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In paper | of this series it was shown how to take transient nucleation into account in the spontaneous freezing
of large clusters when deriving nucleation rates and time lags from sets of nucleation times. This required an
estimate of the “reduced moment” characterizing the period of transient nucleation. Also, a procedure was
sketched for constructing sets of stochastic times simulating nucleation times, for purposes of determining
statistical uncertainties in the derived kinetic parameters of nucleation rates. In the present paper, a considerably
more precise method for generating stochastic nucleation times is presented and an optimum weighting scheme
for least squares analyses of nucleation rates and time lags is formulated. In the prior literature no suitable
means had been established for estimating the reduced moment. Alternative ways to estimate this moment
from nucleation data are discussed. It is found that the true expectation values of uncerintestes

and time lags are significantly larger than the uncertainti&sgerived from residuals in least squares analyses

of individual sets of nucleation times. Although the elements of the least squares error matrix are lower for
the optimum weight function than for the unit weights and arctangent weights used in prior analyses, the
actual uncertainties do not depend strongly upon which weighting scheme is employed. The derived kinetic
parameters do, however, depend appreciably upon the weighting, and results of the optimum weighting are
preferred. A virtue of the analysis of simulated stochastic nucleation times is that it provides a valid measure
of theactualuncertainties in derived nucleation parameters as well as the smaller, and therefore misleading,
uncertainties inferred from a conventional error matrix. The analysis presented leads to guidelines conveying
how large a set of nucleation times must be in order to provide meaningful determinations of nucleation rates
and time lags. The new procedure also provides the first estimates of the uncertainty in reduced moments
derived from sets of nucleation times, including their dependence on sample size.

Introduction kinetic regime in terms of the reduced momevik, related to

Molecular dynamics (MD) simulations with realistic potential Wu's momentM as outlined below. Because MD sample sizes
functions are providing a fruitful new way to study the for clusters tend to be comparatively small from a statistical
phenomenon of homogeneous nucleation in the freezing of Perspective, a scheme was developed in paper | for constructing
||qu|ds in the realm of very deep Supercoo”ng_ Neverthe|essy a realistic data sets to model stochastic nucleation times (SNTS)
completely satisfactory procedure to analyze such MD simula- Statistics gathered fdk andt, values derived from least squares
tions has not yet appeared. The aim of the present paper is toanalyses of such sets of SNTs were used to assess the relative
outline an approach for such an analysis. In a previous paper merits of two basic approaches to MD data analysis. The first
(paper 1) a procedure was developed for deriving nucleation (option 1 in paper I) was based on expressions, summarized
rates and nucleation time lags from simulations of freezing in below, which explicitly include the effects of transient nucle-
sets of large supercooled clusters, provided the transientation. The other (option 2 in paper I) was the conventional model
nucleation regime had already been characterized. How to dealof sudden onset of nucleation that ignores the gradual build up
with the parameter characterizing this regime was not addressedf pre-critical embryos. It was found that the sudden onset model
satisfactorily, however. To date, to our knowledge, no reliable produced smaller apparent statistical errors, and that corrections
information establishing this parameter exists. Paper | also could be made for the associated systematic errors. Recent
analyzed the statistical errors to be expected, although the errorsadvances in computer technology have greatly increased the
were somewhat distorted because they were not based upon theractical limit of MD sample sizes for molecular systems as
optimum weighting of data. complex as 700-molecule clusters of Mffom about 20 to

In the following we sketch aspects that still need to be many hundreds of nucleation events. Uncertainties correspond-
considered in the analysis of kinetic data from MD simulations. ing to these larger sample sizes are sufficiently reduced that
Three parameters are involved: the ralg the time lag t,, the explicit treatment of transient nucleation (option 1) is now
indicating the duration of the transient regime, and what we preferred.
have chosen to call the “reduced momemg, to characterize The motivation for writing a sequel to paper | was 3-fold.

nucleation kinetics in the transient regime. . e . . ;
; First was the recognition that neither choice of weights suggested
As before, we adapt Wu's method of moméntsr bulk in prior worké and used in paper I, namely, = 1 or w =

systems to systems of clusters and characterize the trans'engrctan(llsvctj), with V, the cluster volume, was the optimum
* Corresponding author. E-mail: Ibart@umich.edu. choice for treating transient nucleation. In the present paper an
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improved weighting function is presented that is computationally This ratio differs from unity during the time it takes for the
simple and appropriate for the sets of stochastic nucleation timesbuildup of precursors that ultimately leads to a steady-state rate
associated with transitions in clusters. A second motivation was Js of production of critical nuclei. Integration of eq 3b yields a
the development of a greatly improved method for constructing relation for the accumulated number of critical nuché(f), in
model sets of SNTs for least squares analyses. Third, a methodhe freezing of a fixed volumey,, of a supercooled liquid.
was developed to treat the extraction of information about the Assuming that the nuclei formed do not significantly deplete
reduced moment. Paper | had dealt only briefly with this the volumeV, accessible for further nucleation,

problem. A more detailed examination of ways to determine .

Mg is outlined in the following, including examples from St) = N(t)/JYV, :J;R(t')df (4a)

date is presented for determining the uncertainti¥i Integration ofR(t) yields

The virtue of realistic constructions of sets of nucleation times

is that the rates and time lags fed into the constructions are 1 In(t/t,)) —a

known exactly so that actual errors in rates and time lags derivedS(t) = t|1 — Serf———

recognized. Therefore, realistic expectation values of standard 1 In(t/t,)) + a

deviations in derived parameters can be determined. Such t{1— Eerf —\/—2

measures of error should also apply to analyses of data from 2b

MD simulations where actual errors are unknown. , . . .
Wu'’s parameters andb are defined in terms of a quantity we

choose to call the “reduced momenlg, such that

) (4b)

molecular dynamics data sets. Moreover, the first analysis to
. . 2 2 )
by least squares analyses of sets of nucleation times can be 2b
The described treatment of model data makes it possible to
find how parameter uncertainties depend on the number of
nucleation events per data set, both for standard deviations 1
derived from least squares residuals, and for expectation a=-— Eln(MR) (5)
values o<, of standard deviations derived from analyses of large
ensembles of sets of SNTs. Guidelines are obtained for and
estimating realistic uncertainties applicable to single MD data
sets where the error matrix alone is shown to be entirely b* = In(Mg) (6)
insufficient. lllustrative results of this approach that treat
preliminary MD dat&® for (RbClyos and (Sek)sso clusters are  Here Mg = 2M/t,2, where the momenM is a quantity Wu
presented. regarded as a free parameter to be derived in the analysis of
Summary of Method of Moments for Clusters. Prior to experimental data. It is evident that the lowest value the reduced
the treatment in ref 1, the decay of a populatioMNgiunfrozen moment can have is unity.
clusters due to nucleation had been considered to follow the If, instead of a system consisting of Wu's large fixed volume,
first-order law the system is a set &, supercooled clusters, each of whose
volumes isV,, then the nucleation expression must be modified.
IN[N,(t)/N,] = —K(t — t,) (1) When one cluster is removed from the set after a critical nucleus

_ ) _ has formed in it, the volume remaining in the set becoh¥s,
for the sudden onset of nucleation at titgethe so-called time  \yhere N, is the number of liquid clusters left in the set.

the number of clusters not yet having experienced formation of

a critical nucleus before thih nucleation, and represents JO  1dN/dt —(dN/N)/dt

the productlV of the steady-state nucleation rale,and the RO=7"=7 NV, K (7
S S c

cluster volume)/.. Paper | adapted Wu’'s method of moments,
with its explicit treatment of transient nucleation in a large bulk
volume to one suitable for use with finite sets of clusters
resulting in an expression of the form

By virtue of the definitionS(t) = fLR(t’) dt', rearrangement
' and integration of eq 7 produces eq 2 above. Note that eq 2

reduces to eq 1 allg approaches unity, or wheinbecomes

_ very large. Note also that, has been treated as a continuous

N[N (D/N] = —KS() (22) function oft, an approximation that becomes more accurate as
the number of clusters in a set becomes large. Ktyy and
thereby— In[Ni(t)/Ng], varies withMg for a givent is shown in
Figure 1.

In analyzing simulations for a set bk, clusters, the sequence
of numbersN; is known exactly, whereas the stochastically
g(t) = —In[N,(H)/N,] (2b) determined times are very much a matter of chance and can
vary widely from set to set. Therefore it is reasonable in least

Wu's method of momentsyields an explicit expression for ~ Squares analyses to consider the nucleation time as the uncertain

The derivation and meaning &) are given below in egs 3,4.
S(t) differs from ¢ — to) in the region of transient nucleation,
but approaches that expression in the limit of large

For convenience in later equations, we adopt the notation

the ratioR(t) in the development of nucleation raig¢t), where Y’ variable and the quantity(t) of eq 2b to be the accurately
known “x” variable. To carry out least squares analyses, then,
J(t)/ I, = R(t) (3a) it is necessary to invert eq 7 to the fortfy). As shown in
paper I, an empirical expression for the reduced tifaeas a
with the ratio expressed in Wu’s notation as function of g, namely

tt, ~ 1+ g/Kt, — (1 — 0.5M3? x

3b
(3b) exp[—1.82@/Kt,)"4 (M, — 1)°4Y (8)

In(t/t) — a
R =1 - Serf Intty) — 2
2b°
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of the timest,, associated with the chosen bins. Set selection
is repeated until a statistically meaningful ensemble of sets of
simulated nucleation timed,} is formed. Each set is ordered
in time and analyzed in the same way as a set from an MD
simulation. As will be seen, the new method for determining
values of bin event timeg,, allows one either to determiries
for the entire set of bins or, if desired, just for individual
randomly selected bins.

In the earlier papet,time apportionment was based on
integration of the Wu probability distributior(t), suitably
modified for clusters. As derived in paper |,

P(t) = KR(t) exp[-K(t)] (9)

The desiredy values are the integration limits for which the
expressions

-In[N (N, ]

Figure 1. Dependence of the decaying populatirof liquid clusters ftk P(t)dt' = (k— 1+ f)/Ng, k=1,..,N; (10)
on the reduced momen#r. In all curves,K is taken to be 1. The 0
dashed line in the main plot corresponds to the limiting moment, unity, -
where the decay df is exponential. The next two values of the moment &€ satisfied. ) o _
are in the range of those suggested in prior work, namely 1.2 and 1.4.  Solving eq 10 for the integration limitdy, by numerical
Intervals between successiMg values in the remainder of the curves, integration of P(t) suffers some practical deficiencies. The
starting with 2.2, are all 0.8. In the insert are plotted the same curves method is prone to systematic, often cumulative, errors, includ-
out to much larger values of the time. This is to show that the curves jng round-off errors in accumulating the running total of the
ultimately do approach the limiting value, that fz = 1, here integration limit. A method that avoids the troublesome numer-
represented by a heavy solid line. LT . .

ical integration process is as follows. It has proven to be orders

is sufficiently accurate for use in least squares calculations over of magnitude more accurate, as well as simpler to apply.
the range oMy expected to be physically significant. Consider a termky, analogous t@; in eq 2b,

Generation of Model Stochastic Times.A requisite for
testing the method of moments is a procedure for selecting large h = —In[N,(t)/Ng] (11a)
numbers of sets of stochastic nucleation times (SNTs) of various. . . .
numbersN,, of independent clusters per set. This provides as in which k_mdexes th.e nucleation events, and Fhe total nymber
much “data’ as desired, all of it based on known values for of nucleation events is nog .rather tharN,. In this expression
rate, time lag, and reduced moment. To emphasize what was () represents, fols evolving clusters, the average number
mentioned above, fitting such data by least squares reveals '[heOf unnucleated cluster_s remaining at some arbitrary fraction,
actual errors in the derived parameter values in individual sets,fB’ of the way across bik, namely,
and provides the standard deviationd’, derived from the N() = [Ng — (k— 1+ )] (11b)
residuals encountered in individual data sets. More importantly, K B B
from the actual errors in parameters, it yields the expectation axingf; = 0 corresponds to locating theh nucleation event
yalues of the standard deviationsderived from the variance i the beginning of bitk. For the particular case dfs equally
in the least squares parameters over an ensemble of setSyohaple nucleation events distributed uniformly over Mg
Presumably this estimate of uncertainty can be applied to clusterime pins eq 2, evaluated at these “average” event times,
nucleation data from MD simulations, where “true” parameter pacomes
values are unknown. Initial results for SNT analyses presented
in paper | confirmed the utility of the approach. However, they KSt) =h.=—In([Ng — (k= 1+ fg)/Ng)  (12)
employed an inefficient and numerically problematic way to
create the sets of SNTs, and were based on weights that werd=inding the desired time apportionment reduces to finding values
decidedly nonoptimum for the transient nucleation model. An of t that satisfy eq 12. Becau$&) is a smooth, monotonically
improved procedure for determining sets of SNTs is outlined increasing function with a limiting expression
next.

The general scheme for generating suitable sets of stochastic ![2 ) =(t-t) (13)
times is to apportion time, from 0 to, into an arbitrarily large
number Ns, of equally probable intervals or time bins. We have solutions of eq 12 are easily found. If eq 8 were exact, it would
usually takenNg to be 10 000. Here, probability refers to the be possible to use it for calculating the desitedalues directly,
likelihood of a nucleation event occurring within the time by substituting the expression fog in place ofg,, but a more
spanned by each bin. An event tinag lying somewhere within precise evaluation of bin event times is desired.
bin k, is ascribed to each bin. Typically eahs positioned at Simple search techniques suffice for locating individtial
the same fractiorfg, of the bin’s span from the start of the bin.  values, whether for randomly selectid or for the complete
Individual sets of stochastic timel, in number, are produced  set in succession. Once a pair tef is found such that their
as follows. FirstN, bin numbersn, are chosen randomly from  corresponding3t) values bracket the targét value, the time
the entire set ofNg bins. To mimic sizes of sets characteristic interval can be successively halved, each time choosing the half
of MD simulations, the number of time bins should greatly whose correspondingt) values still bracket the targbg value.
exceed\,, although calculations to establish limiting values of In the absence of any prior knowledge of narrower limits for
K's andt'os have been carried out for sets witly as large as tw, one can start with the full range, 9t < tyg Or with ty—q <
20 000. TheN\, stochastic nucleation times are simply the values ti < tn,. For largeNg substituting the limiting expression for
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St) into eq 12 leads to a simple expression fQf. When
calculating a full set oty's, a number of ways of estimating
the width of the next bin or locating the netgtare available,
including application of eq 8 or eq 17 below. A faster, more

efficient search scheme than the indicated geometric progression

combines finding a partially reduced time span, then fitting
selected{S(t)] points by a low-order polynomial and interpolat-
ing to the finaltk value, or even iterating the polynomial plus

Jacob and Bartell

t;, each time calculated from eq 8. Therefore, a plausible weight
for eventl would be proportional to the inverse square of this
interval, or

— 2
w = C/(t;,; — t) (16)
whereC is an arbitrary constant, and the times are those from
eq 8. Although these intervals depend on the quantities to be

interpolation steps, with reduced time spans for each iteration. derived, namely the nucleation rate and the time lag, as well as
As a practical matter, all of the numerical integrations of the the moment, itis simple to cycle to self-consistency during the
previous method (the “P-method”), and all of the calculations least squares routine. Inasmuch as the time width of each bin
of the present method (the “S-method”) were carried out in for the stochastic generation of nucleation times is defined by

reduced time, rate, and volume (i.e., assigning unity to the valuesthe integral

for t, and K).
Error Matrix. The manner in which data are weighted and

i+ r ]
fn' 'P(t') dt' = 1/Ng

standard deviations are calculated can have a significant effect

on derived parameters and their apparent uncertainties. All

calculations ofo's reported here were based on the “bona fide
error matrix” M‘XN, for calculating parameter standard devia-
tions and correlation coefficients from residuals where, in the
case of the derivation of two parameters,
W o2 OkOt K t,

X = 2
1of
KO PRt, O

=B 'A'WM ,WAB ! (14)
with B, A, W, andM+ representing, respectively, the information
matrix, the design matrix, the weight matrix, and the matrix of
errors in observatiorfs. The matrix M}’ is valid even for
nonoptimum weights as opposed to the false, or “zero-order”
error matrixm.,°,

M °=B'V'WV/(n—m) (15)

whereV represents the matrix of residuals, améndm, the

~ PAt a7
the time spread\t over a bin is roughly proportional to the
inverse of the nucleation probability functioR(t), a function
given explicitly in eq 9. Therefore, the weights are small when
P is small, that is, when the nucleation time is either much
smaller than or very much larger than the nucleation time lag.
Determination of Reduced Moment.One possible method
is suggested by the fact that the reduced moment is related to
the number of events occurring before the timetldg reached.
For example, ifMr were unity, there would be no such events
whatsoever. AsMg increases, so does the fractioR,, of
nucleation events occurring befdge Statistically, this fraction

is
F,=1- ex;{— Ktoerf(w)

5 (18)

This method would work very well if the time lag were known
independently of the least-squares analysis of the nucleation
data. Unfortunately, the time lag can be determined from MD

number of observations and the number of derived parametersdata only by fitting the observed set of nucleation times with

Equation 15 is widely used but valid only if the weights are
optimum® that is (in the case of uncorrelated errors in

the representation of eq 8 or equivalent. It turns out that in such
fittings by least square¥ andt, are highly correlated, with a

observations), weights must be proportional to the inverse of correlation coefficient of the order of 0.9 or higher. As the

the variances in observationsMy. Nucleation times in separate

clusters of molecular dynamics simulations are uncorrelated,

parameteiMg is increased in least squares analyses, the value
of t, derived also increases as explained in pagerterefore,

assuming the starting configurations are prepared properly, sothe productKt, increases even faster with the result that the

that a diagonal weight matrix is appropriate. No uncertainty is
attached to the values fgr(t) = —In(Ni(t)/No), whereN; is the
number of clusters in the set, aNdthe number of unnucleated
clusters just prior to thith nucleation. However, the nucleation
times,t;, occurring purely by chance, are subject to substantial

theoretical expression (eq 18) fdf, closely parallels the
observed number of events occurring before the derived time
lag, almost irrespective of the value assumed Nbx. This
remarkable parallel is illustrated in Table 1 for the case of 150
nucleation events in molten (Rbgd) clusters? Such a parallel

uncertainties. An estimate of the variance in individual stochastic was also seen in a series of runs on liquid (§b clusters.

nucleation times is presented next.

Weight Functions. A procedure to devise a weight function
taking the uncertainty in nucleation times into account is as
follows. The optimum weighty is inversely proportional to
the variance expected for the tintg, Variances in stochastic

Therefore, this approach to determining the reduced moment is
ineffective.

Despite the above result, there nevertheless is information
aboutMg in the data. If the least squares analyses are carried
out for a series of values dflg, one of the representations of

times are related to the average intervals between such timesthe data is better than the others. The region of transient

This correspondence is suggested by the following argument.

In least squares analyses of setsNgfevents, the calculated

nucleation is more sensitive to the valuehdg than the region
at higher times. After determining the valuetgtorresponding

timest, to be compared with the observed times (in a molecular to each assumed moment from the full set of data, it is

dynamics run or in a model set of stochastic times), can be worthwhile to calculate the sums of squares of the residuals in
envisaged as belonging to time bins in a bin array Wigtbeing the region of transient nucleation. This procedure yields a more
just No. Since, on average, whether in MD or model runs, the definitive result than the first approach described above, as
bins tend to be sampled evenly over the bin array, the typical suggested in Table 2 and shown more objectively in a

residual for timet; tends to have the magnitude of the breadth subsequent section. Still, the determination of reduced moment
of bin |. This breadth is the difference between tinhes and is very noisy unles$\, is in the neighborhood of thousands of
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TABLE 1: Fraction, F,, of Nucleation Events Occurring TABLE 3: lllustration of Effects of Different Weight
before Timet, Is Reached, as a Function of Assumed Functions w on Derived Parameters and Their Standard
Reduced MomentMg? Deviationst
Mg to (ps) Kto Fi[eq 18] Fr (MD result) wo18KY 100R 100}t op  op  pk, (D)
1.08 64.9 0.957 0.10 0.11

opt 501 0046 081 116 1.65 15 0.867 6.1

i'i ;‘3"2 iéig 8'%2 8'%}1 atai 568 0212 085 136 5094 21 0972 153
14 a2 1B o3 23 unity 594 0287 102 149 924 31 0979 20.3

1.9 175.2 5.694 0.83 0.83 2 A set of 100 nucleation events in (S§fo cluster§ was analyzed

by least squares using the optimum weight, eq 16, the arctangent weight
proposed in ref 3, or unit weight, suggested in ref 1. Comparisons are
based on the reduced moment 1.4 but similar results are found for the
d other reduced moments considered in Tables 1 and 2. Standard
deviationso™ are derived from the least squares error matrix. The much
larger standard deviations are estimated via egs 19 and 20 from the
expectation values of the variance found for the kinetic parameters in
analyses of large sets of stochastically generated nucleation firkes.

in ps™. ¢ Times in ps.¢ Standard deviation in tim& Equation 16! See

@ Comparison of theoretical expectation values of eq 18 with those
derived from optimally weighted least squares analyses of a set of 150
MD nucleation runs for (RbCl)s clusters! In each case, weights and
derived results fot, andK are consistent with the assumed reduce
moment. Had the time lag been known independently of the assumed
reduced moment, the fraction of events befireould have served to
determine the reduced moment for the MD run. Since the MD least
squares fractioifr, rises in parallel with that based on eq 18, it can be
seen thaf, provides no basis for estimating the moment.

ref 1.
TABLE 2: Estimation of Transient Nucleation Parameter
Mg from Results of Optimally Weighted Least Squares
Analyses of a Set of 150 MD Nucleation Runs for (RbCl)g i
Clustersb
Mg Pic alt, ps) p.41)
1.08 0.837 3.27 7.10 ]
1.2 0.882 2.44 3.33 |
1.4 0.950 2.13 2.65
1.6 0.979 2.36 5.24 i
1.9 0.992 2.79 8.64
aRef 4.°Listed for each assumed moment are the correlation
coefficients p associated with the derived time lag and nucleation s
rate, the weighted standard deviati@ift) between observed and
calculated nucleation times, and the weighted variasfegt) in the
transient range covering the first 30% of the nucleation events. The 0 1 2 3 4 5 6
latter quantity is generally more discriminating than the overall standard - In(N/N,)

deviation. Figure 2. Stochastic sets of nucleation times, each for 200 events.

Plots do not illustrate the representative scatter but illustrate sets
independent events. If least squares analyses are carriedlput  corresponding to the maximum (1.68), and minimum (0.66y) K
for times in the transient regiot, andK adjust themselves to  values (open markers on solid curves), and maximum (180,
fit the data almost equally well for any plausible value of the minimum (0.64,v), and midrange, (®) values (solid markers on
reduced moment. Least squares refinements including timesdashed curves), encountered in 10 000 random model sets, all generated

- . . ith the same input rate and time lag. Also plotted on a vertical axis
beyond the transient region are needed to place constraints Or)g the probability distributionP(t) of eq 9. The density of event times

to andK. tends to be proportional t&(t), and the optimum weights in least
squares analyses are proportional to the squar{tpf
Results
Construction of Model Stochastic Times.Bin times cal- times are associated with very large uncertainties, a consequence

culated via the S-method exhibit a noise level consistent with of the low probability of nucleation (eq 9) in any particular
the degree of precision selected for the computation, and areinterval of time whert is large.
free of systematic errors, provided that the routine adopted for  Uncertainties. Sets ofN, nucleation times generated from
the erfc function is accurate. The routine selected for the presentN, random hits on time bins closely resemble the setdlof
computations was taken from ref 7. On the other hand, errorstimes acquired in MD simulations. Some idea about the
we encountered when the integration method was used weredistribution of times is conveyed by the 5 sets, each of 200
many orders of magnitude greater than for the S-method. times, illustrated in Figure 2. The rather large difference between
Weights. Listed in Table 3 is an illustrative example the sets plotted is not indicative of the characteristic stochastic
analyzing the times of nucleation events in the freezing of 100 scatter but rather, illustrates the extremes found in 10,000 sets.
Seks clusters each composed of 550 molecdleStandard Shown are the sets that yielded the maximum and minimum
deviations in the derived parametdfsandt,, as well as the values of K in least squares analyses, and the maximum,
standard deviations for the residuals in nucleation times, are minimum, and a mid range value @af Most sets in the ensemble
tabulated. Standard deviations were calculated from residualsresemble that for the mid rande more closely than they do
via the “bona fide error matrixM,, eq 14. Standard deviations  any of the illustrated extremes.
in Table 3 can be seen to be appreciably lower when the Also displayed on a vertical axis in the figure is the
suggested weights are adopted than when the weights appliegrobability distribution (eq 9) in timet, according to the Wu
were either unit weights or the arctangent weights that had beenmoment theory. The density of points along the time axis is
reported to be satisfactory for the analyses of stochastic databased on this distribution. Moreover, since the optimum weights
ignoring transient nucleatiohThe very large effect of choice  of points are proportional to the square of this distribution, it
of weights is due mainly to the overemphasis of data at large can be seen how little the points at large times influence the
times unless optimum weights are adopted. Large nucleationleast squares analyses.
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Figure 3. Distribution of least squares values §fand associatety
values acquired in analyses of 1000 sets, eadN,6f 10 stochastic
nucleation events. For each set the event times were based orKinput
andt, values of unity. Two percent of the points liekatalues outside
the figure. Clearly, sets of only 10 events are entirely insufficient to
establish rates and time lags.

1000 10*
Number of events per set

Figure 6. Dependence on sizes of data sets, of uncertainties in
nucleation rates associated with analyses of set®pobtochastic
nucleation events. Solid lines correspond to optimum weighting, and
dashed, to unit weights. The upper curves are for the true mean standard
deviations,og, and the lower, the mean standard deviations deter-
mined from the least squares error matrices. Each generation of
» stochastic nucleation times was based #halue of unity. All values
T 1 1

plotted ares values multiplied by the factoN, — 2)*2to find whether
the “root N law” applies.
15F : B 3 T T
25
~°  1F . e
iy 2
o
£
05 . x 15
1
£ ]
(=)
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K
Figure 4. Distribution of least squares values ¥fand associatet)
values acquired in analyses of 1000 sets, eadk,6f 100 stochastic 10 100 1000 10*

nucleation events. For each set the event times were based orKinput

| Number of events per set
andt, values of unity.

Figure 7. Dependence on sizes of data sets, of uncertainties in time

1.4 ; . . ' r r lags associated with analyses of setdlp§tochastic nucleation events.
Solid lines correspond to optimum weighting, and dashed, to unit
12} B weights. The upper curves are for the true mean standard deviations,

afo, and the lower, the mean standard deviations determined from the
least squares error matrices. Each generation of stochastic nucleation
times was based ontavalue of unity. All values plotted are values

1k

0.8 . multiplied by the factor Ifl, — 2)V2 to find whether the “roofN law”
~° applies.
06 .
i although the correlation breaks down in the ensemble of sets
0.4 . ) . .
of only 10 nucleation events where the exceedingly long tail of
02l . the distribution inK from least squares analyses is only hinted
at in the figure. Values oK as large as 150 times that fed into
0, 0'2 0'4 0'6 ola '1 1'2 " the generation of stochastic times have been seen. It is clear
o K ’ s that sets of as few as 10 events cannot be expected to yield
Figure 5. Distribution of least squares values §fand associatet} reliable kinetic parameters.
anI’ues acquired in analyses of 1000 sets, ead¥,of 1000 stochastic . Flgurgs 3-5 qualitatively illustrate the magnlt.ude of .the
nucleation events. For each set the event times were based orkinput dispersion of least squares parameters associated with the
andt, values of unity. stochastic nature of nucleation. A more quantitative portrayal

of uncertainties is given in Figures 6 f& and Figure 7 fot,.

A more direct portrayal of the distribution in results for the Uncertainties plotted are multiplied by the factdl, (— 2)¥2to
derived kinetic parameters, as well as the dependence on sefind whether they follow what statisticians refer to as the “root
size is shown in Figures3. Plotted are the, t,) pairs found N law” observed in a wide variety of problems of physical
in 1000 sets of runs for set sizes N§ = 10, 100, and 1,000 interest It is apparent that the expectation valueslo tend to
clusters. Most obvious is the decrease in scatter with increasingfollow this law within statistical error except for very smalh,N
set size. Next, is the strong correlation betw&eandt, values, but thed's values do not. The's values obtained from the least-
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squares error matrix depend, as expected, upon the weighting
of data, with optimum weights yielding appreciably smaller
standard deviations (over the practical rangélgfthan do the

unit weights used in paper |. More important is the fact that the B
expectation values© are considerably larger than th€. These
expectation values, whose magnitudes are manifested in the
dispersion of points in Figures-3%, are the more valid measure

of the real uncertainty. Moreover, these magnitudes are not
strongly dependent on whether the optimum or unit weights
are adopted. Although this might suggest the weighting scheme
is of little practical importance, the kinetic parameters derived
do depend appreciably on the weights (Table 3) and the optimum
weights are preferred.

Another result confirmed by application of the stochastic
model is that both the< and theo' values scale with the kinetic 1 1.5 15
parameters. That is, K (or t,) is doubled, so also are the
corresponding values @f ando's. Therefore, in the inference ) ) .
of uncertainties in MD results, where a measuresofs not Figure 8. Histograms of the values &flr derived from least-squares

ilabl bl timate of thi taint b fits of stochastically generated nucleation times for thousands of sets
avallable, a reasonable esimale o IS uncertainty can D€t times when the value dflr input into the stochastic generation was
obtained from either of two relations, or

1.4, the value indicated by the heavy vertical lines. In the lower two
Is curves the sets of nucleation times included only 200 nucleation events.
o — Kuo o (19) The upper two curves correspond to sets of 800 nucleation events. A
K.MD Is K.stoch truly precise determination would require sets of thousands of events.
stoc The criteria for selecting th®lr value from the least-squares analysis
of any given set were (solid curves) the minimum standard deviation

Relative frequency

1.76 2

Reduced moment

Is

. Okmp | . in time over the entire set, and (dashed curves) the minimum variance
Okmp = | s OK stoch (20) in time in the transient regime, namely the first 20% of the events.
K, stoc

and similarly fort,, where the subscript “stoch” refers to a value B
derived from a sets of model stochastic nucleation times. Since
the dispersion from the stochastic runs is known both for the
parametersK and t,, and also for theg's values for each -
parameter, a weighted mean of results from egs 19 and 20 can
be applied to the estimate of the MD expectation values,
This averaging was done to obtain the entries in Table 3.
Reduced Momentsln paper | it was stated that least squares
refinements in which all three kinetic parametéefs,t,, and
Mg, were refined together were too ill-conditioned to be
worthwhile. Now that greater numbers on nucleation events can
be acquired, that conclusion may no longer be entirely true,
although such analyses are likely to be unstable even for
currently accessible sizes for MD data sets. In the present paper 1 1.5 2 25 3
such refinements includinlglr were not attempted but, rather,
information about the reduced moment was extracted as outlined
in the foregoing. Results illustrating the sensitivity My of
the overall standard deviation of nucleation times and of the
sums of squares of residuals in times in the transient region are, 5;ye for the moment, while a numerical simulation of the

illustrated in Table 2 and, more definitively, in Figures 8 and  ¢ystallization of lithium disilicate glads can be represented
9. quite well by a value oMg in the range of 1.1 to 1.2.
Uncertainties. One of the most important results of the
present work is the finding that the inference of uncertairty
Reduced Moments.Very little information about experi-  from least squares residuals for a given set of data, as expressed
mental values of the reduced moment is available in the in the error matrix, far underestimates the true statistical
literature. Wu gave no guidelines for estimating the moment uncertaintyo¢, as illustrated in Figures-37. It is often assumed
but suggested that it be determined from experiments. Kash-that errors yielded by the error matrix are “random errors” while
chiev's theoretical resuft,which corresponds to a reduced those over and above such random errors are “systematic errors”
moment of very nearly 1.4, has been cited as being in good either stemming from some deviation of conditions from those
agreement with experimental ddfaput a later publicatioh assumed for the data or some error in the theoretical expression
claimed that the Kashchiev result is based on rather crudeused to define the residuals. In the present treatment, however,
approximations and, therefore cannot be assumed to be correctthe data points arall based entirely on random selections of
From the results in Table 2, it appears that the best fit for a time bins, and hence errors above those from the error matrix
system of 150 independent (Rbghclusterd is consistent with do not conform to the concept of “systematic errors”. The
the Kashchiev prediction, but 150 nucleation events are far too expectation values of uncertainties, do follow the “rootN
few to be definitive. Preliminary results for 800 nucleation law” expected for random data, while the least squares values
events in much larger clusters of Sdfave suggested a similar  utterly fail to, principally because the variance of the residuals

Relative frequency

Reduced moment

Figure 9. Same quantities as in Figure 8 except that the valudof
input into the stochastic generation of nucleation times was 1.9.

Discussion
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falls off markedly as the number of evenit, in a set increases.  increments, the curves crowd closer and closer together. In
This behavior arises because a snilicorresponds to a such  contrast, wherMg is determined from the minimum misfit in
a sparse selection of time bins that a potentially very unfaithful the transient regime, the broad foot of the histogram disappears.
representation of eq 2 is generated. For a very large set whereTherefore, as stated previously, the latter method is preferred.
the sampling of time bins becomes more uniform, the distribu- Why it leads to a bimodal distribution of moment when the
tion of times approaches the Wu transient nucleation distribution number of events is only 200 is not clear. What is clear is that
built into the construction of the time bins. While this rationale a precise determination of the moment characterizing the
partly accounts for the diminishing mean-square residuals foundtransient regime requires the acquisition of a very large number
asN, increases, it does not fully explain why the error matrix of nucleation events.
is such an unsatisfactory gauge of the true uncertainty. The most
important conclusion concerning the determination of rates and  Acknowledgment. We thank Drs. Jinfan Huang and Yaro-
time lags, then, is that the variance) is the appropriate  slav Chushak and Mr. Guarav Shah for permission to cite some
indicator of uncertainty, not the elements of the least squaresof the preliminary results from their MD runs on RbCl and seF
error matrix. Inference of this important information, then, clusters.
requires the present stochastic analysis, for it is beyond the
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