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High proton conductivity in aqueous solutions has been known for a long time and is attributed to the Grotthus
mechanism. In this study, we calculated the proton-transfer rate constant associated with prototropic mobility
in water as a function of temperature. We found a strong correlation between the proton-transfer rate constant
at low temperatures,T < 290 K, and the dielectric relaxation time. The model that we used to calculate the
proton-transfer rate constant is based on diffusive propagation of the solvent configuration along a generalized
solvent coordinate from the reactant potential surface toward the crossing point with the product potential
surface. The proton transfer occurs at the crossing point, and the rate is calculated by a sink term placed at
the crossing point. The sink term includes the solvent velocity and the Landau-Zener transmission coefficient.
Both the diffusion constant and the Landau-Zener transmission coefficient depend on the dielectric relaxation
of the solvent. The calculations are compared with the proton mobility data and an interpolation expression
that bridges the nonadiabatic limit and the solvent-controlled limit.

Introduction

The abnormally high conductivity of acids and bases in
aqueous solutions was first observed over 150 years ago. Over
the last few decades, the field of abnormal proton conductivity
has been investigated by several authors.1-3 At 25 °C, the
equivalent conductivity at infinite dilution,λ0, is 349.8 for H3O+

and 198.1 for OH-. These values should be compared to values
of 37.5, 50.1, and 73.6 for Li+, Na+, and K +, respectively,
and 76.4 and 68.1 for Cl- and ClO4

-, respectively, all values
in cm2 Ω-1 equiv-1.

Another important difference between proton mobility and
ion conductivity is the unusual temperature dependence. The
alkaline cation conductivity in water has an Arrhenius behavior
(constant activation energy,Ea), while the temperature depen-
dence of the proton conductivity in water has a non-Arrhenius
behavior. The activation energy of the latter is smaller at higher
temperature.Ea of the regular ion conductance in water is about
16 kJ/mol, while the activation energy of the abnormal proton
conductance changes from about 32 kJ/mol in supercooled water
at 244 K to about 4 kJ/mol at the boiling point 373 K.4

In textbooks, high proton conductivity is usually attributed
to the Grotthus mechanism.5 As a general mechanism of
conduction in ionic solutions, Grotthus6 suggested, in 1806, a
chain mechanism for the transfer of charge along a chain of
particles. The resemblance of this mechanism to the proton-
transfer case is formal rather than physically analogous. Two
classes of proton-transport phenomena are recognized in liquid
water: “ordinary” mass diffusion according to Stokes law and

the “abnormal” proton mobility, which we shall deal with in
this study. The value of the abnormal proton conductivity is
obtained by subtracting the Stokes mass diffusion contribution
to the conductance from the total conductance,λH+ ) λH+

ab +
λH+

St , whereλH+
ab and λH+

St are the abnormal and Stokes equiva-
lent conductivity, respectively. Using a random walk description,
we characterize the abnormal proton mobility in water by a
hopping time,τp, of about 1.5 ps at room temperature, as
deduced from NMR line-narrowing investigations.7-9 This time
scale reproduces the “abnormal” proton mobility with a hopping
length, lp, of 2.5-2.6 Å, the O-O distance in H9O4

+.

wherez is the protic charge,F is Faraday’s constant,DH+
ab is the

contribution of the abnormal proton mobility to the proton
diffusion constant, andlp ) 2.55 Å.4

Since the work of Bernal and Fowler,10 the rate-determining
step of prototropic mobility is believed to be connected to single-
water rotation.1,4,11Traditionally the dielectric relaxation time,
τD, of a liquid is associated with molecular rotation time.
Dielectric relaxation and self-diffusion are slower than the
hopping time,τp, related to the abnormal conductivity and show
stronger temperature dependence thanτp. From λH+ ) λH+

ab +
λH+

St , it would be hard to connect the prototropic mobility with
the time scale ofτD.

Several theories suggest that the microscopic relaxation time
is some fraction ofτD. Powels-Glarum model12 implies that,
for water, the microscopic reorientation time is 2τD/3. While
such corrections adjust the time scales ofτp and τD to better
agree with experimental data, they do not completely eliminate
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τp ) lp
2/(6DH+

ab ) DH+
ab ) kBTλH+

ab /(z2F2) (1)
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the discrepancy. Agmon4 used eq 2 to calculate the hopping
time, τp

The “abnormal” part of the proton’s diffusion coefficient is
obtained by subtracting from it the water self-diffusion coef-
ficient, DS.13 The factor3/2 corresponds to the Powel-Glarum
correction. Figure 1 shows proton-hopping times,τp, calculated
from proton mobility data,14,15 λH+, according to eq 2.

While τp agrees with the NMR hopping times, the discrepancy
between it andτD remains large, particularly when compared
with the close agreement betweenη and τD. Moreover, the
temperature dependence of the two processes is different. The
activation energy ofτp is smaller thanτD by more than 4 kJ/
mol. In this study, we wish to connectτp andτD and explain
how τD, which serves as the characteristic solvent motion time
scale, influencesτp.

In a recent paper,16 we calculated the proton-transfer rate
constant from a super photoacid, 5,8-dicyano-2-naphthol (DCN2),
to protic solvents such as methanol and glycerol as a function
of temperature. The temperature dependence of the proton-
transfer rate constant shows unusual behavior. Similar to the
abnormal proton conductivity in water, the activation energy is
not constant. At high temperatures, the activation energy is low,
while at low temperatures, it is high. Also we found that the
inverse of the proton-transfer rate constant at low temperature
has a value similar toτD. Previously,17-20 we found that the
temperature dependence of the proton-transfer rate constant from
several photoacids to solvent is explained as a continuous
transition from nonadiabatic to solvent-controlled limits. In the
nonadiabatic limit, the rate-determining step in the proton-
transfer rate is the proton tunneling from the proton donor (the
acid) to the proton acceptor (a hydrogen-bonded solvent
molecule). In the solvent-controlled limit, the solvent motion,
to reach the generalized curve-crossing solvent configuration,
is the rate-limiting step of the proton-transfer reaction. We found
that the characteristic time for the solvent motion,τS, is a fraction

of the dielectric relaxation time,τS ) τD/b, where b is an
empirical factor. For methanol,b is about 2.τS is longer than
the longitudinal dielectric relaxation time,τL ) (ε∞/εS)τD, where
ε∞ andεS are the high-frequency and static dielectric constants,
respectively.

The abnormal proton conductivity in water arises from the
efficient reaction of proton transfer from H3O+, or larger
hydrogen-bonded complexes such as H9O4

+( Eigen’s complex)21

or H5O2
+(the Zundel’s dimer),22 to a nearby water molecule or

larger hydrogen-bonded complexes. Agmon11 suggested that the
molecular mechanism behind prototropic mobility involves a
periodic series of isomerizations between H9O4

+ and H5O2
+,

the first triggered by the hydrogen-bond cleavage of a second-
shell water molecule and the second by the reverse hydrogen-
bond formation process.

Our calculation of the proton-transfer rate associated with
the abnormal conductivity is based on the nonadiabatic proton-
transfer theory developed by Kuznetsov and his colleagues.23-27

The theory is very similar to the nonadiabatic electron transfer
in its treatment of the involvement of the solvent. The
fundamental assumption is that when a barrier is encountered
in the proton-transfer coordinate, the proton tunnels through the
barrier, thus leading to a nonadiabatic process. In the Kuznetsov
model, when the polar solvent is equilibrated to the reactant,
the proton will not be transferred because of an energy mismatch
in the reactant and product states. Upon a solvent fluctuation,
the energy of the reactant and product states becomes equal,
and it is in this solvent configuration that the proton tunnels
from the reactant well to the product well. Finally, upon solvent
relaxation, the product state is formed.

If the pretunneling and posttunneling configurations are
regarded as real transient intermediates, the process can be
described by a set of chemical equations:28

where SAH+ is the hydronium ion, H3O+ or a larger hydrogen-
bonded complex. SB is a single water molecule or a larger
hydrogen-bonded complex to which the proton is transferred,
SR is the solvent configuration to stabilize the reactants, and Sp

is the solvent configuration of the products. S* is the solvent
configuration to equally stabilize SAH+‚‚‚SB and SA‚‚‚+HSB.

The model that we used to calculate the proton-transfer rate
constant is based on the diffusive propagation of the population
of the reactant, SAH+ + SB, along a generalized solvent
coordinate initially from the equilibrium configuration of the
reactant potential surface toward the crossing point of the
product potential surface. The proton transfer occurs at the
crossing point, and the rate is calculated by a sink term placed
at the crossing point. The sink term includes the solvent velocity
and the Landau-Zener transmission coefficient. Both the
diffusion constant and the Landau-Zener transmission coef-
ficient depend on the dielectric relaxation of the solvent, which
in turn depends on the water temperature.

In the present work, we calculate the proton-transfer rate
constant associated with the abnormal conductivity of an excess
proton in water as a function of 1/T (from supercooled water at
∼244 K up to the boiling point at 373 K). The calculation is
based on the Landau-Zener curve-crossing formulation and its

Figure 1. Proton-hopping times,τp (9), as a function of 1/T, calculated
from proton mobility data,λH+, according to eq 2, along with the
dielectric relaxation times,τD (b).

τp ) 3
2[ lp

2

6(kBTλH+/(z2F2) - DS)] (2)
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k1

k-1
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k2

k-2
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relation to the water characteristic time scale, the water dielectric
relaxation time. We find very good correlation between our
calculations and the experimental results.

The calculation suggests that at high temperatures,T > 290
K, the abnormal proton conductance can be described by a
proton-transfer reaction in the nonadiabatic limit. In that limit,
proton tunneling is the rate-limiting step. For supercooled water,
the proton-transfer rate constant is determined by both the
tunneling rate and the solvent motion.

Modeling of the Proton Abnormal Conductivity

The prototropic conductivity in water arises from a reaction
of proton transfer from H3O+ or larger hydrogen-bonded
complexes to a nearby water molecule or larger hydrogen-
bonded complexes. Agmon11 suggested that the molecular
mechanism behind prototropic mobility involves a periodic
series of isomerizations between H9O4

+ and H5O2
+, the first

triggered by hydrogen-bond cleavage of a second-shell water
molecule and the second by the reverse hydrogen-bond forma-
tion process (“Moses mechanism”). Recently, Parinello and co-
workers29-31 looked at the nature of the hydrated excess proton
in water using ab initio simulations. They found that the hydrated
proton forms a defect in the hydrogen-bonded network with
both H9O4

+ and H5O2
+ dimer structures and the rate of proton

diffusion is determined by thermally induced hydrogen-bond
breaking in the second solvation shell. For simplicity, we shall
describe the process by a conservative traditional scheme:

The reactant is an intermolecular hydrogen-bonded complex
between H3O+ and a water molecule, which serves as a base,
characterized by a hydrogen bond to H3O+ and other solvent
molecules. In water, this specific water molecule, denoted as
SB, has three hydrogen bonds to three water molecules. To form
the product, HSB+, one hydrogen bond of SB to a water molecule
must be broken. Thus, relatively long-range reorganization of
the hydrogen-bond network takes place upon proton transfer to
the water. This complex rearrangement to accommodate the
product is probably the reason for the relatively slow water-
generalized configuration motion, which corresponds to a low-
frequency component in the water dielectric spectrum. Its time
constant,τS, is shorter than the dielectric relaxation time,τD,
but longer thanτL.

According to Kuznetsov and co-workers,23-27 Borgis and
Hynes,32 Bernstein and co-workers,33 and Syage,34 a second
important coordinate should be taken into account. This second
coordinate is the distance between the two heavy atoms, O-H‚‚‚
O in our case. This distance is modulated by a low-frequency
vibrational mode,Q.32,33The proton tunnels through the barrier
from the reactant well to the product well via the assistance of
the low-frequency,Q, mode whenever the solvent configuration
equalizes the energies of the reactant and the product. The
reaction rate constant for the proton transfer of the proton
abnormal conductivity is given bykPT(T) ) 1/τp(T).

Figure 2a shows the temperature dependence of the proton-
transfer reaction rate constant,kPT, calculated from theτp data
shown in Figure 1, as a function of 1/T, and Figure 2b shows
the activation energy for the process.

In a transition-state theory form, the reaction rate constant,
k, is expressed as the average one-way flux along the solvent
coordinate through the crossing pointSq of the two free-energy
surfaces with the inclusion of a transmission coefficient,κ,

giving the probability of a successful curve crossing:

whereS is the generalized solvent coordinate,Ṡ the solvent
velocity, and Θ(Ṡ) the step function. The brackets denote
averaging over the classical solvent distribution normalized by
the partition function of the solvent.

To find the appropriate nonadiabatic transmission coefficient,
κ, for use in this equation, Borgis and Hynes32 used the general
Landau-Zener (LZ) transmission coefficient,κLZ, adapted for
the present problem. The LZ factor, appropriate for a positive
velocity approach to the crossing point, is

Scheme 1
+H2OH‚‚‚OH2 f H2O‚‚‚HOH2

+

Figure 2. Temperature dependence of (a) the proton-transfer reaction
rate constant,kPT (9), calculated from theτp data shown in Figure 1,
along with the inverse of the dielectric relaxation time, 1/τD (b), and
(b) activation energies of the proton transfer (9) and the dielectric
relaxation (b) processes.

k ) 〈ṠΘ(Ṡ)δ(S- Sq)κ(Ṡ,Sq)〉R (3)

κLZ ) [1 - 1/2 exp(-γ)]-1[1 - exp(-γ)] (4)
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where

is the adiabaticity parameter. The expression for the transmission
coefficientκLZ includes multiple passage effects on the transition
probability. V is the coupling matrix element between the
reactant and the product, and∆F is the slope difference of the
diabatic potentials of mean force at the crossing point,∆F )
kS, wherekS is the parabolic potential surface force constant.
Whenγ , 1, one obtains the nonadiabatic limit result

leading to

in which ∆Gq is the Marcus activation free energy

In eq 7,â ) kBT andES is the solvent reorganization energy.
The adiabaticity parameter,γ (see eq 5), depends on three

parameters, the potential surfaces curvature (∆F), the coupling
(|V|2), and the velocity in the vicinity of crossing, (Ṡ). |V|2 is
independent of temperature. The solvent velocity,Ṡ, on the other
hand, strongly depends on the temperature. In our previous
papers,17-20 we suggested thatṠ is related to the slow
components of the solvent dielectric relaxation. We infer that
Ṡ) b/τD, whereτD is the solvent dielectric relaxation time and
b is an empirical factor, dependent on the specific protic solvent,
and its value is between 1 and 4 for the proton-transfer reaction
from a photoacid to several alcohols.

The adiabaticity parameter,γ, is small at high temperatures
and large at low temperatures. For the proton-transfer reaction
from a photoacid to alcohols, we found that the value ofγ as
a function of the temperature increases smoothly from a value
close to 0, that is,γ , 1 (the nonadiabatic limit) to a valueγ
. 1 (the adiabatic limit).

In the adiabatic limit,V . kBT andκLZ ≈ 1, the adiabatic
rate expression is

whereωS is the solvent high frequency and∆GAD
q = ∆GNA

q -
V is the free energy of activation.

Another physical limit is realized whenV e kBT and the
interaction with the environment is strong enough. In this
solVent-controlled limit, the rate is inversely proportional to the
solvent relaxation time (friction) and independent of the
coupling,V. Rips and Jortner35,36derived an expression for the
resonant electron-transfer rate in the solvent-controlled limit.

The preexponent in the solvent-controlled limit depends on the
solvent’s dynamical properties. For the nonresonance cases, the
prefactor in the rate expression (eq 10) only changes by about
20%.

In alcohols, at low temperatures, we found that the preex-
ponential factor in the solvent-controlled limit is related to the
slowest component of the dielectric relaxation time.17-20 We
also found that the temperature dependence of the proton-
transfer rate constant can be explained as a continuous transition
from the nonadiabatic limit at high temperature to the solvent-
controlled limit at low temperature.

Figure 3 schematically shows the model for the calculation
of the abnormal proton conductance. We use two crossing
parabolic potential surfaces representing the free energy of the
reactant and product along the solvent coordinate. For numerical
calculation purposes, we focus our attention on the reactant
single-well parabolic potential surface in the generalized solvent
coordinate. The numerical calculation is based on the diffusive
propagation of the solvent generalized coordinate from the
equilibrium position of the reactant well to the crossing point.
We solve the Debye-Smoluchowski equation (DSE) for the
specific problem. The probability density function,F(S,t), to find
a solvent configuration,S, along the generalized solvent
coordinate at timet obeys the DSE37-39

whereD is a diffusion constant andU(S) is the potential surface.
In the numerical calculation, we used

wherekS ) 2ES andS is the generalized and normalized solvent
coordinate. In this solvent coordinate, the reactant and product
equilibrium positions are atSr ) 0 andSp ) 1, respectively.
For water, we used for the solvent reorganization energyES )
0.3 eV. The calculation’s initial condition is a thermal equilib-

γ ) 2π|V|2
p∆FṠ

) 2π|V|2
pkSṠ

(5)

κLZ = 2γ (6)

kNA ) 2π
p

|V|2( â
4πES

)1/2
exp(-â∆GNA

q ) (7)

∆GNA
q ) 1

4ES
(ES + ∆G)2 (8)

kAD ) (ωs/2π) exp(-â∆GAD
q ) (9)

kSC
ET ) 1

τL
( ES

16πkBT)1/2

exp(-â∆GNA
q ) (10)

Figure 3. Schematic representation of the model for the calculation
of the abnormal proton conductance. LZBC denotes the Landau-Zener
boundary condition at the crossing point between the diabatic potential
surfaces (see text) of the proton donor (reactant) and proton acceptor
(product).

∂F(S,t)
∂t

) D
∂

∂S
e-âU(S) ∂

∂S
eâU(S) F(S,t) (11)

Ur(S) ) 1
2
kSS

2

Up(S) ) 1
2
kS(S- SP)

2 (12)
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rium of the probability density function,F(S), of the solvent
coordinate of the reactant and is given by a Gaussian distribution
centered at the minimum of the reactant well.

Here, 〈S2〉 is the mean square displacement, with a Gaussian
width, which is determined by the relationU(〈S2〉1/2) )
x2ESkBT. The diffusion constant,D, is related to the solvent
characteristic time,τS ) τD/b, and the widths of the Gaussian
initial distribution,38 D ) 〈S2〉/(2τS). For ES ) 0.3 eV, 〈S2〉 =
0.16 at room temperature. We estimate∆Gq from the temper-
ature dependence of the abnormal conductivity close to the
boiling point at 373 K (the nonadiabatic limit). For water, we
estimate that∆Gq ≈ 2.5 kJ/mol (see Figure 2b). The position
of the activation barrier is determined by∆Gq ) U(Sq) andSq

) 0.22.
The next step in the calculation is based upon solving the

DSE of a single parabolic potential surface with the relevant
initial and boundary conditions. To solve it, we used a graphic
program, SSDP (version 2.61) of Krissinel and Agmon,40 with
appropriate boundary condition based on inclusion of the
Landau-Zener transmission coefficient,κLZ (eq 4), in the sink
term at the crossing point between the reactant well and the
product well. The boundary condition at the crossing point is
given by

The boundary condition (eq 14) that we chose has similar
parameters to the expression for the rate constant expressed in
a transition-state theory form (eq 3). The average solvent
velocity, 〈Ṡ〉, is proportional to 1/τD. In eq 14, it is replaced by
D. From the random walk definition,D is proportional to the
random walker average speed.k0 is a numerical factor,
independent of temperature, and is determined by fitting the
numerical solution to the experimental proton-transfer rate
constant at high temperatures (given in Table 1).κLZ appears
in both expressions.

Finally, the proton-transfer rate constant is obtained from the
slope of the plot of ln(F) versus time. Figure 4 shows the
experimental results along with the calculated results using the
DSE for the proton-transfer reaction from H3O+ to water. The
relevant parameters for the calculation using the diffusion model

are given in Table 1 with the inclusion of the parameters for
our previous calculations of proton transfer from a photoacid
to methanol.16

The free adjustable parameters in the calculation arek0, γ′,
andb,

From the best fit, we find thatγ′ ) 4.5 × 1010 s-1. In the
discussion section, we evaluateγ′ from eq 7 and the experi-
mental data using some assumptions.τS ) τD/b and b ) 9.2
from the best fit to the experimental data for the rate of proton-
transfer associated with the abnormal proton conductivity. Figure
5 showsκLZ(T) as a function of 1/T for the proton-transfer
reaction associated with the proton abnormal conductivity in
water (circles) and for the proton-transfer reaction from the
photoacid DCN2 to methanol (squares). For the abnormal proton
conductivity, we findκLZ ≈ 0.5 at 244 K, the lowest temperature
of available mobility data. At 244 K,τS ≈ 8 ps, whileτD at
this temperature is about 70 ps.

In our previous papers,17-20 we used the mean-first-passage
expression to bridge between the nonadiabatic limit and the
solvent-controlled limit to obtain the rate expression:

wherekPT is the overall rate andkNA andkSC are given by eqs
7 and 10. We found that this approximation provides a good
estimate for the proton-transfer rate constant in the intermediate
range in which both the tunneling and the solvent motion
influence the reaction rate. In Figure 4, we also see the plots of
kNA(T) andkSC(T) as a function of 1/T, and the solid line is a
calculation based on the mean-first-passage expression (eq 16).
The activation energy of both rate constants is low,∆Gq ) 2.5
kJ/mol. WhilekNA(T) has mild temperature dependence,kSC(T)

TABLE 1: Relevant Parameters for Model Calculationsa

τD(298K)
[ps]b

k0

[Å/ns]a,c γ′d
D(298K)
[cm2/s]a,e bg

MeOHf 50 1.35× 103 1.0× 109 3.2× 10-7 2.1
water 8 1.30× 103 4.5× 1010 1.25× 10-5 9.2

a For calculation with the SSDP program,40 we used the solvent
coordinate in length dimension of Å. Solvent reorganization energy
ES ) 0.3 eV. Activation energy∆Gq ) 0.024 eV. Crossing point
position between the two diabatic potential surfaces, Sq ) 0.22 Å. We
placed the minima of the reactant and product potential surfaces at 0
and 1 Å, respectively;Sr ) 0 andSp ) 1 Å. b Dielectric relaxation
time at 298 K.c k0 is a numerical factor, independent of temperature
and determined by fitting the numerical solution to the experimental
proton-transfer rate constant at high temperatures.d γ′ is a free
adjustable parameter;γ ) γ′τS(T) (see text).e The diffusion coefficient
is calculated byD ) 〈S2〉/(2τS),38 〈S2〉 ) 0.16 is the mean square
displacement,U(〈S2〉1/2) ) x2ESkBT andU(S) ) 1/2kSS2, wherekS )
2ES. f Parameters for the proton-transfer rate from DCN2 to methanol
are taken from ref 16.g b is a free adjustable parameter;τS ) τD/b.

Feq(S) ) 1

(2π〈S2〉)1/2
exp(- S2

2〈S2〉) (13)

∂F
∂S|S)Sq

) -k0κLZDF(Sq,t) (14)

Figure 4. The proton-transfer rate deduced from abnormal conductiv-
ity, along with the relevant parameters, as a function of 1/T: (4) the
experimental results; (b) the model calculation; (s) the rate calculated
by the equation (eq 16); (- ‚ ‚) the longitudinal dielectric relaxation
rate, 1/τL; (‚‚‚) the solvent-controlled limit rate constant,kSC; (- - -)
the nonadiabatic rate constantkNA; (- ‚ -) the inverse dielectric
relaxation time 1/τD.

γ ) γ′τS(T) (15)

kPT(T) )
kNA(T)kSC(T)

kNA(T) + kSC(T)
(16)
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has non-Arrhenius temperature behavior and follows ap-
proximately 1/τS(T), whereτS(T) ) τD(T)/b (see eq 10).

The model restricts the proton-transfer process to be stepwise.
The proton moves to the adjacent hydrogen-bonded solvent
molecule only when the solvent configuration brings the system
to the crossing point according to Kuznetsov model.23-26 In the
model, the overall proton-transfer time is a sum of two times,
τ ) τ1 + τ2, whereτ1 is the characteristic time for the solvent
reorganization,τS, andτ2 is the time for the proton to pass to
the acceptor molecule.

Discussion

Abnormal proton mobility in water is traditionally thought
to be governed by water molecule rotation. It is customary to
subtract from the measured proton mobility a hydrodynamic
part of H3O+ motion, as estimated from water self-diffusion or
as K+ mobility.14 The difference, known as “prototropic” or
abnormal protic mobility, represents the part due to a proton-
transfer mechanism. The validity of this procedure has been
questioned by Agmon.41 He compared water rotation times with
proton-hopping times, calculated with and without the subtrac-
tion of the hydrodynamic part (eqs 1 and 2). He concluded that
the hydrodynamic proton mobility is considerably smaller than
previously believed because the H3O+ is nearly immobilized
by extrastrong hydrogen bonds to first-shell water ligands,
estimated to be about 8 kJ/mol stronger than bulk hydrogen
bonds. From data analysis, he finds that water rotation is slower
than proton hopping below 20°C and has a hydrodynamic
component to its activation energy. The proton mobility is not
governed by water rotation as suggested by Bernal and Fowler10

but rather by hydrogen-bond dynamics.
Voth and co-workers,42 using an empirical valence bond

(EVB) methodology, found statistically clear evidence of the
proposed “Moses mechanism” for proton transport in liquid
water. The mechanism suggests first a hydrogen-bond cleavage
in the second solvation shell, which subsequently enables the
exchange of a proton between the hydronium and a neighboring
water molecule. Only after this transfer is a hydrogen-bond

formation observed on the proton-donor oxygen, as it returns
to a more water-like environment.

Parinello and co-workers29-31 looked at the nature of the
hydrated excess proton in water using ab initio simulations. They
found that the hydrated proton forms a defect in the hydrogen-
bonded network with both H9O4

+ and H5O2
+ dimer structures

and the rate of proton diffusion is determined by thermally
induced hydrogen-bond breaking in the second solvation shell.

In this paper, we calculate the proton-transfer rate constant
associated with the abnormal proton conductance in water (as
deduced from eq 2) as a function of temperature and compare
it with the corresponding values of the dielectric relaxation time,
τD. In our previous studies, we found that the temperature
dependence of the proton-transfer rate constant from a photoacid
to alcohols exhibits non-Arrhenius behavior. We found that, at
low temperatures, the proton-transfer rate constant follows the
inverse ofτD, kPT ) b/τD, whereb is an empirical factor and its
value for methanol is∼2. The abnormal proton conductance
exhibits similar temperature dependence. For this reason, we
used a similar approach to explain its peculiar temperature
dependence in the current paper.

Conventional Landau-Zener (LZ) theory43,44 provides an
accurate description of the curve-crossing process in the absence
of an interaction with the environment. It is applicable if the
motion in the vicinity of the crossing point is nearly uniform
(ballistic).45,46 The interaction of the particle with the environ-
ment causes complications. Rips and Pollak47 showed that
variational transition-state theory (VTST) allows for the iden-
tification of a collective coordinate along which the dynamics
in the curve-crossing region is maximally separated from the
remaining solvent-induced dynamics (quasiballistic). The prob-
lem of calculation of the transition rate can then be handled
using conventional LZ theory.

Our model calculations show that, at high temperatures (the
nonadiabatic limit), the generalized water configuration motion
is fast, the activation energy is sufficiently low, and the proton-
tunneling rate is the rate-determining step. The LZ transmission
coefficient is small and hence limits the rate of population
transfer to the product (crossing to the product diabatic potential
surface, see Figure 3). From the rate constant at high temper-
atures (the nonadiabatic limit, eq 7), we determine the preex-
ponential factor and the activation energy of the process.

The preexponential factor is mainly determined by the value
of the coupling matrix element. The transmission coefficient
from the reactant well to the product well at the crossing point
(at the top of the barrier) is given by the Landau-Zener
transmission coefficient (eq 4). The adiabaticity parameter,γ
(eqs 5a and 12), is determined by three parameters,|V|2, ∆F,
and Ṡ. |V|2 can be evaluated from the experimental high-
temperature rate constant. We find that the preexponential factor
is 1.2 × 1012 s-1. From the preexponential expression, we
evaluateV to be∼50 cm-1 and (2π/p)|V|2 = 5 × 10-8 J s-1.
∆F ) kS wherekS is the mean force constant, which is related
to the solvent reorganization energy,kS ) 2ES. For water, we
used the reorganization energyES ) 0.3 eV. To quantitatively
evaluate the adiabaticity parameter,γ ) γ′τS, we calculateγ′
) (2π/p)|V2|(1/∆F) = 2 × 1011 s-1. We find that the calculated
value ofγ′ is larger by about a factor of 4 than the value that
we used to obtain the best fit to the experimental data in the
actual calculation of the temperature dependence of the proton-
transfer rate constant associated with the abnormal proton
conductivity shown in Figures 2 and 4.

In our previous work,16 we found for the proton-transfer rate
from the super photoacid DCN2 to methanol or glycerol that,

Figure 5. The Landau-Zener transmission coefficient,κLZ(T), as a
function of 1/T for the proton-transfer reaction associated with the
proton abnormal conductivity in water (b) and recent calculation (ref
16) for the proton-transfer reaction from the photoacid DCN2 to
methanol (9).
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at a low enough temperature (the solvent-controlled limit), the
diffusive propagation of the solvent configuration toward the
crossing region is slow compared to the tunneling rate. The LZ
transmission coefficient is close to one because the average
solvent velocity is slow (eq 5), and the rate-determining step is
the transport motion of the probability density function of the
solvent configuration itself, which appears also in the sink term
(eq 14). The activation energy of the process,∆Gq, remains
small but the diffusion constant (which is related to the average
velocity of the solvent configuration) exhibits large temperature
dependence. In the solvent-controlled limit rate expression (eq
10), the preexponential factor of the electron-transfer rate
constant is determined byτL. From our analysis and data fit,
we find the average solvent velocity at the crossing point,Ṡ)
b/τD, whereb is an empirical factor.

From previous studies on alcohols and also in this study, we
find that the solvent characteristic time for proton transfer,τS

) τD/b, is in the rangeτD > τS > τL, whereτL ) (ε∞/εS)τD is
the longitudinal dielectric relaxation time. For methanol, we
found the value of the empirical factorb ≈ 2.1, and for the
abnormal proton conductivity in water, we found a larger value,
b ) 9.2. The values ofτL for water and methanol can be
estimated from the value of the low- and high-frequency
dielectric constants of water and methanol,εS andε∞, relevant
for the proton-transfer process. The static dielectric constants
of the two solvents areεS

water ) 78 andεS
MeOH ) 32 at 298 K.

The description of the dielectric relaxation literature results for
water requires a superposition of two Debye processes.48-50 The
high-frequency dielectric constant of the slower process is about
ε ) 6.5, and the dielectric relaxation times range from∼6 ps
at 310 K to 18 ps at 273 K. The faster process that contributes
the second Debye relaxation time is of about 1 ps, and its high-
frequency dielectric constant is about 4.5. The ratio for the slow
process,εS/ε∞, is 12, while we find from the fitting of the
abnormal conductivityb ) 9.2. τL

293K ) 0.8 ps andτS in our
calculations is about 1.2 ps, about 50% longer thanτL. Garg
and Smyth51 found that the spectrum of dielectric relaxation of
methanol shows three Debye dispersion regions. Jordan et al.52

fitted their dielectric relaxation data for methanol employing
the Cole-Cole distribution and foundε∞

MeOH ) 4.7 at room
temperature; the ratioεS/ε∞ is 6.8. For DCN2 in methanol, we
find b ) 2.1. At 293 K,τD

MeOH ≈ 60 ps,τS
MeOH ≈ 30 ps, and

τL
MeOH is about 9 ps. The empirical factor,b, that we find by

fitting the experimental data for proton transfer in water and
methanol is somewhat smaller than the ratioεS/ε∞, which
appears in theτL definition.

In the calculation of the abnormal proton conductivity by the
proton-transfer model based on the Landau-Zener curve-
crossing formulation, we find that at 373 K, the boiling point
of water, the reaction is in the nonadiabatic regime,κLZ ) 0.01.
At room temperature,κLZ increases slightly and is about 0.05,
which means that the reaction is still in the nonadiabatic regime.
The rate-limiting step is the proton motion, while the dynamics
of the solvent configuration is fast and does not limit the rate
of proton transfer. At 244 K, the adiabaticity parameter increases
significantly, γ ) 0.3 andκLZ ≈ 0.5. Thus, for supercooled
water, T ) 244 K, the rate constant is determined by the
dynamics of both coordinates, the solvent configuration and the
proton tunneling. As discussed above in the case of proton
transfer from DCN2 to alcohols,16 we were able to observe a
continuous transition from the nonadiabatic regime to the
solvent-controlled limit by changing the temperature from high
to low. In Figure 5, we also plot the Landau-Zener transmission
coefficient as a function of 1/T for our recent data16 of the

proton-transfer reaction from DCN2 to methanol (squares). As
seen,κLZ reaches the value of 1, the solvent-controlled limit, at
about 170 K, close to the freezing point of methanol. For the
proton transfer of DCN2 in glycerol, the midtransition point of
the Landau-Zener transmission coefficient,κLZ ) 0.5, occurred
at 340 K while, for methanol, it occurred at 200 K. In the case
of proton conductivity in an aqueous solution, even in the
supercooled condition of 244 K, the reaction rate constant is
mostly determined by the proton tunneling rate and the solvent
dynamics limit the reaction rate to a lesser extent.

From our calculation, it arises that, up to about room
temperature,∼290 K, the abnormal conductivity is almost
independent of the generalized solvent configuration motion
because it is faster than the tunneling rate. Only at lower
temperatures, solvent motion partially controls the proton-
transfer process and the value of the rate constant is influenced
by it. The fast proton-hopping time,τp (1.5 ps at room
temperature), slows at lower temperatures and is about 8 ps at
244 K. The experimental activation energy of the abnormal
conductivity increases by a factor of approximately 5 because
the relevant solvent motion that governs the proton-transfer
process strongly depends on the temperature of supercooled
water.

Summary

Proton conductivity in aqueous solutions has been known for
more than 150 years to be much larger than that of other cations.
The abnormal proton conductivity in water arises from the
efficient reaction of the proton transfer from H3O+, or larger
hydrogen-bonded complexes such as H9O4

+ (Eigen’s complex)21

or H5O2
+ (the Zundel’s dimer),22 to a nearby water molecule

or larger hydrogen-bonded complexes. Agmon11 suggested that
the molecular mechanism behind prototropic mobility involves
a periodic series of isomerizations between H9O4

+ and H5O2
+,

the first triggered by hydrogen-bond cleavage of a second-shell
water molecule and the second by the reverse hydrogen-bond
formation process. In this study, we calculated the proton-
transfer rate constant associated with prototropic mobility in
water as a function of temperature. The prototropic mobility in
aqueous solution exhibits non-Arrhenius behavior in the tem-
perature range 240-373 K. At high temperature, the activation
energy is small, while at low temperatures (at supercold water),
it is large. We also found this behavior in the proton-transfer
reaction from several photoacids to water and also in other protic
solvents such as monols, diols, and glycerol. We found a strong
correlation between the proton-transfer rate constant at low
temperatures and the dielectric relaxation time,τD. The model
that we used to calculate the proton-transfer rate constant is
based on diffusive propagation of the reactant population along
a generalized solvent coordinate of the reactant potential surface
toward the crossing point with the product potential surface.
The proton transfer occurs at the crossing point, and the rate is
calculated by a sink term placed at the crossing point. The sink
term includes the solvent velocity and the Landau-Zener
transmission coefficient,kLZ, which depends on the adiabaticity
parameter,γ. The adiabaticity parameter,γ (see eq 5), depends
on three parameters, the difference between the reactant and
product potential surfaces curvature (∆F), the quantum tunneling
coupling matrix element (|V|2), and the velocity of the general-
ized solvent coordinate in the vicinity of crossing (Ṡ). |V|2 is
independent of temperature. The solvent velocity,Ṡ, on the other
hand, strongly depends on the temperature. In our previous
papers,17-20 we suggested thatṠ is related to the slow
components of the solvent dielectric relaxation. We infer that
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Ṡ) b/τD, whereτD is the solvent dielectric relaxation time and
b is an empirical factor, is dependent on the specific protic
solvent. Both the diffusion constant and the Landau-Zener
transmission coefficient depend on the dielectric relaxation of
the solvent. The calculations are compared with the proton
mobility data as a function of temperature. We find very good
agreement between the calculation of the proton transfer rate
associated with the prototropic mobility at all temperatures and
the experimental measurements of proton conductivity as a
function of temperature. The calculations indicate that at high
water temperatures the rate-limiting step is proton tunneling
while at low temperatures the solvent motion partially controls
the proton-transfer rate.
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