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The high dimensional model representation (HDMR) technique is a procedure for representing high dimensional
functions efficiently. A practical form of the technique, random sampling-high dimensional model
representation (RS-HDMR), is based on randomly sampling the overall function. In reality, the samples are
often obtained according to some probability density functions (pdfs). This paper extends our previous RS-
HDMR work with uniformly distributed random samples to those with a nonuniform distribution and treats
uniform sampling as a special case. Weighted orthonormal polynomial expansions are introduced to approximate
the RS-HDMR component functions. Different pdfs give special formulas for the weighted orthonormal
polynomials. However, the structure of the formulas for the RS-HDMR component functions represented
by the Monte Carlo integration approximation are the same for all pdfs. The correlation method to reduce the
variance of the Monte Carlo integration and the method to represent the high order terms by lower order
terms in uniform RS-HDMR can also be used for nonuniform RS-HDMR. The theoretical basis of nonuniform
RS-HDMR is provided, and an application is presented to an integrated environmental exposure and dose
model for trichloroethylene.

1. Introduction

High dimensional model representation (HDMR) is a general
set of quantitative model assessment and analysis tools for
capturing high dimensional input-output system behavior.1-6

Different forms of HDMR have been introduced. A practical
form of the technique, random sampling-high dimensional
model representation (RS-HDMR), is based on randomly
sampling the overall function. In our previous work,7-9 the
random data are sampled over a uniform distribution; i.e., the
probability density function (pdf) of the input variables is unity.
However, in practice, the data are often nonuniformly distributed
(for instance, a normal distribution, etc.). The formulation of
RS-HDMR for a uniform distribution cannot be directly applied
to data with a nonuniform distribution. In this paper, we extend
our previous uniform RS-HDMR work to nonuniform distribu-
tions. After introducing weighted orthonormal polynomials
related to the pdf, the general formulas of RS-HDMR can be
constructed, including uniform RS-HDMR as a special case.
The formulation of the Monte Carlo integration approximation
for the RS-HDMR component functions is the same for all
pdfs. The correlation method to reduce the variance of the Monte
Carlo integration,8 and the method to represent the high order
terms by lower order terms in uniform RS-HDMR,10 can be
also applied within nonuniform RS-HDMR.

The paper is organized as follows. Section 2 provides the
theoretical basis of nonuniform RS-HDMR. Section 3 presents
an illustration of the method to an integrated environmental
exposure and dose model for trichloroethylene. Finally, section
4 contains conclusions.

2. Methodology

2.1. RS-HDMR. Because the impact of the multiple input
variables on the output can be independent and cooperative,
HDMR expresses the model outputf(x) as a finite hierarchical
correlated function expansion in terms of the input variables:

wherex ) (x1, x2,...,xn), the zeroth order (i.e.,l ) 0) component
functionf0 is a constant representing the mean response off(x),
and the first order (i.e.,l ) 1) component functionfi(xi) gives
the independent contribution tof(x) by the ith input variable
acting alone, the second order (i.e.,l ) 2) component function
fij(xi, xj) gives the pair-correlated contribution tof(x) by the input
variablesxi andxj, etc. The last termf12...n(x1, x2,...,xn) contains
any residualnth order correlated contribution of all input
variables.

Distinct, but formally equivalent, HDMR expansions, all of
which have the same structure as eq 1, may be constructed.
When data are considered as randomly sampled, RS-HDMR
can be obtained. For RS-HDMR, we first rescale the variables
xi by some suitable transformations such that 0e xi e 1 for all
i. The output functionf(x) is then defined in the unit hypercube
Kn ) {(x1, x2,...,xn)|0 e xi e 1, i ) 1, 2,...,n}. The independent
input variablexi (i ) 1, 2, ...,n) has the pdfwi(xi) satisfying

* Author to whom correspondence should be addressed. E-mail: hrabitz@
princeton.edu.

f(x) ) f0 + ∑
i)1

n

fi(xi) + ∑
1ei<jen

fij(xi, xj) + ‚‚‚

+ ∑
1ei1<‚‚‚<ilen

fi1i2...il(xi1
, xi2

, ...,xil
) + ‚‚‚

+ f12...n(x1, x2,...,xn) (1)
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the conditions

The component functions of RS-HDMR with the input
variables having the pdfwi(xi) are defined as follows:

where dxi and dxij are just the product dx1dx2‚‚‚dxn without dxi

and dxidxj, respectively. Finally, the last term,f12...n(x1, x2, ...,
xn), is determined from the difference betweenf(x) and all the
other component functions in eq 1.

The RS-HDMR component functionsfi(xi), fij(xi, xj),...
possess the property

which defines the mutualweightedorthogonality between two
RS-HDMR component functions:

The component functionsfi(xi), fij(xi, xj),... may be provided
numerically, at discrete values of the input variablesxi, xj,...
produced from sampling the output functionf(x) for employment
on the right-hand side of eqs 3-5. Thus, numerical data tables
can be constructed for these component functions. A critical
feature of the HDMR expansion is that its component functions
are optimal choices tailored to a givenf(x) over the entire desired
domain ofx.3 Experience shows that the high order terms in
the expansion often are negligible, and only the first few low
order terms are needed to give a satisfactory approximation of
f(x). Thus, the approximate value off(x) for an arbitrary point
x can be determined from these tables by performing only low
dimensional interpolation overfi(xi), fij(xi, xj),...

2.1.1. Direct Monte Carlo Integration Approximation.To
construct the numerical data tables for the RS-HDMR com-
ponent functions, one needs to evaluate the previously mentioned
integrals. Evaluation of the high dimensional integrals in the
RS-HDMR expansion may be performed by Monte Carlo
random sampling integration,11,12hence, the name RS-HDMR.

The theoretical foundation of Monte Carlo integration is the
following.11 Supposex ) (x1, x2,...,xn) are independent random
variables with pdfwi(xi)(i ) 1, 2,...,n) andF(x) is a function
of x. For N points of x(s) ) (x1

(s), x2
(s),..., xn

(s)) (s ) 1, 2,...,N)
randomly generated inKn, according to the pdfwi(xi) (i ) 1,

2,...,n),12 the random variable

has the expectation

the variance

and the standard deviation (standard error)

Therefore,FN can be used as an estimate of the integral∫Kn

∏i)1
n wi(xi)F(x) dx with a standard errorσ{FN} proportional to

the standard errorσ{F(x)} of the integrand random variable
F(x).

For f0, fi(xi), and fij(xi, xj), N sets ofx(s), (xi, xi)(s) ) (x1
(s),

x2
(s),..., xi-1

(s) , xi, xi+1
(s) ,..., xn

(s)) with distinct fixed values ofxi and
(xi, xj, xij)(s) ) (x1

(s), x2
(s),..., xi-1

(s) , xi, xi+1
(s) ,..., xj-1

(s) , xj, xj+1
(s) ,..., xn

(s))
with distinct fixed values of (xi, xj) are generated, according to
the pdfs∏i)1

n wi(xi
(s)), ∏k)1,k*l

n wk(xk
(s)), and ∏k)1,k*i,j

n wk(xk
(s)),

respectively, and then

These formulas were obtained in our previous work for uniform
RS-HDMR.7-10 The pdfswi(xi) (i ) 1, 2,...,n) are already
involved in the samplingf(x(s)), f((xi, xi)(s)), andf((xi, xj, xij)(s))
and do not explicitly appear in the previously described Monte
Carlo integration formulas. Other high order component func-
tions can be determined similarly.

2.1.2. Weighted Orthonormal Polynomial Expansion Ap-
proximation.For uniform RS-HDMR (i.e., all wi(xi) ) 1), to
reduce the sampling effort, the RS-HDMR component func-
tions may be approximated by expansions, in terms of a suitable
set of basis functions (for instance, orthonormal polynomials,
spline functions, or simple polynomials).7 When the points{xi}
are not uniformly distributed, the RS-HDMR component
functions can be approximated by weighted orthonormal
polynomials{æ} as

{wi(xi) g 0 (for 0 e xi e 1)

∫0

1
wi(xi) dxi ) 1 (i ) 1, 2,...,n)

(2)

f0 ) ∫Kn∏
i)1

n

wi(xi)f(x) dx (3)

fi(xi) ) ∫Kn-1∏
k)1
k*i

n

wk(xk)f(x) dxi - f0 (4)

fij(xi, xj) ) ∫Kn-2∏
k)1
k*i,j

n

wk(xk)f(x) dxij - fi(xi) - fj(xj) - f0 (5)

‚‚‚

∫0

1
ws(xs)fi1i2...il(xi1

, xi2
,...,xil

) dxs ) 0 (s∈ {i1, i2,..., i l}) (6)

∫Kn∏
i)1

n

wi(xi)fi1i2...il(xi1
, xi2

,...,xil
)fj1j2...jk(xj1

, xj2
,...,xjk

) dx ) 0

({i1, i2,..., i l} * {j1, j2,..., jk})

(7)

FN )
1

N
∑
s)1

N

F(x(s)) (8)

〈FN〉 ) ∫Kn∏
i)1

n

wi(xi)F(x) dx (9)

var{FN} ) 1
N

var{F(x)} (10)

σ{FN} ) (var{FN})1/2 ) 1

xN
σ{F(x)} (11)

f0 ≈ 1

N
∑
s)1

N

f(x(s)) (12)

fi(xi) ≈ 1

N
∑
s)1

N

f((xi, xi)(s)) -
1

N
∑
s)1

N

f(x(s)) (13)

fij(xi, xj) ≈ 1

N
∑
s)1

N

f((xi, xj, xij)(s)) -
1

N
∑
s)1

N

f((xi, xi)(s))

-
1

N
∑
s)1

N

f((xj, xj)(s)) +
1

N
∑
s)1

N

f(x(s)) (14)

‚‚‚
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wherek, l, l′, m, m′, andm′′ are integers;Rr
i , âpq

ij , andγpqr
ijk are

constant coefficients to be determined, and the polynomials{æ}
possess the weighted orthonormality properties

i.e., they have a zero mean and a unit norm and are mutually
orthogonal, with respect to the weightwi(xi). In most cases, to
achieve satisfactory accuracy using onlyæ1

i (xi), the terms
æ1

i (xi), æ2
i (xi), andæ3

i (xi) are often sufficient (i.e.,k, l, l′, m, m′,
m′′ e 3). Utilizing the conditions in eqs 18-20, the approxima-
tions for the RS-HDMR component functions given by eqs
15-17 will preserve the mutual weighted orthogonality in eq
7. In the following material, some examples of{æ} are provided.

2.1.2.1. Uniform Distribution.For the uniform distribution,
wi(xi) ) 1, and

2.1.2.2. Triangular Distribution.For the triangular distribution

shown in Figure 1, we have

where

Using the formulas in eqs 15-17, eq 1 can be expressed as

The coefficients can be determined using the weighted orthonor-
mality properties of{æ} as follows:

Figure 1. Triangular distribution.

R )

x 3

(1 - µ + µ2)(1 - 3µ + 8µ2 - 11µ3 + 8µ4 - 3µ5 + µ6)
(28)

â ) x 3
p(µ)q(µ)

(29)

p(µ) ) 1 - 3µ + 8µ2 - 11µ3 + 8µ4 - 3µ5 + µ6 (30)

q(µ) ) 3 - 18µ + 90µ2 - 285µ3 + 593µ4 - 860µ5

+ 957µ6 - 860µ7 + 593µ8 - 285µ9 + 90µ10

- 18µ11 + 3µ12 (31)

c0 ) -2(1 + 3µ - 14µ2 + 30µ3 - 18µ4 - 18µ5

+ 30µ6 - 14µ7 + 3µ8 + µ9) (32)

c1 ) 10(3- 3µ - 2µ2 + 29µ3 - 48µ4 + 29µ5 - 2µ6

- 3µ7 + 3µ8) (33)

c2 ) -10(9- 21µ + 44µ2 - 26µ3 - 26µ4 + 44µ5

- 21µ6 + 9µ7) (34)

c3 ) 70(1- 3µ + 8µ2 - 11µ3 + 8µ4 - 3µ5 + µ6) (35)

f(x) ≈ f0 +∑
i)1

n

∑
r)1

k

Rr
i ær

i (xi) + ∑
1ei<jen

∑
p)1

l

∑
q)1

l′

âpq
ij æp

i (xi)æq
j (xj)

+ ∑
1ei<j<ken

∑
p)1

m

∑
q)1

m′

∑
r)1

m′′

γpqr
ijk æp

i (xi)æq
j (xj)ær

k(xk) + ‚‚‚ (36)

Rr
i ) ∫0

1
wi(xi)fi(xi)ær

i (xi) dxi

) ∫Kn∏
k)1

n

wk(xk)f(x)ær
i (xi) dx

≈ 1

N
∑
s)1

N

f(x(s))ær
i (xi

(s)) (37)

fi(xi) ≈ ∑
r)1

k

Rr
i ær

i (xi) (15)

fij(xi, xj) ≈ ∑
p)1

l

∑
q)1

l′

âpq
ij æp

i (xi)æq
j (xj) (16)

fijk(xi, xj, xk) ≈ ∑
p)1

m

∑
q)1

m′

∑
r)1

m′′

γpqr
ijk æp

i (xi)æq
j (xj)ær

k(xk) (17)

‚‚‚

∫0

1
wi(xi)ær

i (xi) dxi ) 0 (for all r, i) (18)

∫0

1
wi(xi)[ær

i(xi)]
2 dxi ) 1 (for all r, i) (19)

∫0

1
wi(xi)æp

i (xi)æq
i (xi) dxi ) 0 (p * q) (20)

æ1
i (xi) ) x3(2xi - 1) (21)

æ2
i (xi) ) 6x5(xi

2 - xi + 1
6) (22)

æ3
i (xi) ) 20x7(xi

3 - 3
2
xi

2 + 3
5
xi - 1

20) (23)

‚‚‚

wi(xi) ) {2
µ

xi (for 0 e xi e µ)

2
1 - µ

(1 - xi) (for µ < xi e 1)
(24)

æ1
i (xi) ) x2(1 + µ)

1 + µ3
[3xi - (1 + µ)] (25)

æ2
i (xi) ) R[-10(1- µ + µ2)xi

2 + 2(4 - µ - µ2 + 4µ3)xi

- (1 + 2µ - 3µ2 + 2µ3 + µ4)] (26)

æ3
i (xi) ) â(c3xi

3 + c2xi
2 + c1xi + c0) (27)

‚‚‚
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The formulas in eqs 37-39 are the same as those for uniform
RS-HDMR,7 because the sampling is drawn from the guidance
by the weights{wi(xi)}.

When the Monte Carlo integration approximation is used,
for a given set ofN samples, the weighted orthogonality of the
elements of{æ} no longer holds; for example,

All the coefficientsRr
i , âpq

ij , γpqr
ijk ,... in eq 36 then are coupled

with each other and we may determine them simultaneously
by solving a system of linear algebraic equations. However,
for a high dimensionn, the number of linear algebraic equations
can be very large, and solving the equations is not computa-
tionally efficient.8,10

2.2. Correlation Method To Improve the Accuracy of
Monte Carlo Integration in RS-HDMR. The error of Monte
Carlo integration can be reduced either by increasing the sample
sizeN or decreasing the variance ofF(x) in Kn. Monte Carlo
integration error becomes troublesome when the random data
of the integrandF(x) have a large variance (i.e.,F(x) has rapid
changes in the desired domain, especially in sign). This behavior
is expected to arise when considering the integrands in the
determination ofâpq

ij , γpqr
ijk , and other higher order coefficients

in eqs 37-39 with products of the functions{æ} such asf(x)
æp

i (xi)æq
j (xj) and f(x)æp

i (xi)æq
j (xj)ær

k(xk). The difficulty arises
because the integrals exhibit rapid changes and the functions
{æ} are fixed, regardless of the form off(x). The determination
of the expansion coefficients of high order RS-HDMR
component functions by Monte Carlo integration generally
requires additional samples. For example, to determineRr

i by
eq 37, a few hundred samples may give good accuracy; however,
for âpq

ij in eq 38, to achieve the same accuracy, thousands of
samples may be needed, and forγpqr

ijk in eq 39, even more
samples may be needed. However, the sample size is often
restricted by the computational effort. These problems may be
addressed by recognizing that the accuracy of Monte Carlo
integration may be improved by reducing the variance of the
integrand.

To improve the accuracy of Monte Carlo integration, the
correlation method may be employed to reduce the variance of

the integrand.8,11Consider an integral for any coefficient in eqs
37-39, for example,

The variance of the integrand∏k)1
n wk(xk)f(x)ær

i (xi) in Kn can
be reduced if one can find a reference functionh(x) satisfying
two conditions: (1)f(x) - h(x) is almost constant or zero in
the entire domain, and (2) the integral

is known analytically. Then,

Now, the variance comes only from the first term in eq 43.
Becausef(x) - h(x) is almost constant or zero everywhere, we
expect that

Rr
i may be approximated by Monte Carlo integration,

for data sampled according towk(xk) with better accuracy than
that given by eq 37. Similarly, we also have

where

and formulas for other high order expansion coefficients.
A truncated RS-HDMR expansion of eq 36 satisfies the two

previously stated conditions and can be used ash(x). For
example, we may choose the third order expansion,

âpq
ij ) ∫0

1∫0

1
wi(xi)wj(xj)fij(xi, xj)æp

i (xi)æq
j (xj) dxi dxj

) ∫Kn∏
k)1

n

wk(xk)f(x)ær
i (xi)æq

j (xj) dx

≈ 1

N
∑
s)1

N

f(x(s))æp
i (xi

(s))æq
j (xj

(s)) (38)

γpqr
ijk ) ∫0

1∫0

1∫0

1
wi(xi)wj(xj)wk(xk)fijk(xi, xj, xk)æp

i (xi)æq
j ×

(xj)ær
k(xk) dxi dxj dxk

) ∫Kn∏
l)1

n

wl(xl)f(x)æp
i (xi)æq

j (xj)ær
k(xk) dx

≈ 1

N
∑
s)1

N

f(x(s))æp
i (xi

(s))æq
j (xj

(s))æq
k(xk

(s)) (39)

‚‚‚

∫0

1
wi(xi)æp

i (xi)æq
i (xi) dxi ≈

1

N
∑
s)1

N

æp
i (xi

(s))æq
i (xi

(s)) * 0 (40)

Rr
i ) ∫Kn∏

k)1

n

wk(xk)f(x)ær
i (xi) dx (41)

∫Kn∏
k)1

n

wk(xk)h(x)ær
i (xi) dx ) cr

i (42)

Rr
i ) ∫Kn∏

k)1

n

wk(xk)[f(x) - h(x)]ær
i (xi) dx +

∫Kn∏
k)1

n

wk(xk)h(x)ær
i (xi) dx

) ∫Kn∏
k)1

n

wk(xk)[f(x) - h(x)]ær
i (xi) dx + cr

i (43)

var{∏
k)1

n

wk(xk)[f(x) - h(x)]ær
i (xi)} <

var{∏
k)1

n

wk(xk)f(x)ær
i (xi)} (44)

Rr
i ≈ 1

N
∑
s)1

N

[f(x(s)) - h(x(s))]ær
i (xi

(s)) + cr
i (45)

âpq
ij ≈ 1

N
∑
s)1

N

[f(x(s)) - h(x(s))]æp
i (xi

(s))æq
j (xj

(s)) + cpq
ij (46)

γpqr
ijk ≈ 1

N
∑
s)1

N

[f(x(s)) - h(x(s))]æp
i (xi

(s))æq
j (xj

(s))ær
k(xk

(s)) + cpqr
ijk

(47)

cpq
ij ) ∫Kn∏

k)1

n

wk(xk)h(x)æp
i (xi)æq

j (xj) dx (48)

cpqr
ijk ) ∫Kn∏

k)1

n

wk(xk)h(x)æp
i (xi)æq

j (xj)ær
k(xk) dx (49)
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where the coefficients{Rj r
i , âhpq

ij , γjpgr
ijk } are determined by direct

Monte Carlo integration, given in eqs 37-39. The difference
f(x) - h(x) should be small if the truncated RS-HDMR
expansion is a good approximation off(x). Moreover, the second
condition holds, using the weighted orthonormality property of
{æ}:

We then have

Similarly, we also have

Equations 52-54 show that the first terms in these equations
are corrections for the initial valuesRj r

i , âhpq
ij , and γjpqr

ijk . The
resultantRr

i , âpq
ij , andγpqr

ijk values may be reused as new initial
values for the construction of a newh(x) with even smaller
values off(x) - h(x) to repeat the calculation again, and more-
accurate results may be obtained. Then, eqs 52-54 become an
iteration procedure for a given set of random samples. The
iteration should be convergent if the initialh(x) value is similar
to the f(x) value and the sample sizeN is large enough.

If one chooses the second order expansion as a reference
function,

then

andγpqr
ijk will be obtained without iteration as

The correlation method achieves improved accuracy through
the enhanced quality of the Monte Carlo integration. Thus, for
a particular choice of basis{æ}, reference functionh(x), and
sample sizeN, the convergence of the iteration is expected to
be good.

2.3. High Order Terms of RS-HDMR Expansion Ap-
proximated by Lower Order Ones. When n is large, eq 36
has a large number of terms, i.e., a large number of coefficients
to be determined by approximate Monte Carlo integration. Each
coefficient has its own Monte Carlo integration error, and the
total error will be large when the number of terms is large. Even
though the correlation method may be employed to improve
the accuracy of the Monte Carlo integration, it is often inaccurate
to determine high (greater than third) order RS-HDMR
component functions by weighted orthonormal polynomial
approximations. To further improve the accuracy, especially for
high dimensional systems, an approach called low order term
product-RS-HDMR (lp-RS-HDMR) has been developed for
uniform RS-HDMR,10 which can readily be extended to
nonuniform RS-HDMR.

Define a set of new functions forl ) 1, 2,...,n andp ) 0,
1,..., l:

wherefis(xis) andfip-1+2rip+2r(xip-1+2r, xip+2r) are the first- and second-
order RS-HDMR component functions, represented by weighted
orthonormal polynomial expansions whose expansion coeffi-
cients are accurately determined by the correlation method, and

h(x) ) f0 + ∑
i)1

n

∑
r)1

k

Rj r
i ær

i (xi) + ∑
1ei<jen

∑
p)1

l

∑
q)1

l′

âhpq
ij æp

i (xi)æq
j (xj)

+ ∑
1ei<j<ken

∑
p)1

m

∑
q)1

m′

∑
r)1

m′′

γjpqr
ijk æp

i (xi)æq
j (xj)ær

k(xk) (50)

∫Kn∏
l)1

n

wl(xl)h(x)ær
i (xi) dx ) ∫Kn∏

l)1

n

wl(xl)[f0

+ ∑
i)1

n

∑
r)1

k

Rj r
i ær

i (xi) + ∑
1ei<jen

∑
p)1

l

∑
q)1

l′

âhpq
ij æp

i (xi)æq
j (xj)

+ ∑
1ei<j<ken

∑
p)1

m

∑
q)1

m′

∑
r)1

m′′

γjpqr
ijk æp

i (xi)æq
j (xj)ær

k(xk)]ær
i (xi) dx

) Rj r
i (51)

Rr
i ≈ 1

N
∑
s)1

N

[f(x(s)) - h(x(s))]ær
i (xi

(s)) + Rj r
i (52)

âpq
ij ≈ 1

N
∑
s)1

N

[f(x(s)) - h(x(s))]æp
i (xi

(s))æq
j (xj

(s)) + âhpq
ij (53)

γpqr
ijk ≈ 1

N
∑
s)1

N

[f(x(s)) - h(x(s))]æp
i (xi

(s))æq
j (xj

(s))ær
k(xk

(s)) + γjpqr
ijk

(54)

h(x) ) f0 +∑
i)1

n

∑
r)1

k

Rj r
i ær

i (xi) + ∑
1ei<jen

∑
p)1

l

∑
q)1

l′

âhpq
ij æp

i (xi)æq
j (xj)

(55)

cpqr
ijk ) ∫Kn∏

l)1

n

wl(xl)h(x)æp
i (xi)æq

j (xj)ær
k(xk) dx

) ∫Kn∏
l)1

n

wl(xl)[f0 +∑
i)1

n

∑
r)1

k

Rj r
i ær

i (xi)

+ ∑
1ei<jen

∑
p)1

l

∑
q)1

l′

âhpq
ij æp

i (xi)æq
j (xj)]æp

i (xi)æq
j (xj)ær

k(xk) dx

) 0 (56)

γpqr
ijk ≈ 1

N
∑
s)1

N

[f(x(s)) - h(x(s))]æp
i (xi

(s))æq
j (xj

(s))ær
k(xk

(s)) (57)

gi1i2...il
(xi1

, xi2
, ...,xil

) )

{ ∏
s)1

p

fis(xis
) ∏

r)1

(l-p)/2

fip-1+2rip+2r
(xip-1+2r

, xip+2r
)

∏
s)1

p

||fis(xis
)|| ∏

r)1

(l-p)/2

||fip-1+2r ip+2r
(xip-1+2r

, xip+2r
)||

0 (if any ||fis(xis
)|| and/or||fip-1+2rip+2r

(xip-1+2r
, xip+2r

)|| ) 0)

(58)

||fis(xis
)|| ) [∫0

1
wis

(xis
)fis

2(xis
) dxis]1/2

) [∑
r)1

k

(Rr
is)2]1/2

(is∈ {1, 2,...,n}) (59)
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We call

normalized first and second RS-HDMR component functions.
For completeness, we set

Considering that the functionsgi1i2...il(xi1, xi2,...,xil) are a separable
product, and using the property of RS-HDMR component func-
tions given by eq 6, it can be readily proved thatgi1i2...il(xi1, xi2,...,
xil) (l ) 0, 1,...,n) are orthonormal with the weights present,
i.e.,

The only restriction is that any two functions in{g} cannot
have the same set of variables. For instance, if{g} contains the
function

it cannot also have

and vice versa, because the two functions are not weighted
orthogonal functions.

The set of functions{g} may be used as a basis to expand
f(x):

where{R} are constant coefficients, which can be obtained using
the weighted orthonormality property of{g}, i.e.,

Because{g} is not a complete set, the expansion of ann-variate
function f(x) in this basis is likely only an approximation.
Considering that

eq 70 becomes

which implies the following approximations, upon comparison
with eq 1:

If only the normalized first order RS-HDMR component
functions are used, we have

where

Notice that allgi1i2...il(xi1, xi2,..., xil) (l g 2 or 3) are products of
normalized first and second order RS-HDMR component
functions. Hence, eqs 74 and 76 only require computation of
the first and second order RS-HDMR component functions,
which can be accurately represented by weighted orthonormal
polynomial expansions, with the help of the correlation method.
The high order component functions are no longer explicitly
computed. The coefficientRi1i2...il for gi1i2...il (xi1, xi2,..., xil) is
determined by eq 70, whose Monte Carlo integration ap-
proximation still involves the product of one and two variable
functions. At first sight, the sampling effort and achieved
accuracy might appear similar to the{Rr

i , âpq
ij , γpqr

ijk ,‚‚‚} set for

Ri1i2...il
) ∫Kn∏

i)1

n

wi(xi)f(x)gi1i2...il
(xi1

, xi2
,...,xil

) dx

≈ 1

N
∑
s)1

N

f(x(s))gi1i2...il
(xi1

(s), xi2

(s),...,xil

(s))

(for l ) 0, 1,...,n) (70)

R0 ) ||f0|| (71)

Ri ) ||fi(xi)|| (for i ) 1, 2,...,n) (72)

Rij ) ||fij(xi, xj)|| (for 1 e i < j e n) (73)

f(x) ≈ f0 + ∑
i)1

n

fi(xi) + ∑
1ei<jen

fij(xi, xj) + ‚‚‚

+ ∑
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Ri1i2...il
gi1i2...il

(xi1
, xi2

,...,xil
) + ‚‚‚

+ R12...ng12...n(x1, x2,...,xn) (74)

fi1i2...il(xi1
, xi2

,...,xil
) ≈ Ri1i2...il

gi1i2...il
(xi1

, xi2
,...,xil

)

(for l ) 3, 4,...,n)

(75)

f(x) ≈ f0 +∑
i)1

n

fi(xi) + ∑
1ei<jen

Rijgij(xi, xj) + ‚‚‚

+ ∑
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, xi2

,...,xil
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∫Kn∏
i)1

n

wi(xi)gi1i2...il

2 (xi1
, xi2
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) dx ) 1 (65)
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i)1

n
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, xi2
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, xj2
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) dx ) 0
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gijk(xi, xj, xk) )
fi(xi)fjk(xj, xk)

||fi(xi)||||fjk(xj, xk)||
(67)

gijk(xi, xj, xk) )
fi(xi)fj(xj)fk(xk)

||fi(xi)||||fj(xj)||||fk(xk)||
(68)

f(x) ≈ R0g0 +∑
i)1

n

Rigi(xi) + ∑
1e i<jen

Rijgij(xi, xj) + ‚‚‚
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the weighted orthonormal polynomial{æ} expansions given by
eqs 37-39. However, thefi(xi) and fij(xi, xj) are obtained by
averagingf(x) overKn-1 andKn-2, with respect to allxk except
xi and xi, xj, respectively. This basis reflects the behavior of
f(x). In contrast,{æ} is a fixed set of functions, without specific
knowledge of the particularn-variate functionf(x) of interest;
therefore, the variance of∏k)1

n wk(xk)f(x)∏læl
i(xi) should be

larger than that for∏k)1
n wk(xk)f(x)gi1i2...il(xi1, xi2,..., xil). There-

fore, {g} is a natural basis forf(x), and better accuracy should
be attained, compared to{æ}, using the Monte Carlo integration
approximation with a given sample size. Moreover, compared
to the{æ} expansion given by eq 36, the{g} expansions given
by eqs 74 and 76 have many fewer terms and, consequently,
less unknown coefficients to be determined by Monte Carlo
integration. For instance, the third order component functions
fijk(xi, xj, xk) have 27 terms in eq 36 if the third order weighted
orthonormal polynomial approximation is used. In contrast, eqs
74 and 76 have only one term:gijk(xi, xj, xk). The reductionin
the number of terms to calculate with the{g} expansion
increases exponentially with the orderl of RS-HDMR com-
ponent functions. The reduction in the number of Monte Carlo
integrations with the basis{g} should also reduce the compu-
tational error.

Similarly, the correlation method can be used to reduce the
variance of∏k)1

n wk(xk)f(x)gi1i2...il(xi1, xi2,..., xil) in the determi-
nation ofRi1i2...il, where the truncated expansions in eqs 74 and
76 are used as reference functionsh(x).

3. Application to an Integrated Exposure and Dose Model

3.1. Model Description.An integrated exposure and dose
model has been developed to study multiroute residential human
exposures to trichloroethylene (TCE) that is present in tap water.
It incorporates dynamic microenvironmental and pharmacoki-
netic models, which consider the release of TCE from water
into air within different rooms in the home, the activities of
individuals, and the physiological uptake processes for three
exposure routes (ingestion, inhalation, and dermal absorption).

Microenvironmental modeling13 is used to quantify the levels
of concentrations in different media (air, water, etc.) that are
coming in contact with human receptors. Microenvironments
have typically been defined as individual or aggregate locations
where a homogeneous concentration of the pollutant is encoun-
tered, such as bedrooms and bathrooms in a residence. The daily
exposure for an individual is the sum of the exposures in all
microenvironments encountered within a day.

The governing mass-balance equation for a microenviron-
mental compartment is formulated as follows:

whereCi is the TCE concentration in air at compartmenti (in
units ofµg/m3), Vi is the volume of the compartmenti (in cubic
meters),t is the time (in minutes),qi,j is the volumetric air flow
rate from compartmentj to compartmenti (in units of m3/min),
i and j are compartment numbers, andn is the total number of
compartments. The term “sources” represents the contaminant
generation mechanisms present in the compartment, whereas
“sinks” represents the contaminant removal mechanisms that
are present in the compartment.

The source strength for TCE through volatilization during
showers is determined by the mass-transfer rate between water
and air.14-16 On the basis of a plug flow model of the water

stream with the “pseudo-steady-state” assumption, the source
strength of volatile TCE emissions from a shower is derived as

whereS is the source strength (mass/time),KV the volatilization
coefficient (which depends on the mass-transfer coefficient and
shower flow rate),Cin the concentration in water,y the
concentration in air, andH the Henry’s Law constant.

The calculated microenvironmental air concentration-time
profiles of the pollutant are then used as inputs to pharmaco-
kinetic models. Pharmacokinetic models are mathematical
constructs that are used to calculate the concentrations or
amounts of chemicals in body tissue and fluids as a function of
time.13,17Physiologically based (“mechanistic”) pharmacokinetic
(PBPK) models typically represent the biological organism as
a set of physiological compartments by lumping together similar
tissues, and by describing transport between compartments on
the basis of actual processes, such as blood circulation. The
basic structure of a typical PBPK model describing the transport
and metabolism of a volatile organic compound, such as TCE,
in the body is shown schematically in Figure 2. There are
potentially three major natural routes by which the chemical
enters the body: (a) inhalation, (b) ingestion, and (c) dermal
absorption.

The primary means of transport for xenobiotic chemicals that
enter the body through one of more of these routes is via blood,
which is the main vehicle for nutrient supply and waste removal
from tissues. Xenobiotic chemicals in blood generally partition
into free and protein-bound fractions, and the free fraction drives
the transport of the chemical into tissue for the usual case of
passive transport. In the basic PBPK model, transport of
chemicals between blood and tissue is assumed to be flow-
limited, which implies that the transport barriers between the
free molecules in blood and tissue are negligible, and equilibra-
tion between free and bound fractions in blood and tissue is
rapid. The chemical concentrations in venous blood exiting a
tissue (tissue concentrations are assumed to be at equilibrium)

Figure 2. Schematic diagram of a general basic physiologically based
pharmacokinetic (PBPK) model for volatile organic compounds.13

S) KV(Cin - y
H) (79)

Vi

dCi

dt
) ∑

j)1

n

qj,iCj - ∑
j)1

n

qi,jCi + ∑sources- ∑sinks (78)
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and in the tissue are assumed to be homogeneous, with respect
to the concentration of the chemical. These assumptions enable
tissue concentrations of the chemical to be described by ordinary
differential equations (ODEs), similar to that of a continuously
stirred tank reactor.

A mass balance around the equilibrium lung compartment
results in

where

carterial is the arterial blood concentration, andcvenousis the venous
blood concentration.Cair(inhaled) represents the inhaled air
concentration,Qcardiacis the cardiac blood flow rate,Qalveolar is
the alveolar blood flow rate,Pblood/air is the partition coefficient
between air and blood,Qj is the blood flow rate in compartment
j, andCj is the concentration in compartmentj.

The mass balance for any compartmentj of volumeVj in the
PBPK model, other than the viable skin and stratum corneum
compartments, is given by

whereVj is the volume in compartmentj, Pj/blood is the partition
coefficient between compartmentj and blood, andRj is the
metabolism reaction rate in compartmentj.

3.2. Nonuniform RS-HDMR Application. The nonuniform
RS-HDMR methodology is used to construct the truncated
RS-HDMR expansion as an efficient fully equivalent opera-
tional model (FEOM) for the previously described integrated
exposure model, to relieve the computational burden of complex
mechanistic modeling. The operations of the FEOM are very
fast, because they only involve algebraic manipulations. The
accuracy of the FEOM depends on the order of the truncated
RS-HDMR expansion and the number of sampling points for
constructing it, which is explored in the following.

Seven input variables are selected from the integrated
exposure and dose model for TCE to construct the FEOM
through the RS-HDMR with the nonuniform distribution
method. The ranges of variation of these seven input variables
are shown in Table 1.

The first four input variablessx1, x2, x3, and x4shave a
uniform distribution. The last three input variablessx5, x6, and
x7shave a triangular distribution. The target model output is
the total body burden of TCE accumulated after one month of
continuous exposure via inhalation, ingestion, and dermal
contact. The exposure pathways of inhalation and dermal contact

are mainly due to showering activities. The reason for choosing
the total body burden of TCE after one month of exposure as
the target model output (f(x)) for mapping with the seven inputs
is that this amount reaches steady-state and it can be used to
assess the health risk (see the output of the integrated exposure
and dose model simulation in Figure 3 for a hypothetical case
study).

Ten thousand random samples ofx, and their corresponding
values off(x), were obtained from the model, according to the
pdf wi(xi). Figures 4 and 5 give examples of the data distribution,
with respect to two different distributed input variablesx1 and
x5. Notice that x1 is a discrete variable. The uniform and
triangular distributions can be observed to have a distinct
influence, and most data have values off(x) < 0.5.

TABLE 1: Input Variable Ranges and Parameter µ

range

input
lower
bound

upper
bound µ

age,x1 (yr) 15 80
TCE concentration in tap water,x2 (ppm) 0.001 0.5
bathroom volume,x3 (m3) 9 15
drinking-water consumption rate,x4 (L/day) 0.8 2.4
shower flow rate,x5 (L/min) 7.7 38.3 18.3
shower time,x6 (min) 5 30 10
time after shower in bathroom,x7 (min) 5 30 10

carterial)
Qcardiaccvenous+ QalveolarCair(inhaled)

Qcardiac+ Qalveolar/Pblood/air
(80)

cvenous)
1

Qcardiac
∑
j)1

n

QjCj (81)

Vj

dCj

dt
) Qj(carterial-

Cj

Pj/blood
) - Rj (82)

Figure 3. Total body burden predicted by the trichloroethylene (TCE)
microenvironmental/PBPK model for one month of residential exposure.

Figure 4. Data distribution with respect to the uniform distributed
variablex1 (normalized).

Figure 5. Data distribution with respect to the triangular distributed
variablex5 (normalized).
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The correlation method with bases{æ} and{g} was used to
construct the RS-HDMR component functions for different
sample sizes (500, 1000, 3000, 5000, and 10 000). The accuracy
of different order RS-HDMR expansions whose component
functions were obtained from{æ} and{g} with different sample
sizes was then tested by comparison to the 10 000 exact data.
The accuracy was represented by the portion of 10 000 data
with relative errors not larger than 5%, 10%, and 20%.

3.3. Correlation Method with Basis{æ}. First, the weighted
orthonormal polynomials{æ} were used as a basis to ap-
proximate the RS-HDMR component functions given by eqs
15-17. The correlation method (eqs 52-54, 57) was used to
determine the coefficients{Rr

i , âpq
ij , γpqr

ijk }. Different h(x) and
sample sizes were used to determine the coefficients. Whenh(x)
is the second order RS-HDMR expansion (eq 55), with the
third order weighted orthonormal polynomial approximations
(i.e., k, l, l′ ) 3), the iteration of the determination of first to
third order RS-HDMR component functions was convergent
only for the sample sizeN ) 10 000. Whenh(x) is the second
order RS-HDMR expansion with the second order weighted
orthonormal polynomial approximations (i.e.,k, l, l′ ) 2), the
determination of first to third order RS-HDMR component
functions was convergent only for the sample sizes 3000, 5000,
and 10 000. For both choices ofh(x), the iteration-determining
higher (greater than third) order RS-HDMR component func-
tions were divergent for all the previously discussed sample
sizes.

The accuracy of the resultant convergent first to third order
RS-HDMR expansions are unsatisfactory for a special reason.
For the third order RS-HDMR expansion, only∼60% data
have relative errors that are not larger than 5%. Observing
Figures 4 and 5, one can see that many of the data have very
small values off(x). For these points, even if the absolute errors
of the RS-HDMR approximation are quite small, their relative
errors can be very large. In this case, relative error does not
give useful information. We set a threshold of 0.3 mg forf(x).
When the value of a datum is not larger than the threshold and
the absolute value calculated by the RS-HDMR approximation
is not larger than the threshold, we define the RS-HDMR
approximation as giving the correct answer. The threshold dose
value of 0.3 mg is chosen because the corresponding TCE
concentration in water is less than the threshold concentration
level used in the animal studies in the literature. Therefore, we
added the portion of the data satisfying this condition to the
data whose values are larger than the threshold and have relative
errors of 5%, 10%, and 20% as a representation of the accuracy.
The results are given in Table 2, which shows that the RS-
HDMR approximation with the basis{æ} is quite satisfactory.
For the third order RS-HDMR expansion,∼90% of the data
have relative errors that are not larger than 5% or both their
values and absolute calculated values given by RS-HDMR
approximation are not larger than the threshold.

3.4. Correlation Method with Basis{g}. When the weighted
orthonormal polynomials{æ} were used as a basis, the iterative
determination of the RS-HDMR component functions was
divergent for sample sizes 500 and 1000. This is because the
second order functionfij(xi, xj) cannot be accurately determined
for small sample sizes with the basis{æ}. The first order
function fi(xi) can be accurately determined for a few hundred
samples with the basis{æ}; therefore, we can use normalized
fi(xi), i.e., gi(xi), as a basis to construct high order terms for
small sample sizes. Different order truncation of eq 76 was used
for the approximation, and the truncated second order expansion
of eq 76 was used ash(x). When the sample size satisfiedN g

3000, the third order weighted orthonormal polynomial expan-
sion was used to approximatefi(xi). Otherwise, the second order
weighted orthonormal polynomial expansion was used. The
iterative determination of the coefficientsRi1i2...il for all order
terms was convergent forN ) 500, 1000, 3000, 5000, and
10 000. Compared to the results given by the basis{æ}, the
accuracy arising from{g} composed of normalizedfi(xi) is worse
for N g 3000; however, this basis can be used forN < 3000,
whereas{æ} cannot be used in this case.

When the sample size satisfiedN g 3000, the second order
RS-HDMR component functionsfij(xi, xj) can be accurately
determined. Therefore, normalized functionsfi(xi) andfij(xi, xj)
can be used to compose the basis{g} and truncation of eq 74
can be used for an approximation. Afterfi(xi) andfij(xi, xj) were
accurately determined by the correlation method (see Table 2),
the coefficientsRi1i2...il (l g 3) in eq 74 were determined by the
correlation method, withh(x) being the second order RS-
HDMR expansion whose component functions are approximated
by the second order weighted orthonormal polynomial expan-
sion. All gi1i2...il(xi1, xi2,..., xil) (l g 3) are the products of the
normalizedfi(xi) function given in eq 77. The results are given
in Table 3. The high (greater than third) order terms are
negligible; therefore, only the first to third order approximations
are presented. Compared to Table 2, the results in Table 3 are
quite satisfactory.

4. Conclusions

In the present paper, the uniform random sampling-high
dimensional model representation (RS-HDMR) technique is
extended to nonuniform distributions. After giving definitions
of the RS-HDMR component functions and introducing
weighted orthonormal polynomials related to the probability
density function (pdf) of the input variables, all the formulas
of the Monte Carlo integration approximation for uniform RS-
HDMR can be used for nonuniform RS-HDMR. The pdfwi-
(xi) reflects the random sampling of data and does not explicitly
appear in the formulas. The correlation method, to reduce the
variance of the Monte Carlo integration, and the low order term

TABLE 2: Relative Errors of the Different-Order
RS-HDMR Expansions with the Basis{æ} (Truncated eq
36) Obtained by the Correlation Method of Monte Carlo
Integration with Different Second-Order h(x) and Sample
SizesN (Threshold ) 0.3)

data portion (%)a

relative error (%) first order second order third order

k, l, l′ ) 3; N ) 10 000
5 46.2 83.5 86.7

10 57.1 94.6 94.6
20 73.3 97.9 97.1

k, l, l′ ) 2; N ) 3000
5 46.5 82.8 86.3

10 57.5 94.0 95.3
20 73.6 97.8 97.8

k, l, l′ ) 2; N ) 5000
5 46.5 83.1 87.9

10 57.3 94.1 95.9
20 73.5 97.7 97.8

k, l, l′ ) 2; N ) 10 000
5 46.2 83.9 90.7

10 57.2 94.5 96.8
20 73.4 97.8 98.1

a The percentage of 10 000 data whose values are>0.3 and relative
errors are not larger than a given value, and those whose values and
absolute calculated values of RS-HDMR approximation both aree0.3.

RS-HDMR with Nonuniformly Distributed Variables J. Phys. Chem. A, Vol. 107, No. 23, 20034715



product RS-HDMR (lp-RS-HDMR) method, to represent the
high order terms by lower order terms in uniform RS-HDMR,
can be also applied for nonuniform RS-HDMR. Thus, uniform
RS-HDMR is only a special case of this general treatment. In
practice, the data are often nonuniformly distributed, and the
general treatment of RS-HDMR presented in this paper should
be useful for realistic problems.

An integrated environmental exposure and dose model was
used for illustrating the development of the nonuniform RS-
HDMR expansions. To account for the physiological and
demographic effects on the calculated dose output, seven input
variables with pdfs of uniform and triangular shape were chosen
to perform RS-HDMR mapping with the dose outputs. The
generated RS-HDMR expansions have good accuracies for
predicting the target dose outputs. Furthermore, the evaluations
of the RS-HDMR expansions are very fast, because they only
involve algebraic manipulations. Therefore, the RS-HDMR
expansions can be used as a fully equivalent operational model
(FEOM) to relieve the computational burden of the original
mechanistic models. The creation of the FEOM is particularly
useful in performing population exposure assessments, which
are not computationally feasible by normal means, because large
numbers of simulations employing the mechanistic models are
often required to account for demographic and physiological
variability within a population. The resultant FEOMs can then
be used as accurate and efficient alternatives to the original

complex mechanistic models. The RS-HDMR methodology
provides an efficient route to treat this problem.
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TABLE 3: Relative Errors of the Different-Order
RS-HDMR Expansions with the Basis{g} (Truncated eq
74) Obtained by the Correlation Method of Monte Carlo
Integration with Second-Order h(x) and Different Sample
SizesN (Threshold ) 0.3)

data portion (%)a

relative error (%) first order second order third order

N ) 3000
5 46.5 82.8 91.9

10 57.5 94.0 97.8
20 73.6 97.8 98.5

N ) 5000
5 46.5 83.1 92.9

10 57.3 94.1 97.9
20 73.5 97.7 98.4

N ) 10 000
5 46.2 83.9 94.6

10 57.2 94.5 98.3
20 73.4 97.8 98.4

a The percentage of 10 000 data whose values are>0.3 and relative
errors are not larger than a given value, and those whose values and
absolute calculated values of RS-HDMR approximation both aree0.3.
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