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By using quantum chemistry, the fundamental normal modes and the frequencies of ice Ih and room-temperature
water clusters containing up to 15 water molecules are constructed. These normal modes are then used on the
basis of assumed harmonic dynamics for analyzing the survival probability and energy decay of wave packets
which reflect symmetric and asymmetric stretch excitations in single water molecules. Following symmetric
stretch excitation, it is found that the wave packet survival probability and the OH stretch mode energy both
decay on a sub-100-fs time scale in both phases. For asymmetric stretch excited states, the characteristic
relaxation time is below 100 fs in ice Ih, but it is slower in liquid water. In both cases, it is found that the
dynamics are truly many-body in character, since clusters of size∼15 are required to converge the early time
behavior of the OH mode relaxation processes. The results support the suggestion of Woutersen and Bakker
(Nature 1999, 402, 507-509) that, in liquid water, intermolecular vibrational energy transfer occurs on a
sub-100-fs time scale. The dynamics appear to be predominantly of harmonic character.

1. Introduction

Vibrational energy relaxation (VER) in the condensed phase
remains a challenging and exciting subject in the field of
physical chemistry due to the complexity and variety of such
processes. For instance, the time scales spanned in VER range
from slow millisecond multiphonon relaxation processes at
cryogenic temperatures, for example, the relaxation of vibra-
tionally excited O2 in O2(l) at 70 K,1 to subpicosecond
relaxation, exemplified by the VER of the OH stretch of HOD
in D2O(l), taking place with a time constant of 740 fs.2 Another
aspect of condensed phase VER showing tremendous variation
is the nature of the VER process itself. Depending on the number
and nature of intramolecular modes in the excited solute and
the presence of proper accepting modes in the liquid, being
vibrations, translations, or rotational degrees of freedom, the
process can be split into three fundamentally different VER
mechanisms: (i) The first is intramolecular vibrational relaxation
(IVR), where a new solute mode becomes excited by accepting
energy from the initially excited mode. An amount of energy
corresponding to the energy mismatch between the two modes
is deposited in the solvent.3 Examples are CH3Cl in CH3Cl(l)4

and OH stretch to bend transitions in HOD/D2O mixtures, as
observed by Deak and co-workers.5 (ii) The second is pure
energy relaxation, where the whole quantum of excitation is
transferred to the liquid, ending up as solvent thermal energy.
This is the only important pathway for a simple diatomic such
as CN-(aq).6 (iii) The third is resonant energy transfer, where
one quantum transfers between two identical molecules, leaving
the system with the excitation in the same degree of freedom
but transferred to another molecule. Examples are matrix isolated
CH3F7 at 10-20 K and the mechanism put forth by Woutersen
and Bakker8 for describing ultrafast OH bond VER in liquid
water; see below. For the majority of systems studied so far,
mechanisms (i) and (ii) occur faster than the third one, except
at low temperatures.7,9 What makes VER even more challenging
is the fact that the processes are expected to be quantum

mechanical10-13 and, in general, many-body in character,14

which makes accurate treatments extremely difficult.
Pure water represents a solvent in which fast relaxation

processes take place: Investigations of the subsequent dynamics
of an initially excited OH bond in HDO/D2O mixtures in the
solid and liquid state have been carried out by Woutersen et
al.,2 showing the lifetime of an OH bond excitation in water to
be 740 fs, which is short compared to the lifetimes of other
excited aqueous solutes.6,15,16The lifetime in Ice Ih was found
to be even shorter: 380 fs. The short lifetimes were ascribed to
the effectiveness of the hydrogen bond network as an energy
transmitter.2 Also, Lock and co-workers have studied the
equilibration dynamics of liquid water and alcohols, following
a local deposition of energy in OH bonds.17 It was found that
water had the fastest equilibration time, 0.5-0.6 ps. Further-
more, the process determining the equilibration time for water
was argued to be of IVR nature, where the energy initially
localized in an OH bond transfers to the internal bending mode,
as is also observed in gas-phase VER.18 According to Lock et
al., this intramolecular energy transfer occurs on an ultrafast
time scale of∼130 fs. The internal state subsequently relaxes
on a time scale of 0.55 ps. Deak5 and co-workers used IR-
Raman techniques to obtain lifetimes for OH stretches in HDO
and H2O molecules dissolved in D2O(l). The observed lifetime
of ∼1 ps was in good agreement with the findings of Woutersen
et al.2 They further showed that in the VER of HOD in D2O(l)
intermolecular vibrational energy transfer occurs with a large
quantum yield, meaning that a vibrational quantum in the OH
bond of HOD can, by an IVR process, convert to an HOD OD
mode quantum which then resonantly transfers energy to a band
of OD modes in the D2O liquid.5

Woutersen and Bakker8 measured the rotational anisotropy
of vibrationally excited OH groups in pure water and HDO/
D2O mixtures. (Here, the rotational anisotropy provides a
measure of how fast initially excited and aligned dipole vectors
reorientate and consequently loose their alignment.) In these
mixtures, they found that, by increasing the OH concentration,
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the rotational anisotropy decreased on a faster time scale. This
was explained by proposing an ultrafast intermolecular energy
transfer mechanism between adjacent OH groups in the liquid.
In pure water, where the OH group concentration is largest, the
decay of the anisotropy was observed to take place on a sub-
100-fs time scale.8 That intermolecular resonant energy trans-
fer between adjacent OH groups in water should take place on
a sub-100-fs time scale and thereby beat the fast 740-fs time
scale for OH mode population decay came as a real sur-
prise.9 The possibility that adjacent OH oscillators can ex-
change energy is not surprising, since we imagine it to be made
possible by the three-dimensional hydrogen bond network in
water. What is surprising is the reported sub-100-fs time
scale, which is the fastest time scale observed for any VER
process in liquids.9 Hence, in short, we think we know the nature
of the process but we are surprised at its efficiency. It is the
goal of this paper to model the intermolecular OH energy
transfer using simple harmonic theory for the dynamics and to
extract a time scale for this process. We consider water both in
its liquid form at room temperature and in its natural solid state,
ice Ih.

The computational approach to the relaxation of the OH bond
excitations in water can be carried out in various ways depending
on the options selected in the following aspects of the
problem: (a) potential modelsab initio or generic (effective
pair potentials etc.)? (b) dynamicssclassical or quantum? Exact
or approximate? We may select one of the many intermolecular
water potentials and add a simplified intramolecular water
potential to model a solute water molecule in a water cluster in
a generic manner, that is, in a qualitative way. The alternative,
which we shall prefer in this case, is to turn to high level
quantum chemistry for a description of the inter- and intramo-
lecular interactions. In this way we can produce a more reliable
potential, albeit at some cost in computational effort and loss
of simplicity of form. With respect to the dynamics, we must
decide to what degree we shall include quantum effects and
whether we shall seek a numerically exact solution or be
satisfied with a simplified and approximate form of dynamics.
In this study we shall adopt a greatly simplified form of
dynamics based on the harmonic approximation; that is, we shall
expand the potential around the minimum and retain only terms
up to second order in the deviations from equilibrium. The
nuclear dynamics are then expressed in normal modes which
are separable, and the dynamics are easily obtained on any time
scale. This type of dynamics is often assumed in the study of
phonons in solids and vibrational dynamics of molecules, for
example, in the Slater theory of reaction rates.19 Also, harmonic
dynamics have been applied to describe processes occurring on
short time scales in liquids, thereby providing an analytic short-
time formalism referred to as instantaneous normal mode
theory.20 We are well aware that anharmonic couplings are
present and likely to affect the intermolecular motions strongly.
There are, however, many significant advantages in the harmonic
approximation: (a) It can be obtained for large clusters by use
of ab initio methods. (b) Quantum and classical dynamics are
both readily accessible. (c) It is likely to provide a good estimate
of fast relaxation times and a lower bound on the rate of
relaxation. In this case we have experimental evidence of fast
relaxation of OH stretch excitations and hope to show that the
high rates are to a good extent already captured by adopting a
harmonic model of water clusters.

This paper is structured as follows: In section 2, the Ice Ih
and water models are presented. Section 3 contains a summary
of the computational details of the model together with basic

wave packet theory. In section 4, the results are presented and
discussed. Finally, we conclude in section 5.

2. Ice Ih and Water Model

To directly simulate the time-dependent rotational anisotropy
following excitations of OH stretches in water is a daunting
task. First, we would need to know the precise nature of the
excited wave packets. Clearly, this is an extremely difficult task.
A further complication is that the rate of decay of the rotational
anisotropy also contains contributions from IVR and rotational
relaxation.8

Instead of mimicking the time-dependent anisotropy, we can
formulate other projects which will give insight into the inter-
molecular energy transfer occurring in water: Let us consider
the resonant energy transfer and survival probability of wave
packets initially representing symmetric or asymmetric stretch
excitations of water monomers in water clusters. (One could
also consider the golden rule approach,21 which has been used
extensively in modeling VER in the condensed phase.3,4,6,15,16,

It has however recently been shown by Herman and co-
workers22,23 that this approach is not suited for describing
resonantV f V transfer, due to a long-time coherence between
the energy exchanging resonant states. This phenomenon shows
up as a probability,P(t), varying nonlinearly as a function of
time, for energy relaxation, which makes the extraction of a
rate constant meaningless.) In the following, such excited states
will be loosely referred to as OH stretch excited states. The
survival probability or energy of such initial states should decay
fast, on a 100-fs time scale or faster, if the mechanism proposed
by Woutersen et al. is correct. For such excited states, we have
the following picture of the OH stretch intermolecular energy
transfer process: A wave packet corresponding to an excited
OH stretch mode in one water molecule is initiated. In liquid
water, a tetrahedral four-neighbor structure is dominating24,25

(see Figure 1), which means that on average almost four
hydrogen bonds connect to each water molecule. The hydrogen
bonding is strong: For the water dimer the energy is about 2.6

Figure 1. Characteristic structure of a tetrahedrally coordinated water
molecule.
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kcal/mol,26 indicating a strong coupling between atoms in
neighboring water molecules. We imagine this coupling to
facilitate the resonant energy transfer. In ice Ih, that is, ordinary
ice, the same tetrahedral structure around each water molecule
is present but now it is almost optimal, in the sense of perfect
hydrogen bonding,25 which makes us expect that the ice Ih
hydrogen bond network will actually be a more effective
mediator of OH mode resonant energy transfer than the network
in liquid water.

2.1. Choosing a Correct Potential and Dynamics Method.
From a conceptual point of view, ice Ih is easier to simulate
than liquid water, since, in crystals, an approximate harmonic
phonon description of the vibrational motion of the atoms is
permissible.27 This is because no unstable modes, with imaginary
frequencies, are present in solids as opposed to liquids.20

However, Stratt and co-workers20,28,29 have shown that the
dynamics even of a liquid, on a short time scale of typically
50-100 fs, can be accurately modeled by phonon dynamics,
since, on such a time scale, the low frequency, slow motions
along unstable directions are not yet significant. This approach
is referred to as instantaneous normal mode dynamics.20 Hence,
following Stratt,20 a harmonic description of a liquid is valid
on a sufficiently short time scale. Two arguments further support
using instantaneous normal mode dynamics for our particular
problem. First, in water at room temperature, only 6% of all
modes are unstable,20 which makes water “solidlike” as
compared to other liquids.20 Second, we are interested in
particularly fast processes occurring on a sub-100-fs time scale.
Below we will give further arguments for using a simple
harmonic model in our study.

2.2. Why a Harmonic Model Should Work. The nature of
resonant energy transfer, a type (iii) process, contains a
simplifying feature. As we will argue below, a simple harmonic
normal mode (NM) description of the dynamics allows for the
modeling of the energy transfer. This is opposed to intramo-
lecular energy transfer, a type (ii) process, where delicate higher
order anharmonic couplings in the intramolecular potential are
required for driving the process; see, for example, the recent
VER study of CH3Cl in CH3Cl(l).4 To see that simple harmonic
dynamics accounts for resonant energy transfer, let us consider
the water dimer (which consists of two hydrogenbonded water
molecules) in its equilibrium geometry. We consider the
intermolecular potential as a perturbation added to the zeroth-
order Hamiltonian, which is the sum of two harmonic vibrational
water monomer Hamiltonians. The zeroth-order eigenstates are
hence direct products of vibrational eigenstates for the two
isolated molecules. As coordinates for the dimer we first select
the three NMs in each molecule. We label these{qi}i)1

6 in the
following sequence: symmetric stretch (water one), asymmetric
stretch (water one), bending (water one), and then the three NMs
for water number two in a similar sequence. The remaining
coordinates,{qi}i)7

18 , are the standard center of mass coordi-
nates and Euler angles for each molecule. The values of all 18
coordinates are chosen so as to reproduce the dimer equilibrium
geometry. This fully determines their value, up to an irrelevant
value of the whole dimer center of mass coordinates and Euler
angles. Afterward, the coordinates{qi}i)7

18 are frozen at their
specific values, to make things simple, not because it is essential
for the argument. The dimer intermolecular potential energy
can now be Taylor-expanded in the six vibrational NMs around
the minimum geometry of the dimer

The lowest order term in this expansion, which induces an
annihilation of one quantum of, say, symmetric stretch in water
one (deactivating state|1〉 ≡ |100000〉) and creates a corre-
sponding quantum in water two (activating state|2〉 ≡ |000100〉),
is clearly the quadratic termV′ ≡ R1,4q1q4, since in terms of
boson creation and annihilation operators this term equals

(ref 30), whereω(sym) and m equal the monomer water
symmetric stretch frequency and reduced mass, respectively.
Also, b1

† is the creation operator for the symmetric stretch of
molecule one and so forth. Using the method of variation of
constants,31 it is now straightforward to find an expression for
the probability of symmetric stretch resonant energy transfer
from water one to water two:

with

and where we have usedω12 ≡ E1 - E2 ) 0 for the two
degenerate zero-order states|1〉 and|2〉. Equation 2 is nothing
but the first term in a Taylor expansion of the Rabi formula.31

Hence, already at the harmonic level of interaction, resonant
vibrational energy transfer is allowed. Also, we see that, by
making the harmonic truncation in eq 1, terms coupling, for
instance, the symmetric stretch in water one with the bending
mode 2-fold excited in number two are not accounted for, since
such transitions require retaining the cubic terms or extending
the variation of constant method to higher order couplings in
Vint. Hence, such processes are not included in our simple
harmonic model. We further note that the first term beyond the
harmonic truncation in eq 1, which again couples|1〉 and |2〉,
is a quartic term. Hence, within first-order perturbation theory,
our harmonic approximation is exact to third order in the Taylor
expansion of the intermolecular interaction.

2.3. Further Arguments for a Harmonic Model. Since
resonant energy transfer between neighboring OH groups is
included in a harmonic phonon treatment, the simplest possible
analysis would proceed as follows: Construct the NMs of the
water cluster, from some yet unspecified potential. Then perform
wave packet dynamics for locally excited OH stretch modes
and monitor their survival probability and energy relaxation.
This can be done analytically, which greatly simplifies matters.
A further argument for this method is that, by limiting the
potential to harmonic order, the NMs can then be derived from
ab initio electronic structure theory, ensuring high quality
harmonic couplings in eq 1. On the other hand, more advanced
dynamical approaches, but utilizing more approximate analytical
potentials, could retain the anharmonicity of the water cluster
potential. For example, effective time-dependent self-consistent
field (TDSCF) approaches, specifically designed for propagating
vibrational wave packets in anharmonic clusters, have been
developed.32,33However, these approaches require the existence
of high quality flexible water potentials, which faithfully
describe vibration-vibration coupling between modes in adja-
cent water molecules. Moreover, it has been suggested that, due
to the proximity of adjacent OH bonds in water, high order
multipole couplings are important,9 meaning that not only

V′ ) p

2mω(sym)
R1,4(b1

†b4
† + b1b4 + b1

†b4 + b1b4
†)

P(t) ) | 1ip∫0

t
ds V′12 exp(iω12s)|2 ) t2

p2
|V′12|2 (2)

V′12 ) 〈1|V′|2〉 ) p

2mω(sym)
R1,4

Vint ) ∑
i)1,6

Riqi + ∑
i,j)1,6;i<j

Ri,jqiqj + ... (1)
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dipole-dipole but also higher order multipole couplings should
be accurately modeled by the potential. The requirement that
the water molecules be flexible rules out sophisticated rigid body
ab initio water pair potentials such as NEMO34 and SAP-5s35

which rigorously include dispersion and induction effects. The
simple point charge (SPC) models for water,36,37 which allow
for flexibility, are not suited for our purpose, since they represent
effective potentials with many-body interactions represented as
two-body interactions. Clearly, such potentials are, by construc-
tion, not expected to predict precise harmonic couplings between
atoms in adjacent water molecules. Another potential, namely
the water pair potential of Reimers, Watts, and Klein (RWK2),38

which also includes an intramolecular potential, should be
considered. This combined inter- and intramolecular potential
has been improved by Coker and co-workers39 to better fit the
infrared dimer absorption spectrum, which means that the above-
mentioned vibration-vibration coupling indeed is taken into
account. However, a serious shortcoming of the RWK2 potential
is its use of fixed point charges, which ideally should depend
also on the geometry of the water molecule. It has been shown
by Morita and co-workers16 that the inclusion of the latter
dependence can be crucial for accurately describing VER in
the condensed phase. Another problem with the RWK2 potential
is its inability to describe induction effects.40 Hence, these
considerations lead us to choose between (i) a model which is
dynamically primitive, since it neglects anharmonic effects but
on the other hand has a good description of the fundamental
harmonic couplings from which it derives its dynamics, and
(ii) a dynamically higher level theory, for example, the TDSCF
approach, including the anharmonicity of the water cluster, but
at the expense of not knowing the accuracy of even the harmonic
part of the water potential. We have chosen the former, also
more simple, approach as our starting point for investigations,
which should later consider anharmonicity.

3. Computational Details

In this section we address the problem of choosing a suitable
level of electronic structure theory, which enables us to compute
reliable frequencies and NMs of water clusters. Also, we
consider the definition of the initial vibrational nonstationary
states and the basic wave packet theory needed to propagate
these. Finally, the details of the ice Ih structure and water
molecular dynamics simulation are presented.

3.1. Electronic Structure Method.To determine frequencies
and NMs for clusters ranging from 5 to 15 water molecules,
electronic structure calculations were performed using the
Gaussian 9841 electronic structure program package using DFT
employing the hybrid B3LYP exchange-correlation functional
together with a 6-31G** basis set.42 To check the accuracy of
B3LYP, we calculated symmetric stretch wave packet survival
probabilities (WSPs) for a water pentamer structure, by utilizing
the B3LYP functional and also by an ab initio second-order
Møller-Plesset (MP2) calculation using the same basis set. Ab
initio calculations based on an MP2 level of theory, which
includes electron correlation, have been shown to accurately
describe the structure of water clusters.43 Figure 2 shows the
WSP and that good agreement between the calculations is
obtained. We have also applied B3LYP with a more complete
basis set, that is, aug-cc-pVDZ. However, as Figure 2 shows,
the basis set effect is small. Our interest is in finding the initial
decay rate of the WSP, and for this purpose the agreement
between the curves is excellent. Therefore, we base all calcula-
tions on the less-time-consuming B3LYP/6-31G** approach.

3.2. Wave Packet Dynamics.Given a cluster geometry with
water molecules derived from either ice Ih or liquid water, we

need to perform dynamics of wave packets moving in the
harmonic water cluster potential. When modeling our initial
nonstationary OH stretch state, we shall need the relation
between local Cartesian displacement coordinates on each atom
and the NMs. The relation is44

whereXB is the vector containing the actual physical displace-

ments of the cluster atoms andQ̃B represents the changes in
mass weighted NMs. The matrixA is given by

whereG1/2 is a diagonal matrix containing inverse square roots
of atomic masses.L contains the orthonormal column vectors
corresponding to a unitary transformation of mass weighted
coordinatesYB:

The mass weighted NMs are related to dimensionless normal
modes,QB, (DNMs) by the linear transformation

whereΛij ) δij(ωi/p)1/2. In the last equation,ωi is the frequency
of theith NM andδij is Kroneckers delta. To create an excitation
of, for example, symmetric stretch nature, in the central water
molecule of the cluster, we proceed as follows: Physical
displacements of atoms in the central H2O molecule are chosen
by moving the hydrogens an amount toward the oxygen atom,
along the bonds, and finally moving the oxygen so that the
center of mass is conserved. The particular amount of displace-
ment is of no significance, since our potential is harmonic. The
above procedure is here referred to as a simple “geometric”
symmetric stretch excitation. An asymmetric stretch excitation
is defined in a similar manner. We then knowXB and we can
calculateYB. Equations 5 and 6 are then solved forQB, which
means that we have an excitation corresponding to a linear
combination of DNMs

whereN is the total number of modes, ranging from 45 to 135.

Figure 2. Level of agreement between MP2 and B3LYP. WSP for a
symmetric stretch wave packet in the pentamer structure: solid line,
MP2; dashed line, B3LYP; dotted line, B3LYP+AUGpVDZ.

XB ) AQ̃B (3)

A ) G1/2L (4)

YB ) G-1/2X ) LQ̃B (5)

QB ) ΛQ̃B (6)

ς ) ∑
i)1

N

ciQi (7)
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Let us require normalization

We apply this excitation to an initial thermal state of our cluster
which can have excitations in low frequency modes. For
simplicity, we assume that the high frequency stretch and
bending modes do not have any thermal excitations, which is
reasonable at 273-298 K. Let our initial thermal vibrational
state have the energy

and wave function

where we have introduced the Hermite polynomials, including
normalization, for each NM. To excite this state, according to
eq 7, we apply the excitation operator

wherebi
† is the standard boson creation operator,30 creating a

single quantum of excitation in theith mode. The summation
in eq 11 can be modified to only include the high-frequency
stretch modes, since the expansion in eq 7, in practice, does
not have any components representing the low frequency modes.
Let us number the latter from 1 toM, M < N, so that the high
frequency modes are numbered fromM + 1 to N. Our new
wave function and energy are then

yielding an excitation energy of

The wave packet in eq 12 is easily propagated:

We can now, finally, evaluate the wave packet autocorrelation
function

and consequently the survival probability

Other valuable information which can be extracted from the
NM analysis is the rate of energy relaxation for an excited OH
stretch mode. Since we have a mapping between NMs and
Cartesian displacement coordinates through eq 3, we can readily
evaluate an OH distance in the excited central water molecule.
Within a local mode or valence bond description of the excited
molecule,38 the potential energy part of a water molecule is
approximated as

Hence, the potential energy in an OH bond is simply propor-
tional to ∆rOH

2 , which is readily obtainable from the NM
analysis. In an important paper for the VER community, Bader
and Berne10 pointed out that classically determined energy
relaxation rates for vibrationally excited modes are exact,
provided that the underlying dynamics are harmonic. This means
that the approximate local mode energy in eq 17 should give a
reasonable description of the energy decay of excited OH bonds
in the water cluster. We have calculated the decay of the total
OH stretch energy function, being proportional to∆rOH(1)

2 + ∆
rOH(2)

2 , and found it to be very similar to the WSP function in
the solid and liquid phase for all considered excitations.

3.3. Ice Ih Crystal. We consider an ice Ih crystal at 0 degrees
centigrade and 1 bar; see Figure 3. The crystal data are as
follows: The cell is made up of SPC/E37 water molecules,
having an OH bond length of 1.00 Å and a HOH angle of
109.5°, which makes the water molecules fit perfectly into the
ice Ih tetrahedral structure. In our crystal, each oxygen atom is
tetrahedrally surrounded by four other oxygen atoms at a
distance of 2.76 Å, which is in accord with experiments at this
temperature and pressure.45 The lattice constantsa and c are
7.37 and 4.52 Å, respectively, also in agreement with measure-
ments.45 There is a great deal of flexibility with regard to
positioning the hydrogen bonds in the crystal, allowing for six
fundamental ways that the central water molecule can coordinate
to its four neighbors,46 thereby allowing for more or less ordered
ice structures. We have chosen to study only one structure, since
we feel that little variation, if any, is expected, since, in all
possible structures, the number of hydrogen bonds and the
interatomic distances remain the same.46 We consider ice Ih
clusters with 5 to 15 molecules. These structures are derived
by cutting the central water molecule and its 4 to 14 closest
neighbors out of the structure shown in Figure 3. In the central
water molecule, OH stretch motions are then initiated. In Figure
4, the largest cluster with 15 water molecules is shown.

3.4. Molecular Dynamics of Liquid Water at 300 K. To
simulate liquid water, we employed the MOSCITO molecular
dynamics simulation package47 using 108 SPC/E37 molecules
at a density of 1.0 g/cm3. A cubic simulation box of length 14.79
Å together with periodic boundary conditions was employed.
A potential cutoff equal to half the box length was adopted.
The geometry of the water molecules was held rigid by applying
the SHAKE algorithm of Ryckaert et al.48 The simulation time
step was 1 fs, and the Berendsen thermostat49 was applied in

∑
i)1

N

ci
2 ) 1 (8)

E0 ) ∑
i)1

N

pωi(νi + 1/2) (9)

|Ψ〉0 ) ∏
i)1

N

Hνi
(Qi) exp(-

1

2
Qi

2) (10)

ς† ) ∑
i)1

N

cibi
† (11)

|Ψ〉 ) ∑
i)M+1

N

ciH1(Qi) exp(-
1

2
Qi

2)∏
j)1

M

Hνj
(Qj)

exp(-
1

2
Qj

2) ∏
j)M+1,j*i

N

H0(Qj) exp(-
1

2
Qj

2) (12)

E ) ∑
i)1

N

pωi(νi + 1/2) + ∑
i)M+1

N

ci
2pωi (13)

∆E ) ∑
i)M+1

N

ci
2pωi (14)

|Ψ(t)〉 ) ∑
i)M+1

N

ci exp(-i(pωi + E0)t/p)H1(Qi)

exp(-
1

2
Qi

2){∏
j)1

M

Hνj
(Qj) exp(-

1

2
Qj

2) ∏
j)M+1,j*i

N

H0(Qj)

exp(-
1

2
Qj

2)} (15)

〈Ψ(0)|Ψ(t)〉 ) ∑
i)M+1

N

ci
2 exp(- i(pωi + E0)t/p) (16)

|〈Ψ(0)|Ψ(t)〉|2 ) ∑
i,j)M+1

N

ci
2cj

2 cos((ωi - ωj)t)

VH2O
) 1

2
kOH∆rOH(1)

2 + 1
2
kOH∆rOH(2)

2 + 1
2
kΘ∆Θ2 (17)
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each time step in order to keep the temperature at 300 K. This
was accomplished by using a coupling constant of 0.1× 104

ps-1. Long-range electrostatic interactions were handled by
adopting the particle mesh Ewald (PME) summation method,50

using a 16× 16× 16 grid for the Fourier representation of the
charge density, and a spline interpolation of order 4. The Ewald
convergence parameterR was assigned a value of 0.362 33 Å-1

in accord with a suggested value of 5.37/2rcut,51,52wherercut is
the cutoff radius. After an equilibration time of 20 ps, 17
structures were sampled, one every 5 ps, and the data were saved
for further analysis. For each of these structures, a cluster of
15 water molecules was derived by picking out the central water
molecule and its 14 nearest neighbors.

4. Results

4.1. Ice Ih. In Figures 5 and 6, we show results for symmetric
and asymmetric stretch wave packet survival probabilities,
initiated in the central ice Ih water molecule, for clusters
containing 5, 8, 12, and 15 water molecules. The wave packet

excitation energies calculated according to eq 14 are, in order
of increasing cluster size, 3278, 3282, 3279, and 3272
cm-1. As Figure 5 shows, the symmetric stretch half-lives for
the survival probability are 70, 67, 53, and 50 fs for clus-
ters containing 5, 8, 12, and 15 water molecules, respectively.
We note that the recurrences in the survival probability get
quenched as the cluster size increases, which is also physically
reasonable. In Figure 6 are shown similar results but now for
initial asymmetric stretch excitations. The half-lives and excita-
tion energies are now, in order of increasing cluster size, 243
fs (3346 cm-1), 125 fs (3353 cm-1), 87 fs (3344 cm-1), and 79
fs (3333 cm-1), showing that the relaxation is a bit slower and
that the results are essentially converged with respect to cluster
size. From these results, we see that the water molecules not
only in the first solvation shell but also in the second shell
contribute significantly to the wave packet decay process and
indeed cannot be neglected. To check that convergence really
is obtained for clusters with 15 molecules, we have performed
similar calculations, employing clusters containing up to 32

Figure 3. Ih structure of ice.
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molecules, using a semiempirical PM3 approach,53 which indeed
confirmed that this is the case. As a check of the consistency
of the wave packet approach, we also investigated the effect of
replacing the four neighbors in the pentamer cluster by D2O.
In Figure 7 it is seen that the initiated symmetric stretch
excitation is now trapped in the central water molecule, since
the OD stretches are not in resonance with the excited OH
stretch motion in the central water molecule. We conclude that
the excited geometric symmetric stretch state is close to the
symmetric stretch eigenstate of the central water molecule. To
describe the VER of an OH mode in a D2O environment, higher
order multiphonon processes should be included in the model.

However, given our harmonic Hamiltonian, we cannot describe
such processes.

4.2. Liquid Water Results. In Figure 8 is shown the
symmetric stretch excited WSP derived from averaging over
10, 14, and 17 liquid water configurations. For 17 configurations,
the half-life of the decay is 83 fs. The mean excitation energy
is 3307 cm-1. In Figure 9, similar results are shown, now for
asymmetric stretch excitations. The mean excitation energy is
3401 cm-1. We note that the asymmetric stretch WSP decays
markedly slower than that in ice Ih. The half-life in liquid water
is about 250 fs. Also, we see that the probability never drops
below 30%. This is also seen when doing the same wave packet

Figure 4. Ice Ih structure, 15 molecules.

Figure 5. Survival probability of the symmetric stretch excitation for
clusters of size 5, 8, 12, and 15 molecules: solid line, 15; dotted line,
12; dashed line, 8; long-dashed line, 5.

Figure 6. Survival probability for the asymmetric stretch excitation
for clusters of size 5, 8, 12, and 15 molecules: solid line, 15; dotted
line, 12; dashed line, 8; long-dashed line, 5.
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calculations on the 17 configurations, but now including 32
water molecules, using the more approximate PM3 semiem-
pirical approach. Hence, the fact that the probability never drops

below 30% is probably not due to effects pertaining to cluster
size.

5. Conclusion and Discussion

We have calculated characteristic decay half-lives for sym-
metric and asymmetric stretch excited states in ice Ih and room-
temperature liquid water. The wave packet lifetimes for
symmetric stretch excitations were found to be∼50 and∼83
fs for ice Ih and liquid water, respectively. For asymmetric
stretch excitations, the corresponding numbers were∼79 and
∼250 fs, respectively. To a very good approximation, it was
found that the same four half-lives also reflect the total OH
mode energy decay in both phases. We have shown that, by
adopting the simplest possible model, that is, by employing
instantaneous normal mode theory, we are able to account for
a resonant energy transfer mechanism which occurs on a sub-
100-fs time scale. Hence, the findings in this paper support the
proposal of Woutersen and Bakker,8 that intermolecular resonant
energy transfer occurs on an ultrafast time scale. We further
find that the intermolecular energy transfer occurs most rapidly
in ice Ih. The results of this paper add to our understanding of
what happens after generation of an OH stretch excited state in
liquid water. Depending on the amounts of symmetric and
asymmetric stretch excited states in the wave packet, intermo-
lecular resonant energy transfer takes place on a∼100-300 fs
time scale. As suggested by Lock and co-workers,17 a possible
competing process, occurring on the same fast time scale, is
the intramolecular energy transfer to the bending mode degree
of freedom.

It is interesting that, in both phases, the symmetric stretch
mode relaxes faster than asymmetric stretch, especially in liquid
water. To understand this, we have counted the number of
harmonic modes which participate in the relaxation dynamics
by requiring that their expansion coefficient be larger than 50%
of the coefficient of the major harmonic mode. In ice Ih, a total
of three modes participate in the dynamics for both symmetric
and asymmetric stretches. In liquid water, averaging over 17
configurations yields four and two modes for symmetric and
asymmetric stretches, respectively. Hence, apparently, the
number of energy acceptors for the asymmetric stretch goes
down when going from ice to liquid water. This could also
explain why the predicted asymmetric stretch WSP never drops
below 30%: The excitation is simply spread out on too few a
number of modes to become delocalized.

We finally emphasize again that our simple model is not
capable of describing VER processes which are driven by
anharmonic effects. This means that intramolecular relaxation,
exemplified by energy transfer between symmetric and asym-
metric stretch states in the same water molecule, is not included
in our model. Inclusion of such effects could, for instance, make
the asymmetric stretch WSP drop below 30% in our liquid water
model. However, the observed almost identical decay of the
OH mode classical energy and the OH WSP points in the
direction of improvement of our model. This observation shows
that roughly the same rates of decay can be found in classical
MD simulations, monitoring the energy decay, and quantum
calculations which provide decay rates of the WSP. An obvious
extension of the model would then be to perform ab initio
molecular dynamics, for example, Car-Parrinello molecular
dynamics, and monitor the classical OH mode excess energy,
following OH stretch excitations. This would allow for the
inclusion of anharmonic effects but still retain a first-principles
description of the molecular interactions. Also, such an approach
would allow the study of intramolecular relaxation.

Figure 7. Survival probability for the symmetric stretch excitation
for one H2O molecule surrounded by four H2O or four D2O mol-
ecules: solid line, four H2O molecules; dotted line, four D2O molecules.

Figure 8. Decay of the symmetric stretch WSP for liquid water at
300 K. Results are for clusters of 15 molecules. The ensembles of initial
conditions contain 10 (solid line), 14 (dotted line), and 17 (dashed line)
entries.

Figure 9. Decay of the asymmetric stretch WSP for liquid water at
300 K. Results are for clusters of 15 molecules. The ensembles of initial
conditions contain 10 (solid line), 14 (dotted line), and 17 (dashed line)
entries.
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