean
absolute variation is reduced significantly, from almost 5 to 1
kcal/mol if the TZ orbital basis, rather than DZ orbital basis is
used.

XR overbinds some molecules and underbinds others, both
if R ) 0.7 and if the HF values ofR are used. This contrasts
with the LDA, which uniformly overbinds, and HF, which
uniformly underbinds. From the signs of the mean errors in

Analytic and Variational XR J. Phys. Chem. A, Vol. 107, No. 47, 200310087



Tables 3 and 4, on average a uniform value ofR set to 0.7 is
too low and the HF values ofR are too high. (Chemical bonds
are characterized by the buildup of charge between atoms. Thus,
the superlinear XR exchange and correlation functional increases

the binding energy asR is increased.) For this set of molecules,
where the molecules are dominated by hydrogen compounds,
the difference between using HF andR ) 0.7 is substantial.

This work shows that the conventional ab initio SCF process
can support some imposed changes in the potential from atom
to atom. The spread in absolute mean deviation going from
Table 3 to Table 4 suggests that as the variation ofR from atom
to atom increases, bigger basis sets should be used.

The concepts of robust and variational fitting have been
reviewed and the definitions applied to fitting the charge density
and its4/3 power. Any LCAO density can be associated with
atoms and pairs of atoms, naturally partitioning the density. A
partitioned density allows scaling, by atom-specificR values,
the Slater-Gáspár-Kohn-Sham exchange functional for each
atom. The final method, called the Slater-Roothaan method,
is quite well behaved computationally for small molecules
containing first- and second-row atoms. The comparison of XR
treated variationally with other DFT methods for these molecules
is far from complete. In particular, a meaningful comparison
requires at least the optimization of the atomicR’s, which might
require that the total energy in all atomized limits be exact for
each basis set. This work tested these robust and variational
nonlinear fitting methods for a large number of heterogeneous
molecules and orbital, fitting, and bond-centered basis sets.
Analytic DFT is reliable. Now the physical chemistry can be
meaningfully optimized.

These tests must also be extended to heavy-atoms and large
molecules. For heavy-atom molecules the calculations scale as
N3. For large molecules a robust and variational fast-multipole
method should be used, which in order to eliminate all first-

TABLE 2: Comparing Becke’s Numerical Atomization
Energies,67 D0 (kcal/mol), with Our Analytic X r Values for
56 Moleculesa

exact

Becke’s
half

and half LDF
XR

(6-311G**)
R ) 0.7

(6-311G**)
XR

(DZ)

H2 78.4 101.8 125.2 85.1 82.8 86.8
LiH 32.2 53.1 74.0 37.6 34.7 33.2
BeH 46.1 55.9 65.7 55.9 49.7 29.1
CH 51.4 78.1 104.8 66.6 64.4 66.5
CH2 (3B1) 143.1 185.0 226.9 191.5 179.9 191.4
CH2 (1A1) 115.4 167.7 220.0 156.2 148.6 156.7
CH3 224.8 294.1 363.4 294.9 279.4 295.4
CH4 300.9 396.6 492.3 402.2 381.8 403.5
NH 44.3 76.8 109.3 66.7 64.1 66.8
NH2 103.6 167.9 232.2 156.0 148.9 157.7
NH3 179.0 273.6 368.2 269.8 256.1 272.3
OH 62.0 99.4 136.8 97.6 93.8 98.3
H2O 142.4 215.0 287.6 225.2 213.4 227.9
HF 91.0 132.2 173.4 142.1 135.4 144.3
Li 2 2.8 17.0 31.2 6.6 6.7 5.4
LiF 85.9 128.6 171.3 142.9 134.7 132.5
C2H2 275.6 384.7 493.8 416.9 394.3 405.9
C2H4 395.0 534.8 674.6 563.0 533.1 559.4
C2H6 503.8 674.4 845.0 701.3 663.6 702.6
CN 68.6 157.4 246.2 187.2 180.5 178.0
HCN 185.8 290.6 395.4 312.9 300.3 302.6
CO 167.9 245.0 322.1 278.7 269.8 265.7
HCO 168.2 264.2 360.2 301.5 288.3 293.9
H2CO 235.8 351.4 467.0 387.8 369.4 382.1
CH3OH 334.2 481.0 627.8 513.6 486.1 515.0
N2 108.0 205.2 302.4 213.1 209.4 200.6
N2H4 230.3 399.2 568.1 408.7 386.6 411.5
NO 43.9 134.5 225.1 160.9 158.7 152.0
O2 23.7 107.9 192.1 155.5 150.5 149.9
H2O2 113.5 239.7 365.9 278.6 265.3 279.4
F2 -41.8 22.8 87.4 65.2 63.2 66.0
CO2 227.7 368.9 510.1 447.0 428.0 430.1
SiH2 (1A1) 100.9 144.0 187.1 125.8 118.9 125.8
SiH2 (3B1) 95.2 128.1 161.0 120.4 113.9 120.1
SiH3 163.4 216.8 270.2 194.4 184.9 193.6
SiH4 233.3 305.9 378.5 281.0 266.3 281.7
PH2 96.0 146.0 196.0 125.1 120.1 127.6
PH3 152.8 226.0 299.2 202.1 193.8 206.6
H2S 120.0 173.1 226.2 160.9 156.0 165.2
HCl 74.2 102.4 130.6 99.4 97.2 99.7
Na2 -2.2 12.3 26.8 5.1 5.3 5.2
Si2 38.0 71.7 105.4 70.8 69.4 70.2
P2 32.0 101.5 171.0 91.6 90.9 92.3
S2 45.8 98.1 150.4 105.0 102.7 106.4
Cl2 16.5 54.7 92.9 61.4 59.4 60.0
NaCl 69.3 92.5 115.7 87.8 85.3 85.9
SiO 104.3 175.5 246.7 195.1 188.6 195.1
CS 91.4 156.8 222.2 174.6 167.9 174.5
SO 45.8 115.4 185.0 137.9 131.9 141.6
ClO -10.6 54.5 119.6 76.6 72.2 79.5
ClF 2.0 53.7 105.4 77.1 73.1 80.6
Si2H6 379.4 506.1 632.8 473.1 449.8 474.5
CH3Cl 272.3 374.9 477.5 392.6 373.9 394.0
H3CSH 320.1 448.2 576.3 458.0 435.5 462.9
HOCl 66.5 149.3 232.1 169.8 161.7 173.5
SO2 90.2 231.5 372.8 272.7 259.5 275.3
average 131.1 204.3 277.6 213.3 203.6 211.7

a After the molecule/state, the next three columns use Becke’s exact
exchange, his half-and-half model and, from those two, his LDF
calculations. The fifth and sixth columns use the 6-311G** basis, while
the last uses the DGauss DZVP2 basis. The sixth column uses a constant
value of R of 0.7 everywhere. The two neighboring columns (sixth
and eighth) use instead the HF values ofR for each element.

TABLE 3: Mean and Mean Absolute Error Relative to
Experiment (kcal/mol)78 in the Atomization Energy of the
Set of Molecules Listed in the Previous Table for a Uniform
r Equal to 0.7 Using the 6-311G** Orbital Basis Set and
Different Fitting Basis Setsa

fitting basis 6-311G**

bond s-type pdfg-type mean absolute

no RIJ A2 3.1 13.2
no RIJ RIJ 4.8 13.2
no scaled A2 2.6 13.4
no scaled RIJ 4.7 13.5
yes RIJ A2 4.0 13.3
yes RIJ RIJ 4.6 13.4
yes scaled A2 4.5 13.4
yes scaled RIJ 5.2 13.7

a The rows test different fitting options as indicated by the first three
columns. The fitting-basis-set types and names are discussed in the
text. Note that the mean absolute error is quite independent of fitting
basis set to 0.5 kcal/mol.

TABLE 4: Mean and Mean Absolute Error Relative to
Experiment (kcal/mol) in the Atomization Energy of the
Molecules of Table 1 for the 6-311G** and DGauss DZ
Orbital Basis Set Using the HF Value ofr for Each Atom
Using Different Fitting Basis Setsa

fitting basis 6-311G** DGauss DZ

bond s-type pdfg-type mean absolute mean absolute

no RIJ A2 -7.1 16.7 -3.9 20.1
no RIJ RIJ -5.1 16.2 -2.7 15.4
no scaled A2 -7.6 17.0 -4.8 16.1
no scaled RIJ -5.1 16.4 -2.8 15.4
yes RIJ A2 -6.1 16.3 -2.5 19.2
yes RIJ RIJ -5.2 16.4 -2.3 19.0
yes scaled A2 -5.5 16.3 -3.5 15.5
yes scaled RIJ -4.6 16.4 -3.0 15.6

a The eight fitting-basis-set options are described in the text.
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order errors must be modified, eq 12. A Department of Defense
Common High Performance Software Support Initiative has
begun to make the SR method scalable and enable calculations
on very large molecules.
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