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Studies of symmetry-breaking are reported for self-consistent field wave functions applied to three homonuclear
diatomics: F2+, O2

+, and Cr2. The results complement and extend existing reports on symmetry-breaking in
three main ways. Two of these aspects concern manifestations of symmetry-breaking. First, calculations are
reported that show energies at long interatomic separations which are lower than the sum of the atomic
limits. This artifactual behavior, observed both with Hartree-Fock and Kohn-Sham density functional theory,
appears to be largely associated with insufficiently flexible atomic orbital basis sets. Second, potential curves
with spurious maxima and minima are found, associated with changes in spin-coupling. The third and final
aspect, concerns the origin of symmetry-breaking. It is argued that the simplest way to understand symmetry
breaking is as a consequence of the incorrect asymptotic behavior of limited wave functions at long interatomic
distances.

Introduction

The calculation of potential energy surfaces (PES’s) is of
central importance in chemistry. They are used to provide insight
into chemical reactions by following the geometries of the
system along a reaction coordinate.

It is well-known that exact solutions of the Schro¨dinger
equationmustconform to the symmetry of the molecule, since
symmetry operators commute with the Hamiltonian. For ap-
proximate solutions, however, this is not necessarily true. A
trial wave function with limited flexibility may achieve a lower
energy by breaking symmetry than is possible with the additional
constraint of respecting it. The occurrence of symmetry broken
solutions is troublesome. The “dilemma”,1 often described as
“symmetry-breaking” (SB), is which wave function should be
regarded as the “correct” solution? Is it a higher energy answer
with correct symmetry or the lower energy solution with broken
symmetry?

While symmetry-breaking, by definition, only manifests itself
in systems with point group symmetry, it is a signature of more
general problems associated with restricted wave functions. For
example, while the homonuclear diatomics O2

+ 2,3 and F2
+ 3-5

are well-known for symmetry-breaking (and indeed are part of
this study), a recent survey6 of the performance of electronic
structure methods for radicals found that their isoelectronic
species NO and OF were particularly problematic even for high-
level methods.

Explicit avoidance of symmetry-breaking by simply imposing
the appropriate symmetry constraints on the calculated wave
function is not satisfactory. It becomes clear from experimenta-
tion that this produces low quality wave functions, which for
example do not separate correctly into atomic fragments as
bonds are being broken. Furthermore, discontinuities in the PES
are often unavoidable in this approach, since the constrained
solution is often not a true minimum, and it can no longer be
defined if the molecular framework distorts to a lower symmetry.

Artifactual SB is to be regarded separately from “legitimate”
SB originating from Jahn-Teller7 effects as has been defined

by Borden and Davidson.8 Needless to say, it is not always easy
to distinguish them in practice. SB is often associated with
systems having more than a single dominant valence bond
structure (or any localized orbital structure). An approximate
wave function such as a single determinant cannot always
achieve this mixing with symmetric orbitals. In such cases, it
may obtain a lower energy by breaking symmetry and localizing
to a single valence structure. This occurs, for example on parts
of the NO2 potential surface calculated by restricted open shell
HF (ROHF).9

In the picture of McLean et al.,10 SB in an approximate wave
function arises from the competition between the energetic
stabilization that comes fromorbital size effectsandresonance
effects. SB first occurs at the point along the relevant coordinate
of the potential at which orbital size effects become dominant
over resonance effects. At the SB point, it becomes energetically
favorable for the wave function to describe more accurately a
specific local structure (and thus break symmetry) rather than
allow full resonance among the energetically low-lying local
structures.

Various approaches have been designed to describe the
resonance between the localized structures. It is possible to
systematically include the configurations necessary to describe
the localized structures starting from symmetric orbitals.10

However, many configurations are often required to overcome
the SB.11-13

Alternatively a very compact description can be obtained,
following Jackels and Davidson,9 by performing a small
nonorthogonal CI in the basis of the localized structures. This
method has been used in subsequent studies on O4

+ 12 and
formyloxyl radical.14 The same basic idea is also exploited in
the generalized resonating valence bond approach,15,16 the
breathing orbitals valence bond method,17 and the generalized
multistructure wave function.18 In all these methods, each
structure is essentially assigned a separate set of orbitals.

The performance of coupled cluster (CC) methods for
removing SB effects has been tested in numerous studies.19

9160 J. Phys. Chem. A2003,107,9160-9167

10.1021/jp0224665 CCC: $25.00 © 2003 American Chemical Society
Published on Web 10/08/2003



Generally speaking, CC methods which do not vary the orbitals
are still affected by SB in these reference orbitals, although to
a substantially reduced degree (particularly as the level of
retained excitations increases). Varying the reference orbitals
as in Brueckner CC (BCC) methods can eliminate SB in
principle (if sufficiently high excitations are retained). In practice
Brueckner doubles (BD) suffice to cure symmetry breaking in
some applications20,21 but not in others.22,23

Modern gradient-corrected density functional theory (DFT)
methods have also been tested for their treatment of SB
problems. Generally they are more resistant to SB than Hartree-
Fock methodssin the sense of exhibiting SB further toward
dissociation such that equilibrium molecular properties are less
affected.3,6,24,25However, this resistance to SB in DFT is actually
associated with some severe problems in dissociation, such as
qualitatively incorrect curves for systems as simple as H2

+ and
He2

+.26-28 Thus, DFT is certainly the self-consistent field
method of choice, but (at least with present-day functionals) it
is not always a panacea for SB problems.

The point at which SB occurs can be characterized by stability
theory.11 Paldus and Cizek29-33 were the first to formulate
mathematical conditions for the stability of a symmetry-adapted
wave function. Connections between orbital instability points
and anomalous force constants have been further investigated11,34

and a relation between negative Hessian values and orbital
instabilities has been suggested.

Crawford et al.19 have shown that near zero values in the
Hessian are associated with anomalous predictions of vibration
modes. However, it remains still unclear what is “near zero”.
Cases with rather small Hessian values have been identified
where symmetry breaking doesnotoccur while other cases with
larger Hessian values have suffered from instabilities. Concern-
ing O2

+ and F2
+, Cohen and Sherrill3 recently concluded that

“directly attributing anomalous property predictions to negative
or small MO Hessian eigenvalues or to pseudo-Jahn-Teller
interactions does not appear to explain all of our results”. Thus,
“the connection between SB and spurious molecular property
predictions remains unclear for these cases.”

In this paper, we revisit the problem of SB in self-consistent
field wave functions for three homonuclear diatomic mol-
ecules: F2+, O2

+, and Cr2. The main purposes of this paper are
as follows. First, while F2+ and O2

+ are already well-studied
problems, the main focus of previous reports has been poorly
predicted properties at equilibrium due to SB effects, and the
search for methods sophisticated enough to overcome the
failures of simpler theories. Here we focus on understanding
the origin of SB in terms of the dissociation behavior of the
single determinant wave function. Whenever symmetry restric-
tions prevent the wave function from obtaining the lowest energy
solution at long separations, SB must occur, and can be
understood from this physical point of view (although the exact
point of SB cannot, of course, be predicted except by stability
analysis).

The second purpose of this paper is to report and explain
two additional forms of SB. One concerns obtaining energies
at long bond lengths that arebelowthe sum of separate atomic
energies under conditions that appear to be directly associated
with the use of insufficiently flexible basis sets. Another
concerns obtaining spurious stationary points on potential energy
surfaces due to changes in spin-coupling in unrestricted single
determinant wave functions. Just as the restricted form of the
SCF (or any other kind of) wave function leads to SB, false

maxima (or minima) on the potential curve may also arise due
to strong variations in the character of the calculated wave
function.

Results and Discussion

Our calculations on F2+, O2
+, and Cr2 are presented and

discussed in the following three subsections. For the first two
systems, we performed calculations in the minimal STO-3G
basis because of the ease of analysis, and the ability to readily
obtain exact full configuration interaction (FCI) results. We then
use the 6-31G* basis for subsequent calculations. For Cr2, we
present calculations using the recently defined 6-31G* basis,35

and also the much larger Wachters36 + f basis, as used in
previous studies of this molecule.37 SCF calculations were
performed with the Q-Chem program,38 using geometric direct
minimization39,40to obtain convergence. FCI calculations were
performed using PSI.41

F2
+ Cation. There have been numerous previous studies of

F2
+, a system notoriously known for SB. For example, Murphy

et al.4 used SCF and many body perturbation theories, Watts
and Bartlett5 employed CC methods, and Cohen and Sherrill3

evaluated DFT.
Figure 1 presents the different STO-3G potential surfaces

available at HF level for the F2+ molecule. Also included (in
the figure) are the curves for full CI (FCI) and the optimized
orbitals coupled cluster doubles (OD) wave function42 (CCD
with variationally determined Brueckner orbitals). We consider
the origin of the various SCF curves in the following paragraphs,
starting from the most constrained solutions (the 2 symmetric
ROHF solutions), then releasing the ROHF symmetry constraint,
and finally also releasing the spin symmetry constraint. HF
curves are also shown in the 6-31G* basis set in Figure 2.

At the equilibrium geometry the ground state has2Πg

symmetry. This suggests the wave function corresponds pri-
marily to the following configuration:

where we have considered only molecular orbitals (MO’s)
originating from the 2p atomic orbitals (AO’s). The bond order
(BO) of this configuration is 3/2, corresponding to a single bond
and a three-electron bond. The three-electron bond43,44consists
of a singly occupied antibondingπ* orbital and the correspond-

Figure 1. F2
+ HFs., OD, and FCI wave functions at the minimal basis

set. The lowest energy separated atoms state was used as the zero energy
state.Note, in all figures not all the calculated points haVe been marked
by an appropriate symbol.

Ψ2Πg
) ...(σg)

2(πu)
4(πg

/)3 (1)
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ing bonding π orbital is doubly occupied. The Lewis dot
structure of this molecular configuration can be described as

Only well-correlated wave functions can describe this state
symmetrically with all five electrons, which participate in the
bonding, delocalized between the two atom centers.

The ROHF curve describing this wave function is shown in
the figure, but cannot be followed far beyond equilibrium. This
wave function cannot dissociate to the correct ground-state
atomic products (triplet F+ and doublet F), or even any separable
atomic products because of its restricted form. However, there
is a higher state, of2Σg

+ symmetry, which can dissociate
properly within the constraints of a symmetric ROHF solution.
In this state, relative to the2Π ground state, aσg electron has
been promoted to theπg

/ orbital. Thus:

The BO of thisΨ2Σ+
g state is only1/2, and, as a quasi-one-

electron problem, dissociation to singlet F+ and doublet F can
be described by the ROHF wave function. A Lewis dot structure
describing this state is

Let us now turn to the origin of spatial symmetry breaking
for ROHF. First, we would like to concentrate on the ground-
state potential curve. (This is the ground state at the vicinity of
the equilibrium distance.) However, this2Πg state with the
symmetrical constraint is high in energy at already small bond
stretches. The expected atomic limit of this stretch, on the other
hand, lies much lower in energy. The consequence of this is
clear. There has to exist a solution which reaches, as the bond
is stretched to large numbers, an atomic limit. The atomic limit
is achieved by breaking the molecular symmetry of the wave
function, where the charge is localized on one of the atoms.

Knowing that we cannot correctly reach the ground-state
atomic products with the ROHF form, the effect of spatial
symmetry breaking would be expected to yield the energy
separated atoms solution,2F + 1F+. This asymptote would be

connected eventually to the2Πg solution which is most stable
via ROHF at sufficiently short bond lengths. Inspection of the
SB ROHF curve in Figure 1 shows that this is qualitatively
true. However, there is a surprise: at long separations, an energy
slightly lower than the sum of the noninteracting atoms is
obtained. Inspection of the charges on the atomic products shows
that there is not a complete separation of the charge, but one
atom has charge+0.85 and the other+0.15. A similar tendency
is well documented for radical ions with DFT calculations.26-28

However, it is expected that HF calculations will demonstrate
the “obvious” degeneracy in energy of the two localized
structures and any linear combinations of them26 at large
separations.

Why is the nonseparable solution found, although the correct
limit can in principle be achieved? Evidently it is energetically
advantageous for the two systems to exchange electrons, such
that the solution is a statistical mixture of F+/F and F/F+, in
obvious contradiction to physical intuition, and exact theory,45

which says there should be no energy gain. However, consider
a solution in which one F was exactly neutral (a doublet) and
the other cationic (a singlet). Charge exchange between the two
units can occur if the ionization potential (IP) of the neutral
atom is less or equal than the negative of the electron affinity
(EA) of the cationic atom (with the orbitals fixed).

The charge-transfer resulting in the energy lowering can be
symbolized by the following Lewis dot structure of the relevant
atoms:

The actual energy lowering is 0.009 au at the minimal basis
set. In the minimal STO-3G basis, the IP and EA are equal
because each charge state has identical orbitals. Note, however,
that the IP and EA provide only a partial description of the
condition for the charge-transfer process to occur.∂E/∂N, the
derivative of the energy with respect to change of number of
electrons in the subsystem, is constant only in exact theory. The
IP and EA provide this information only at the integral values
of N, and since ROHF is an approximate theory, the curvature
of the derivative yields energy gain at the minimal basis set. In
the larger 6-31G* basis, the comparison of the IP and EA
indicates that this charge transfer is unlikely to occur (even with
the curvature considered). The values of EA and IP were
calculated to be-0.6 and 0.8 au, respectively, indicating that
charge transfer will not occur.

Since the two structures considered in the charge-transfer
process, F+/F and F/F+, use just one set of orbitals, the IP and
EA are slightly different than the usual definition of these
quantities. Here, we refer to the EA/IP of one atom with the
optimized orbitals of the other atom. In our case, the EA of the
cation is calculated using the orbitals of the neutral atom, while
the IP of the atom is calculated with the optimized orbitals of
the cation. This is well described in the following equations:

Clearly, only the total number of electronsN (N ) NF +
NF+) is conserved, while the numbers of the electrons in the
subsystems (NF, NF+) are not. However, a single Fock operator
describes the electron-electron interactions, and furthermore
only a single set of orbitals describes the system. This is clearly
different from the proper treatment of the statistical mixture

Figure 2. F2
+ HFs. and BLYP wave functions at 6-31G* basis set.

The lowest energy separated atoms state was used as the zero energy
state (with the relevant method).

Ψ2Σg
+) ...(σg)

1(πg)
4(πu

/)4 (2)

EA(F+) ) E(F/F+) - E(F+/F+) (3)

IP(F) ) E(F+/F) - E(F/F) (4)
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where each pure component interacts according to its own Fock
operator, with its own independently optimized wave function.
In other words, since the Fock operators of the different atomic
states are not orthogonal the overall Fock operator (when charge
is allowed to be transferred) represents a linear combination of
the different states. Therefore, an artificial interaction is induced
between the two components of the statistical mixture. This
means that the energy, as a function of the amount of charge
exchanged, is not invariant, but instead can be lowered.

The consequence of the charge-transfer allowed (by inspecting
the IP and EA values) at the minimal basis set is the energy
lowering obtained at the asymptotic region of the curve. Table
1 provides an additional description of this effect. By listing
the charges of one of the atoms at different separations, it is
demonstrated that complete charge separation is obtained only
with the larger basis set. On the other hand, the asymptotic limit
for the minimal basis set is a mixture of the pure charge states.
This information is also established by observing the overall
Fock matrix. In the table, the largest Fock element between 2p
orbitals from the different atoms is listed as a function of the
atom separation distance. These elements vanish in the case were
the atoms do not interact (larger basis set and distances). It is
demonstrated that these elements reach a nonvanishing asymp-
totic value at large separations with the minimal basis set where
energy lowering is obtained.

The atomic separation limit for the restricted-spin calculation
is the combination of the cation singlet (F+(1P2)) and the doublet
F atom (F(2P3/2)). However, the ground state of the separated
atoms is defined by the triplet coupling of the cation (F+(3P2)).
The energy of this state lies much lower than the atomic limit
of the spin-restricted curve. The consequence of this is also clear.
This correct limit can be reached only by also releasing the
spin restriction.

The unrestricted HF (UHF) curve is shown to reach at
“infinite” separation the energetically lowest dissociation limit.
This is achieved by breaking the spin symmetry (in addition to
the breaking of the molecular symmetry). The spin-symmetry
breaking point of the unsymmetric (US) curve occurs before
the equilibrium distance but slightly after the molecular SB of
the spin-restricted curve. Namely, the spatial symmetry broken
solution of a radical system may still obey the spin symmetry.

This is despite the implicit asymmetry of spin occupation in
radical systems. Beyond the spin-SB point, both of the US lines
continue to reach their appropriate atomic separation limits.
Therefore, the spatial symmetry breaking is not related directly
to the spin symmetry even with radical systems. Instead it is
related to the asymptotic limit.

The resulting US-ROHF curve is shown to fix the prob-
lematic behavior of the symmetric curve by widening the
potential well and thus extending the equilibrium distance. This,
by comparing to the “exact” result calculated by the FCI,
generates an improvement in the quality of the results. The US-
ROHF predicts a 1.375 Å equilibrium distance. This is a small
improvement over the symmetric curve (1.27 Å), when com-
pared to the “exact” result defined by the FCI (1.35 Å). Also
note that the form of the potential-well of both the US-ROHF
and FCI is similar. However, this similarity is coincidental. As
shown in Figure 1, the energy difference between the two atomic
limits (spin restricted and spin unrestricted cases) is similar to
the correlation energy at the equilibrium distance region. Thus,
the more accurate equilibrium geometry (cf. FCI) obtained by
SB ROHF vs SB UHF is a result of the incorrect asymptote of
the former! This point is even clearer in Figure 2 with the
6-31G* basis, where SB UHF, dissociating to the correct atomic
products, is unbound, while SB ROHF is bound only because
it dissociates to excited atomic products.

This highlights the point that only correlated methods are
able to describe both the correct asymptotic atomic limit and
the bound equilibrium region in a balanced way. As discussed
above, methodologies based on multiconfigurational approaches
have been able to achieve this goal, as have coupled-cluster
(CC) methods. For example, in Figure 1, the OD curve is shown
to reproduce the FCI result up to a distance of 2 Å.

Modern density functional theory (DFT) offers another
possible alternative to treat SB effects. To some extent, DFT
methods achieve the goal of deferring SB occurrence away from
the molecular region.25,26However, the limitations of the BLYP
functional are on display even for this problem. In Figure 2,
we have provided the BLYP bond energy curves calculated with
the 6-31G* basis set. The symmetry breaking point is shown
to occur further away from the equilibrium region than the
corresponding point at the HF level (around 1.6 Å for DFT).
However, while the behavior around equilibrium is quite good,
as already noted,26 at longer bond-lengths, the behavior is
pathological. An asymptote is achieved which is below the sum
of the atomic limits, reflecting limitations of this exchange
functional. An unphysical low lying asymptote is observed for
both symmetric (not shown) and unsymmetric curves emphasiz-
ing the failure of this functional in the dissociation limit; a failure
which is believed to be associated with spurious self-interaction
effects.26

O2
+ Cation. Now, we are ready to turn to the second

molecule considered in this work, the O2
+ molecule. The O2+

is another well-known case exhibiting SB. Chandrasekher et
al.2 have shown that CCSD performs better than CCSD(T) when
attempting to recover from a SB solution for O2, O2

+, and O2
-.

This highlights, again, the need to vary the orbitals of the SB
solution.

Figure 3 presents the different HF PESs for this system.
Similar observations underlying the SB occurrence can be done
for this system as done above with F2

+. The only significant
qualitative difference is that the order at which the SB are
occurring is reversed when compared to F2

+. Namely, for O2
+

the break of the spin-symmetry occurs before the molecular SB
point of the ROHF function.

TABLE 1: Charge Separation and Interatomic Fock
Elements Correpsonding to Restricted HF Wave Function of
F2

+

separation (Å) energy (au) maximumF(2p1 - 2p2) charge

Minimal Basis Set
1.3 -195.5508 0.673 0.407
1.5 -195.5414 0.479 0.489
1.6 -195.5206 0.401 0.465
2.0 -195.4325 0.194 0.318
4.0 -195.3596 -0.0306 0.155
6.0 -195.3587 -0.0216 0.148
7.0 -195.3583 0.0176 0.146

17.5 -195.3580 0.00449 0.139
20.5 -195.3579 0.00306 0.138
22.5 -195.3579 -0.00259 0.138

6-31G* Basis Set
1.75 -198.0816 0.139 0.382
1.80 -198.0753 0.123 0.358
2.0 -198.0520 0.0810 0.272
2.4 -198.0200 0.0442 0.145
3.1 -197.9990 0.0157 0.0275
3.7 -197.9959 0.003 09 0.001 45
4.0 -197.9955 0.000921 0.000164
4.5 -197.9951 0.0000554 0.000001
5.0 -197.9949 0.0000070 0.000000
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The O2
+ molecule has two electrons less than F2

+ and thus
a higher bond order. The ground state at the equilibrium
geometry is also a2Πg state. It is given by

The BO is5/2. At a bond length of 2 Å a 2Σg
+ state becomes

lower in energy. This is achieved by promoting an electron from
the σg orbital to aπg

/ orbital (BO is3/2):

Finally, an additional state, with a BO of1/2, can be observed.
This is obtained by promoting the secondσ electron to theπ*
shell:

Note that this state has a 3-electron bond resulting in1/2 BO.
An appropriate Lewis dot structure description for this state is

This state can be shown to reach the correct atomic separation
limit for the ROHF function (in contrast to the other two
considered above). At the minimal basis set, bonds defined by
a single pair of bonding and antibonding orbitals, can be
described symmetrically also at infinite separations. However,
the binding states, which are much more stable at the equilibrium
geometries, are shown to have high energies, when stretched
symmetrically, at large separations. This underlies the occur-
rence of SB.

As discussed above, the atomic separation limit for the
restricted-spin calculation has to be a combination of a singlet
atom center and a doublet atom center. These are the doublet
cation (2O+) and the singlet atom (1O). The symmetric potential
curve of the ground state rises steeply above the sum of the
energies of these atoms. By breaking the molecular symmetry,
the ROHF is able to lower the energy and reach (close to) the
atomic separation limit. The US-ROHF curve is shown to
widen the potential well. The shape of the US-ROHF potential
well is similar to that of the FCI. However, the SB point occurs

(slightly) after the equilibrium point. Thus, the equilibrium
distance is not extended toward the FCI result by the SB at the
ROHF level.

The energy level of the US-ROHF curve is shown to reach
just below the sum of the energies of the doublet and singlet
atoms at large separations. The US-ROHF converges to a state
which lies 0.009 a.u. below the direct sum of the atoms energies,
with charges of 0.85 and 0.15 a.u. on the atom centers. This is
very similar to what has been observed with the F2

+ molecule.
(This is less evident in Figure 3, because the coordinate scaling
is different.)

The ground state of the separated atoms involves the triplet
spin coupling of the oxygen atom (3O). The energetic state of
this state lies much lower than the atomic limit of the spin-
restricted case. Furthermore, the equilibrium energy of the
symmetrical ROHF ground-state liesaboVe the energies of the
ground states of the atoms. The consequence is again the
unavoidable SB exhibited by the US-UHF curve. The ground
state dissociation limit can be reached only by releasing the
spin restriction. The UHF curve is shown to reach at “infinite”
separation the energetically lowest atomic states. This SB point
has to occur before the equilibrium point. The resulting curve
for the US-UHF is also very flat, which demonstrates again
the importance of the treatment of correlation in order to achieve
a reasonable description of the system.

Next, we will consider the HF curves for the O2
+ molecule

with the 6-31G* basis set. Figure 4 presents these curves. SB
is again anticipated by observing the symmetric curve in relation
to the energies of the correct separate atoms limits. The US-
UHF for this system, however, demonstrates an additional
interesting point: it exhibits a strong maximum. This occurs in
the spin recoupling region, where the system is changing to a
state of high spin coupling within the separating atoms (4O+,3O)
from a state which was essentially doublet coupling of all
valence electrons. False maxima of US-UHF have been
observed in the other systems but were less noticeable. Figures
5 and 6 present the low spin UHF and the high spin (sextet)
UHF curves for the O2+ molecule at the 6-31G* and minimal
basis sets, respectively.

These curves explain the absence of a strong maximum with
the minimal basis set in contrast to the strong maximum
observed at the larger basis set. The effect of the larger basis
set has pushed the low spin energy curve to the left, which is
reducing the equilibrium distance. Thus, the crossing of the low

Figure 3. O2
+ HFs. and FCI wave functions at the minimal basis set.

The lowest energy separated atoms state was used as the zero energy
state.

Ψ2Πg
) ..(σg)

2(πu)
4(πg

/) (5)

Ψ2Σg
+) ..(σg)

1(πu)
4(πg

/)2 (6)

Ψ2Πg*
) ..(σg)

0(πu)
4(πg

/)3 (7)

Figure 4. O2
+ HFs. wave functions at 6-31G* basis set. The lowest

energy separated atoms state was used as the zero energy state.
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spin coupling and the high spin coupling curves occurs further
away (to the right) from the equilibrium point. Hence, the system
transfers to the high spin coupling at a relatively high energy
on the low spin energy curve. This is causing the curve to drop
when reaching stretches that are in a region dominated by the
high spin coupling. At the minimal basis set, on the other hand,
this crossing occurs much closer to the equilibrium distance of
the doublet. Hence, at the spin recoupling region, the potential
surface is still low enough to be able to transfer smoothly to
the high spin-coupling region.

Cr2 Molecule. The tendency of DFT calculations to defer
SB has been noted before.25 For systems with three electron
bonds, DFT was shown to overestimate the strength of the
bonding.27 These two observations are related since the descrip-
tion of the localized structure is not well treated by current DFT
methodologies (although progress in that regard has been
reported46). Another consequence of this character of DFT
calculations is the wrong asymptote obtained for radical
systems,26 where a solution with energy lower than the expected
energies of the corresponding subsystems is obtained at large
separations. In this section we provide results demonstrating
that this is not limited to radical ions. The Cr2 molecule provides

another manifestation of this artifact arising in SCF calculations
due to limitations imposed in the calculation.

The Cr2 dimer has been extensively investigated due to its
challenging character. The outer electronic shell of a Cr atom
is 3d54s1, containing six unpaired electrons. The 12 electrons
in the dimer are all coupled to create a singlet state in the
molecule. The change from 12 unpaired electrons in the
separated atoms to all singlet coupled in the molecule underlies
the complexity of the calculation. In addition the different
interactions of the valence shells (3d-3d and 4s-4s) add to
the complexity, and it may still be an open question whether
the potential energy curve involves two minima or one minimum
and one shelf. The unusual bonding in Cr2 is well demonstrated
in its very short bond length (1.67 Å) along with its small bond
energy.

Different methodologies have been applied to this problem
in efforts to obtain a faithful description. These studies include
coupled cluster calculations,37,47 multiconfigurational based
approaches involving CASPT2,48,49 generalized valence-bond
studies,50 and recent large MR-CI51 and different DFT stud-
ies.37,52 In this study, however, we focus on the demonstration
of SB effects involved with DFT calculations of the Cr2 dimer.

In Figure 7, we plot the bond energy as a function of the
separation of the two atoms. This energy is simply the difference
between the energy of the molecular calculation and twice the
energy of the isolated atom (at high spin state). For Cr2, we
note that the bond energy remains negative (i.e., favoring the
bonding) at large separations for the functionals (BLYP and
B3LYP) tested with the 6-31G* basis set. The binding energy
at 7.0 Å is -1.2 and -0.6 eV for BLYP and B3LYP,
respectively. This is qualitatively similar to the ROHF wave
function behavior for the radicals discussed in detail above at
the minimal basis set. This SB can be eliminated by improving
the basis set used in the calculation. In the figure it is
demonstrated that with an improved basis set,37 the Wachters
basis set augmented with f functions, both BLYP and B3LYP
are able to predict the correct asymptotic limit. The curves of
the larger basis set are shifted toward smaller binding energy
when compared to the offending curves at the 6-31G* basis
set. This emphasizes the need to perform DFT calculations with
large basis sets. Since the functionals are developed at the basis
set limit they may perform poorly in small basis sets.

The origin of the 6-31G* symmetry breaking at the asymp-
totic region in this case is different than with the radical

Figure 5. O2
+: low and high spin-coupling of US-UHF wave function

at the minimal basis set. The lowest energy separated atoms state was
used as the zero energy state.

Figure 6. O2
+: low and high spin coupling of the US-UHF wave

functions at the 6-31G* basis set. The crossing of the states occurs
further away from the minimum point of the doublet spin-coupled
potential. The lowest energy separated atoms state was used as the zero
energy state.

Figure 7. Cr2: binding energy (eV) of the Cr2 molecule with respect
to the atoms separation calculated by DFT (BLYP and B3LYP) method
with 6-31G* basis set and Wachters+f function special basis set. Note,
the stabilization energy obtained by the DFT functionals at the
asymptotic region, which is eliminated at the improved basis set.
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discussed above. Cr2 has a complicated spin space, where at
the asymptotic region 6 spins of each atom need to be parallel.
These parallel spins on the two atoms are then low-spin coupled
to obtain the “molecular” singlet spin coupling. However, the
possibility to have a spin broken solution allows the spins of
electrons of opposite atoms to interact such that the solution is
a mixture of spin states where the spins are either aligned or at
opposite directions. This mixture which describes the atom at
large separations is absent when performing a high spin single
atom calculation. Table 2 lists the atomic energies of the Cr
atom at the different basis sets and functionals. It is demonstrated
that in fact the high spin state is not the lowest energetic state
at the smaller basis set for both functionals. The spurious
stabilization energy at large separations is reduced from 1.2 to
0.33 eV for BLYP and from 0.6 to 0.36 eV for the B3LYP
functional when the lowest atomic energies are considered. The
remaining stabilization energy originates from the additional
spin interaction which is possible due to the overall molecular
singlet spin coupling where the spin broken solution involves
spin recouplings absent in the single atomic calculations.

However, the mechanism by which a spurious energy gain
is obtained is also similar to the mechanism by which a low
asymptotic limit is reached by the F2

+ radical system as
described above. In regard to the radicals, we have noted that
a spurious energy gain can be obtained by a mechanism of
charge transfer, where different charge states interact. Here, the
role of charge is replaced by spin flips such that the gain in
energy stabilization is obtained by interaction of different spin
coupling states. The consequence of this interaction is demon-
strated in Table 3 where Fock elements of orbitals across the
atoms are listed at large separations. These elements, which are
shown to not vanish at “infinite” separations, are responsible
for the spurious energy gain. The corresponding elements for
the improved basis set (Wachters) were verified to have vanished
at sufficiently large separations and indeed the asymptotic energy
value for this improved basis set corresponds to the atomic limit.

Conclusions

In this paper, we have presented some anomalies which may
arise in SCF calculations. This provides a list of potential
problems in calculations, which are often treated as “black box”.
We have mainly focused on providing a qualitative explanation
for the occurrence of spatial SB at the HF level.

Traditionally, spatial SB is viewed as a competition between
orbital size effects and molecular resonance effects. SB is the
point where orbital size effects become more dominant than
resonance effects. However, this is a description of the mech-
anism which underlies SB. The origins of this SB lie in the
comparison of the symmetry preserving PES at the molecular
region along the relevant coordinate to its extreme form along
the same coordinate. Thus, SB is driven primarily by the
asymptotics. If the symmetric PES reaches energy values which
are higher than the expected energy of the system at the
asymptotic region, a lower PES must exist. The PES corre-
sponding to the US wave function is able to reach the correct
asymptotic state from the description at the equilibrium region.
However, spatial SB at the DFT level cannot always be directly
related to the asymptotes due to apparent limitations in the
functional as discussed above. Also, we have demonstrated that
the order of breaking the spatial and spin symmetry can change
with the system considered. Namely, the break of these
symmetries are not directly related to each other, and instead
they are driven by their appropriate asymptotic limits.

Another artifact, which may arise in SCF calculations, is due
to use of a limited basis set and a constrained functional form.
Similar to restrictions in the wave function leading to SB, so
can limitations in the one particle basis cause artifactual behavior
at the asymptotic region. A manifestation was provided with
the ROHF symmetric curves of both F2

+ and O2
+, which lie

energetically lower than the asymptotic products. This was also
demonstrated for Cr2 at the DFT level (with BLYP and B3LYP
functionals).

Additionally, we have been concerned with another artifact
which may arise due to limitations of the functional form used
to define the SCF calculation. The limited form of the UHF
wave function (combined with its ability to recouple the spins
of electrons along the potential curve) can lead to spurious
maxima/minima on the potential curves. UHF cannot describe
smoothly enough the transitions between regions of different
dominant spin coupling. This was most dramatically demon-
strated with O2

+ at the 6-31G* basis set.
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