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We show that the coupling responsible for fluorescence resonance energy transfer (FRET) generates a
mechanical force that is distinct from the van der Waals force between ground-state molecules and can be
either attractive or repulsive. The underlying potential has the same 1/r6 distance dependence as the rate of
FRET, and the two are connected by a Kramers-Kronig relation. Just as the rate of FRET can be derived
either classically or quantum mechanically, so too can the interaction potential. Because of the FRET force,
time-resolved FRET measurements contain information on the mechanical stiffness of the matrix containing
donor and acceptor.

I. Introduction

Fluorescence resonance energy transfer (FRET) from an
excited donor molecule to a nearby acceptor plays a major role
in photosynthesis, carrying energy from chlorophyll molecules
to the photosynthetic reaction center.1 FRET also provides a
nanoscale ruler: when donor and acceptor are attached to a
biomolecule, the rate of FRET indicates the donor-acceptor
distance.2,3 There has recently been a resurgence of interest in
FRET in connection with single-molecule studies as a probe
for conformations of polymers and biomolecules.4

FRET and long-range dispersion forces both arise from a
coupling between the transition dipoles of two molecules. Thus
it is reasonable to expect a change in the long-range intermo-
lecular force to accompany the process of FRET. This FRET
force (FF) has implications both for photosynthesis and for
biophysical FRET studies. A force accompanying photosynthetic
FRET may lead to functionally significant conformational
changes in the protein scaffold around chlorophyll molecules.
Biophysical FRET studies usually assume that the FRET pair
does not affect the molecule under study. This is justified
because the FF tends to be weak, corresponding to an interaction
free energy of∼0.1kBT at a donor-acceptor separation of 1
nm. However, small changes in intermolecular force can have
a macroscopic effect near a critical point where all other forces
along a conformational coordinate vanish. Polymer solutions
can be brought near a critical point by adjusting temperature
and solvent composition.5 Moreover, the force creates the
possibility to use light tocontrol the conformation of a
biomolecule and to probe its mechanical response.

One way to think about the FF is as a generalization of optical
trapping. A polarizable particle (atom, molecule, colloid, etc.)
experiences a force along an electric field gradient. In laser
tweezers, tight focusing of the laser beam creates the field
gradient.6 It has been proposed to use sharp metal tips to enhance
optical fields and field gradients.7 Consider the limit in which
the sharp metal tip is shrunk to a single molecule. The near-
field of an excited molecule has strong fields and strong field
gradients. Thus the FF can be thought of as optical trapping of
the acceptor by the near-field of the excited donor.

This electrodynamic picture can be formally established by
using the multipolar Hamiltonian in which all intermolecular
interactions are mediated by photons, so there is no explicit
donor-acceptor coupling in the Hamiltonian.8 The Coulomb
force is recovered in the near-field limit, where retardation is
neglected. This picture can be obtained classically because the
Hamiltonian for a harmonic oscillator is identical in classical
and quantum mechanics. When the acceptor is modeled as a
collection of harmonic oscillators and then this response is
lumped into the complex polarizability function,R(ω), the
system appears to be completely classical.23,24

A second way to understand the FRET force is to consider
the eigenstates of the donor and acceptor in the minimal coupling
Hamiltonian with the Coulomb coupling included explicitly.9

In this picture, the force arises from a radiative shift in the
energy levels of the donor induced by its coupling to the
acceptor. The minimal coupling and multipolar Hamiltonians
are related by a canonical gauge transformation and the two
descriptions are both exact and equivalent, even though they
offer completely different physical pictures.15,24

There have been many calculations of the van der Waals force
between two two-level molecules with one molecule excited.10-12

These calculations show that optical excitation can dramatically
alter the long-range force. However, it is not clear how or
whether these formal calculations apply to real multilevel
molecules in the presence of relaxation and dephasing nor what
the relation is between the force and the energy transfer.

In this paper, we show how the force may be calculated from
observable emission and absorption spectra. This is done using
both the minimal coupling and the multipolar Hamiltonians.

II. Electrodynamic Derivation

A. Molecule in a Field. A spatially uniform electric field

induces an oscillating dipole moment,pA(t), in a molecule

where R′A and R′′A are the real and imaginary parts, respec-
tively, of the frequency-dependent complex polarizability tensor,
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E(t) ) êE0 sin ωt (1)

pA(t) ) R′An̂A(n̂A‚ê)E0 sin(ωt) - R′′An̂A(n̂A‚ê)E0 cos(ωt) (2)
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RA ≡ (R′A + iR′′A)n̂An̂A. The unit vectorn̂A lies along the
principle absorption dipole of the molecule.

The molecule absorbs powerP:

where the average is taken over many optical cycles. If the
electric field has a power spectral density,f(ω), where∫f(ω)
dω ) 1, then the molecule absorbs a power per unit frequency

and the total power absorbed isP ) ∫0
∞P(ω) dω.

The molecule also experiences a change in its mean free
energy,U:

If the field has a power spectral densityf(ω), then the change
in free energy per unit frequency is

and the total energy shift isU ) ∫0
∞U(ω) dω.

Comparison of eqs 4 and 6 shows that the change in free
energy and rate of excitation (both per unit frequency) are
related:

where we have replaced the power absorbed by the rate of
excitation,K(ω) ) P(ω)/pω. This equation is the basis for all
of the results of our paper.

Field gradients cause the rate of excitation, and hence the
free energy, to depend on molecular position,r . Molecular
anisotropy causes the rate of excitation to depend on the angle,
θ, between the molecular axis and the local field. Making note
of these effects, we get a position- and orientation-dependent
free energy,U(r ,θ), which leads to a forceF ) -∇U(r ,θ) and
to a torqueτ ) -∂U(r ,θ)/∂θ.

The electric field,E(t), could come from a light source, or it
could be produced by a nearby excited donor molecule: the
acceptor,A, responds the same way regardless of the source of
the field. When the electric field comes from laser light, ther
and θ dependence ofU(r ,θ) lead to optical trapping6 and the
optical Kerr effect, respectively.13 In this case, ther dependence
comes from the tight focusing of the laser beam. When the
electric field comes from an excited donor molecule, the spatial
dependence originates from the near-field variation of the field
created by the donor, and eq 7 gives the intermolecular potential
associated with FRET. In principle, there is also a torque that
seeks to align anisotropic molecules participating in FRET. This
torque will not be considered here.

B. Application to FRET. Forster showed that the rate of
FRET is26

whereτD is the lifetime of the donor,r is the distance between
donor and acceptor,fD(ω) is the normalized emission spectrum
of the donor,σA(ω) is the absorption cross section of the
acceptor, andn(ω) is the refractive index of the medium
surrounding the donor and acceptor.14 The factor κ ≡
3(n̂A‚r̂ )(n̂D‚r̂ ) - n̂A‚n̂D takes into account the relative orientation
of donor and acceptor transition dipoles. To expresskFRET in
terms of the polarizability, we make the substitution

so that

The integrand of eq 10 is precisely theK(ω) in eq 7. Combining
eqs 7 and 10, we find the interaction free energy associated
with FRET

C. Kramers-Kronig Relations. Both the real and imaginary
parts of the molecular polarizability can be readily computed
for models and at various levels of theory. Absorption experi-
ments give the imaginary part, but the real part is harder to
measure. To eliminateR′(ω) in the expression forUFRET, we
use the Kramers-Kronig formula:

whereP indicates the principal value of the integral. Thus

This expressionalmostcontainsK(ω), except thatfD(ω) and
R′′(ω′) occur at different frequencies. We thus define a new
quantity,K(ω,ω′):

This two-dimensional transition density corresponds to the rate
of FRET that would occur if the spectrum of the acceptor were
shifted along the frequency axis relative to the spectrum of the
donor. While this shift cannot be easily realized experimentally
(i.e., it is hard to make a family of molecules with shifted spectra
but the same spectral line shape), it is easy to computeK(ω,ω′)
from a known donor emission spectrum and acceptor absorption
spectrum. In terms ofK(ω,ω′),

P ) 〈E‚p3 A〉t

) 1
2
E0

2|n̂A‚ê|2ωR′′A(ω) (3)

P(ω) ) 1
2
E0

2|n̂A‚ê|2ωR′′A(ω)f(ω) (4)

U ) - 1
2
〈E‚pA〉t

) - 1
4
E0

2|n̂A‚ê|2R′A(ω) (5)

U(ω) ) - 1
4
E0

2|n̂A‚ê|2R′A(ω)f(ω) (6)

U(ω) ) - 1
2(R′A(ω)

R′′A(ω))pK(ω) (7)

kFRET ) 9c4
κ

2

8πτDr6∫0

∞fD(ω)σA(ω)

n4(ω)ω4
dω (8)

σA(ω) )
ωR′′A(ω)

3cε0n(ω)
(9)

kFRET ) ∫0

∞ 3c3
κ

2

8πε0τDr6

fD(ω)R′′A(ω)

n5(ω)ω3
dω (10)

UFRET ) - 3pc3
κ

2

16πε0τDr6 ∫0

∞fD(ω)R′A(ω)

n5(ω)ω3
dω (11)

R′A(ω) ) 2
π

P∫0

∞ω′R′′A(ω′)

ω′2 - ω2
dω′ (12)

UFRET ) - 3pc3
κ

2

16πε0τDr6∫0

∞2
π

P∫0

∞ fD(ω)ω′R′′A(ω′)

n5(ω)ω3(ω′2 - ω2)
dω′ dω

(13)

K(ω,ω′) ≡ 3c3
κ

2

8πε0τDr6

fD(ω)R′′A(ω′)

n5(ω)ω3
(14)

kFRET ) ∫0

∞∫0

∞
K(ω,ω′)δ(ω′ - ω) dω′ dω (15)
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and

III. Eigenstate Derivation

In the previous section, we considered a molecule with
arbitrary polarizability,R(ω), and focused on howR(ω) mediates
the response to an electric field. This corresponds to the
multipolar Hamiltonian. In the alternative approach, based on
the minimal coupling Hamiltonian, we consider the internal
eigenstates of the donor and acceptor molecules and include
the dipole-dipole coupling as a perturbation to these states.
Then the question is how does the coupling affect the expecta-
tion value of the energy? This calculation closely follows
Förster’s original paper on FRET22 and yields the same results
as the previous calculation.

In the Wigner-Weiskopff model, when a state,i, is coupled
to a broad continuum,{j}, an effective Hamiltonian arises that
adds a self-energy to the energy of the isolated state:Ei f Ei

+ Ri.15 Here

whereVij is the matrix element coupling statesi and j andEi

and Ej are the energies of these states. This self-energy is
partitioned as

where the real part,Ui, gives the level shift of statei, and the
imaginary part,ki, gives the rate of decay of statei. The
Kramers-Kronig relation between the two follows immediately
from the analytic properties of the self-energy, which are a direct
consequence of causality.

Let the initial state,i, correspond to the excited donor and
ground-state acceptor. The manifold of final states,{j}, corre-
sponds to the ground-state donor and excited acceptor (we
assume that the acceptor has densely distributed levels).
Replacing the sum in eq 17 by an integral over acceptor states,
we find that the rate of energy transfer is given by Fermi’s
golden rule

whereF(Ej) is density of transitions of energyEj.
The coupling to a continuum also produces an energy shift,

Ui, of the initial state:

Förster used eq 19 to calculate the rate of FRET. We follow
his procedure but apply it to eq 20 to calculate the energy shift.

The wave functions of the donor-acceptor system in its initial
and final states are

whereφA andφD are the electronic wave functions andΦA and

ΦD are the nuclear wave functions. The matrix element for the
transition is

The nuclear components ofVij are the Franck-Condon factors
SD(ED

/ ,ED) ≡ 〈ΦD|ΦD
/ 〉 andSA(EA,EA

/ ) ≡ 〈ΦA
/ |ΦA〉.

There are many ways to arrive at the electronic component
of the matrix element,Ve ≡ 〈φDφA

/ |e2/(4πε0n2r )|φD
/
φA〉. Note

that to calculate forces it is necessary to know thegradient in
Ve at the equilibrium donor-acceptor separation. If the mol-
ecules are neutral and their separation is large compared to their
size, then the point dipole approximation is appropriate:

For molecules for which the separation is small compared to
the size but there is still negligible electronic overlap (e.g.,
chlorophyll molecules in the bacterial photosynthetic antenna
complex), then the point dipole approximation breaks down and
Ve must be calculated numerically.16 Standard quantum chem-
istry codes exist to do this at varying levels of theory. The
coupling can also be extracted from spectroscopic data: the
Davydov splitting in the donor-acceptor pair is twice the
electronic coupling energy.17 It may be possible to obtain the
gradient ofVe from the pressure dependence of the Davydov
splitting.

Typically the donor in its excited state occupies a distribution
of vibrational energy levels with probabilitygD(ED

/ ). Similarly,
the acceptor in its ground-state occupies a distribution of
vibrational energy levels with probabilitygA(EA). The total rate
of FRET is given by the rate for each microstate (ED

/ , EA)
weighted by the probability for the system to be in that
microstate and summed over all microstates. IfgD(ED

/ ) and
gA(EA) are statistically independent (i.e., they arise from different
vibrational modes), then this sum factors into two components.
One component depends only on the emission spectrum of the
donor; the other depends only on the absorption spectrum of
the acceptor. We apply this procedure to compute the energy
shift.

From eq 20, the total energy shift for all initial states of the
donor is

The numerator of the integrand of eq 24 can be expanded to
yield

which contains separate integrals over the donor and acceptor
coordinates. Each integral gives an observable. The donor

UFRET ) - p
π ∫0

∞
P∫0

∞ω′K(ω,ω′)
ω′2 - ω2

dω′ dω (16)

Ri ) lim
ηf0+

∑
j

|Vij|2

Ei - Ej + ıη
(17)

Ri ) Ui - ıp
2

ki (18)

ki ) 2π
p
∫|Vij|2F(Ej)δ(Ei - Ej) dEj (19)

Ui ) P ∫|Vij|2F(Ej)

Ei - Ej
dEj (20)

Ψi ) φD
/
φAΦD

/ΦA

Ψj ) φDφA
/ΦDΦA

/ (21)

Vij ) 〈Ψj| e2

4πε0n
2r |Ψi〉

) Ve〈ΦD|ΦD
/ 〉〈ΦA

/ |ΦA〉 (22)

Ve )
µAµDκ

4πε0n
2r3

(23)

UFRET ) ∫P∫F(Ei)|Vij|2F(Ej)

Ei - Ej
dEj dEi (24)

F(Ei)|Vij|2F(Ej) )

|Ve|2(∫gD(ED
/ )SD

2(ED
/ ,ED

/-Ei) dED
/ )(∫gA(EA)SA

2(EA,EA+

Ej) dEA) (25)
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integral is related to the normalized donor emission spectrum,
fD(ωi) (measured in photons per unit frequency), via18

The acceptor integral is related to the acceptor absorption cross
section,σA(ωj), via

If we assume that the index of refraction is weakly dependent
on frequency, thenn(ωj)/n(ωi) cancels in the product of eqs 26
and 27. Combining eqs 24-27 and converting to integrals over
frequency givesUFRET in terms of experimentally accessible
parameters:

SubstitutingR′′(ωj) for σ(ωj) (eq 9) gives

Equation 29 contains a Kramers-Kronig relation forR′A(ωi),
so making this substitution and inserting the point dipole
approximation forVe (eq 23) yields

which is exactly the same as the classically derived eq 11.

IV. Examples

A. Lorentzian Line Shapes. The Lorentzian line shape
describes the response of a damped harmonic oscillator (classical
or quantum mechanical) and also the linear response of a
quantum mechanical two-level system. Consider the case where
both the acceptor and donor are characterized by a Lorentzian
response with resonant frequenciesωA and ωD, respectively:

and

Further assume that the index of refraction is weakly dependent
on frequency in the region of interest and the spectra are narrow

enough to replace 1/ω3 by 1/ω0
3, whereω0 ≈ (ωA + ωD)/2.

The integrals in eqs 10 and11 then evaluate to

and

Equation 34 shows thatUFRET vanishes on resonance (ωD )
ωA) and in the absence of spectral overlap (|ωD - ωA| . γD +
γA). It is maximized forωD - ωA ) ((γD + γA). If ωD > ωA,
thenUFRET is positive and the force is repulsive.

There is a simple intuitive explanation for the dependence
of the sign of the force on the sign ofωD - ωA. Picture the
oscillating field from the donor driving the polarization of the
acceptor. If the driving frequency is below the resonant
frequency of the acceptor, then the polarization of the acceptor
is in-phase with the driving field because the acceptor can
respond essentially instantaneously to the field. This leads to a
negative energy or an attractive force. However, if the driving
frequency is greater than the resonant frequency of the acceptor,
then the acceptor is never able to “catch up” with the quickly
varying driving field. The dipole moment of the acceptor
acquires an out of phase component, which points in the wrong
direction, and the energy is positive or repulsive. For ho-
motransfer, the FF is always attractive because the Stokes shift
guarantees thatωD < ωA.

Line shapes are usually Lorentzian near the center but have
much shorter wings (and finite second and higher moments).
In many cases, the wings are Gaussian. The Voigt profile
(convolution of a Gaussian and a Lorentzian) or the stochastic
model of Kubo are commonly used models that interpolate
between the two profiles.15,19Provided the detuning,ωD - ωA,
is small enough for the line shapes to overlap in the Lorentzian
regime, then eq 34 provides a simple way to estimate the force
accompanying FRET.

B. Sample Calculation.The FF can easily be calculated from
experimental spectra via the relation

The imaginary polarizability,R′′A(ω), can be extracted from an
absorption spectrum and eq 9 (there is no need to worry about
multiplicative constants because they cancel in the ratio). The
Kramers-Kronig relation then givesR′(ω). If the Förster radius,
R0, and the lifetime of the donor are known,kFRET can easily
be calculated from

The ratio of integrals in eq 35 is typically of order 1 and is
calculated for some common FRET pairs in Table 1. Figure 1
shows the emission spectrum and calculated values ofR′(λ) and
R′′(λ) for chlorophyll b. Calculations were performed by
numerically integrating spectra available over the Internet.21

∫gD(ED
/ )SD

2(ED
/ ,ED

/-Ei) dED
/ )

3πε0pc3

ωi
3n(ωi)µD

2τD

fD(ωi) (26)

∫gA(EA)SA
2(EA,EA+Ej) dEA )

3ε0pcn(ωj)

πωjµA
2

σA(ωj) (27)

UFRET ) -
|Ve|29pε0

2c4

µA
2µD

2τD

∫P∫ fD(ωi)σA(ωj)

ωi
3ωj(ωj - ωi)

dωj dωi (28)

UFRET ) -
|Ve|23pε0c

3

µA
2µD

2τD

∫P∫ fD(ωi)

n(ωj)ωi
3

R′′A(ωj)

ωj - ωi
dωj dωi (29)

UFRET ) - 3pc3

16πε0n
5r6τD

∫0

∞fD(ω)R′A(ω)

ω3
dω (30)

R′A(ω) )
µA

2

p

ωA - ω

(ωA - ω)2 + γA
2

R′′A(ω) )
µA

2

p

γA

(ωA - ω)2 + γA
2

(31)

fD(ω) )
γD/π

(ωD - ω)2 + γD
2

(32)

kFRET )
3c3µA

2
κ

2

8πε0τDn5pω0
3r6

γA + γD

(ωA - ωD)2 + (γA + γD)2
(33)

UFRET )
3c3µA

2
κ

2

16πε0τDn5ω0
3r6

ωD - ωA

(ωA - ωD)2 + (γA + γD)2

)
ωD - ωA

2(γD + γA)
pkFRET (34)

UFRET )
-∫fD(ω)R′A(ω)ω-3 dω

∫fD(ω)R′′A(ω)ω-3 dω

pkFRET

2
(35)

kFRET ) 1
τD

(R0

r )6
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Integrations and the Kramers-Kronig calculation were carried
out over the spectral window for which data was reported with
no extrapolation to high or low frequencies. When the ratio of
integrals (labeled in the table as 2UFRET/(pkFRET)) is negative,
then the FF is attractive. At a separation equal to the Fo¨rster
radius,kFRET≈ 1/τD, soUFRET≈ p/τD or the radiative line width
of the donor. This miniscule shift in energy would be very
difficult to detect. However, for separations typical of chloro-
phyll molecules in the photosynthetic antenna complex, energy
transfer occurs on a time scale of 100 fs to 1 ps, soUFRET ≈
0.1kBT.

V. Discussion

How would one detect a force associated with FRET?
Detection is simple if the donor and acceptor have some freedom
of relative movement. The donor-acceptor separation and
relative orientation both affect the dipolar coupling matrix
element,Ve. This matrix element in turn affects the optical
properties of the dimer: it determines the rate of FRET and
the Davydov splitting. A time-dependence in either of these
quantities indicates movement in the excited state. Because we
assume conditions under which the Fo¨rster theory is valid, the
Davydov splitting is much less than the line width of donor or
acceptor. However, a small shift in the maximum of the donor
emission spectrum may still be detectable.

The time-dependent spectral shift associated with FRET is
conceptually similar to the Stokes shift. The Stokes shift of a
single fluorophore arises from a relaxation of the local environ-

ment and the bonds within the molecule.27 The spectral shift
associated with FRET comes from a relaxation of the medium
between the two fluorophores and thus can be thought of as an
intermolecular Stokes shift. Conventional Stokes shift and FRET
relaxation are clearly distinct because (1) the Stokes shift is
independent of the presence of a nearby fluorophore while FRET
relaxation depends strongly on the intermolecular coupling and
(2) the Stokes shift should occur much more quickly than FRET
relaxation. For a given FRET pair and initial separation, the
extent of the postexcitation spectral shift depends on the
mechanical compliance of the matrix holding the molecules.
Thus time-resolved FRET measurements should provide infor-
mation on both the donor-acceptor spacing and the mechanical
properties of the material to which they are bound.

Just as the Fo¨rster model has many extensions, so too does
the force associated with it. For instance, for closely spaced
molecules, it is no longer appropriate to treat the polarizability
as a single tensor associated with each molecule. Rather each
molecule has a nonlocal polarizability,R(r ,r ′,ω), which relates
the polarization at each pointr in the molecule to the field at
all points,E(r ′).16,28 Nonlocal response complicates somewhat
the calculation ofVe and leads to deviation from its simple 1/r3

dependence, but its incorporation does not create any conceptual
difficulties. Once Ve has been calculated (e.g., by density
functional theory), then eq 29 yields the interaction free energy.

The Förster model has also been extended to take into account
time-dependent spectra of donor and acceptor.20 This extension
is important when the time for energy transfer is comparable to
the time for donor and acceptor to relax through their respective
Stokes shifts. This extension of the theory can be readily
incorporated for calculating the force. The distributions of donor
and acceptor states,gD(ED

/ ) andgA(EA), become time-depend-
ent quantities, but the instantaneous interaction free energy is
still related to the instantaneous rate of energy transfer and the
instantaneous donor and acceptor line shapes via eq 30.

Other studies of the van der Waals force with one molecule
excited predict a 1/r3 interaction potential (i.e., first order in
Ve).10-12 Why did our calculations not reproduce this? To get
such a first-order excitonic effect requires coherent interaction
of the two molecules. The Fo¨rster theory of FRET applies only
in the case ofVery weak coupling; that is, the intermolecular
coupling must be much weaker than the line width associated
with coupling between each molecule and a thermal bath.
Coupling to a bath destroys coherence, so the interaction
potential only arises in second order inVe.

It is possible to have coherent interaction of real molecules
in a bath. This coherence is the source of excitonic effects in
molecular aggregates and also occurs in photosynthetic antenna
complexes. When the intermolecular coupling is stronger than
the coupling to the bath, the spectrum of the pair ceases to
resemble the spectra of either isolated molecule. Under strong
coupling, we expect that there will be a force that is first order
in the coupling. Because coupling in some molecular ag-
gregates1,29 can be larger thankBT, we expect excitonic forces
to be strong.

In summary, we have shown that an intermolecular force is
intimately tied to the process of fluorescence resonance energy
transfer. This force can be thought of either as optical trapping
of the acceptor in the near-field of the donor or as a radiative
level shift in the donor due to its damping by the acceptor. Every
optical process modifies the electric field in the vicinity of the
molecule in which it occurs. Thus we expect that every optical
effect at finite molecular density has an associated intermolecular
force.

TABLE 1: Parameters for Calculating the Interaction Free
Energy of Some Common FRET Pairs

donor acceptor (2UFRET)/(pkFRET)a τD (ns) R0 (Å)

Ch ab Ch ab -2.1
Ch bc Ch bc -6.3
FITCd FITCd -2.25 4.2 46
FITCd TMRe 0.14 4.2 55
AF594f QSY21g -0.088 3.9 77
FITCd AF532h 0.087 4.2 63

a The quantity 2UFRET/(pkFRET) is the ratio of integrals from eq 35.
b Chlorophylla in MeOH. c Chlorophyllb in diethyl ether.d Fluorescein
isothiocyanate.e Tetramethylrhodamine.f Alexa Fluor 594.g Nonfluo-
rescent quencher, diarylrhodamine derivative.h Alexa Fluor 532.

Figure 1. Spectral properties of chlorophyllb in diethyl ether used
for calculating the rate of homotransfer FRET (top) and the ac-
companying FRET force (bottom). The top panel shows (s) the
emission spectrum,fD(λ), and (O) the absorption spectrum,R′′(λ). The
overlap integral yields the rate of FRET (R′′(λ) was padded with zeros
for λ ) (700-750 nm) to have absorption and emission spectra over
comparable wavelengths). The bottom panel shows (s) the same
emission spectrum,fD(λ), as in the top panel and (4) the real
polarizability,R′(λ). The overlap integral yields the interaction energy.
To calculate the real polarizability, the Kramers-Kronig relations were
applied toR′′ over the regionλ ) 220-750 nm).
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