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A theory for electron transfer through a donor-bridge-acceptor system is described that involves tunneling
and hopping-like transfers and an intermediate regime. The theory considers how a delocalization of electronic
states and static and dynamic disorder in electronic energies influence the charge transfer rate and is used to
study experiments on hole transfer through DNA. While an exponential distance dependence of the yield of
hole trapping is observed experimentally for small bridges, the yield for long bridges is reported to be almost
distance-independent. For long bridge lengths, for which thermally activating hopping dominates over tunneling,
the model considers two competing channels, a hopping via localized states and a transfer through partly
delocalized states. The variable-range hopping mechanism and the delocalized states aspect of the theory are
used to interpret the flat rather than a slow decrease of yield with increasing distance reported in experiments
with long bridges.

I. Introduction

In experiments on charge transfer through a DNAπ-stack, a
wide range ofâ-values, values which characterize the exponent
of the decay of the rate constant with distance, have been
measured. In pioneering experiments of the Barton group,1,2 â
values as small as 0.1 Å-1 were reported. Similarly smallâ
values were reported by Schuster et al.3,4 and were discussed
in terms of a phonon-assisted polaron hopping model. Other
experiments5-11 yielded larger values up toâ ) 1.4 Å-1, for
example, in Fukui and Tanaka11 and indicated the superexchange
transfer mechanism well-known from electron transfer in
proteins.12

It was understood from earlier theories13,14(see also the recent
work in ref 15 and 16) that depending on the energetics of the
system studied, either the superexchange mechanism or the
hopping mechanism dominate the observed electron/hole trans-
fer, leading to the strong or weak distance dependence of the
rate constant, respectively. Numerical calculations applying a
Redfield relaxation model were performed13 on a model donor-
bridge-acceptor system. The latter was coupled to one effective
high-frequency mode, of which the potential energy minimum
was shifted by the reaction. It was found that for large bridge
lengths the rate constant becomes weakly dependent on distance
and the transfer occurs in a hopping-like mechanism whereas
for shorter bridges the tunneling dominates and a strong
exponential distance dependence for the rate was obtained. The
same result was obtained in theoretical studies performed using
a Liouville pathway correlation-function approach.14,17The latter
included the coupling of the electron to a manifold of vibrational
modes and contained the reorganization of a whole set of nuclear
coordinates involved in the electron transfer.14

Experimental evidence on the critical role of the energetics
of the system was provided by Meggers et al.,9 who demon-
strated that the holes for short bridge lengths of adenines (A’s)

will tunnel through the A’s and hop between guanines (G’s),
an experiment that prompted extensive theoretical analyses.18-21

The application of ultrafast time-resolved spectroscopy made
it possible to resolve the charge-transfer dynamics in real time.
In experiments on an ethidium system,22 a distance-independent
rate was found for hole transfer between a photoexcited ethidium
and a deazaguanine for bridges of two, three, and four bases.
There was also a decrease of the amplitude of the pump-probe
signal for longer bridges, which was explained by static disorder.
This finding shed some light on earlier frequency domain
experiments23 on the same system, which had yielded aâ ≈
0.1; the time-domain experiment suggested that thisâ value
does not contain information on the intrinsic distance depen-
dence of the rate constant per se but rather reflects the disorder.
Under such conditions, the slow step is not the transmission
along the chain of base pairs.

In time-domain experiments on DNA hairpins, an exponential
distance dependence of the rate constant of hole transfer between
a stilbene and a guanine was found with aâ ≈ 0.7.7,8 A similar
â value was obtained in recent time-resolved experiments on
an aminopurine (Ap) system10 for short bridge lengths. The rate
constant between Ap and G in Ap(A)NG became distance-
independent forN > 3, an indication of a change from
superexchange to hopping-like transfer. Bixon and Jortner24

explained an experiment25 on hole transfer between guanine
triplets in terms of thermally induced hopping.

Recently, in another experiment26 by the Giese group,
experimental evidence for the presence of both transfer mech-
anisms was obtained in measurements of the distance depen-
dence of the yield of DNA cleavage triggered by hole transfer.
As expected, for short bridges (N < 3) the superexchange
mechanism dominates and the relative yield of DNA cleavage
decreases exponentially (â ≈ 0.7) with distance. For bridge
lengthsN > 3, a transition occurs in which the relative yield
becomes almost distance-independent. As shown below, the
latter observation is not explained simply in terms of thermally
activated nearest-neighbor hopping through the bridge. That
result served as a stimulus for the present paper, although the
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theory is intended to be of more general use than just to explain
a certain experiment on hole tranfer in DNA.

The present theory combines different aspects of recent14,27,28

theoretical approaches: The Hamiltonian and the description
of the dissipative hole transfer is similar to those used by Okada
et al.,14 though the execution of the theory is different. Whereas
Okada et al.14 used a projection operator technique to obtain
the rate, we use simple time-dependent perturbation theory. Also,
Okada et al. used a Brownian oscillator model for the description
of the electron-vibrational coupling, and here we use a simple
harmonic oscillator approach. The Brownian oscillator ap-
proach29 describes dissipation of electronic energy by a damping
of the vibrational motion of a few primary harmonic oscillators
that couple to the electronic states. The damping results from a
coupling between the primary and a large number of bath
oscillators. In the harmonic oscillator approach, all oscillators
couple directly to the electronic states and dissipation occurs
because of destructive interference of the many harmonic
modulations of electronic energies. Georgievskii et al.30 noted
that an effective description in terms of harmonic oscillators
can be found within an approximate cumulant expansion even
for a strongly anharmonic system. If the number of primary
oscillators becomes very large and the damping by the bath
oscillators becomes zero, the two approaches are formally
identical. We use this limit to show the equivalence of the
expressions of the rate constant derived here with the earlier
result.14 The present result appears simpler than the earlier one.
In the application, we investigate here the effect of static disorder
that was not considered in ref 14. Very recently,27 Berlin et al.
gave an explanation of the Giese experiment26 in terms of a
phenomenological model that used a description of the bridge
in terms of a tight-binding band. The present treatment includes
in addition a description of dynamic and static disorder of this
band and yields a phenomenon that has been termed variable-
range hopping.31 Variable-range hopping was applied as a very
useful concept by Yu and Song28 in their treatment of the
measured temperature dependence of electrical conductivity in
DNA.32

The paper is organized as follows. The kinetic scheme is
given in section 2 for a charge transfer between a single guanine
(G) and three adjacent guanines (GGG) connected by a bridge
of adenines (A). An analytical formula for the hopping transfer
is derived and examined, taking into account thermal-activated
hopping through nearest neighbors in the bridge. The model is
used to motivate the need for a more general theory, based on
variable-range hopping instead of only nearest-neighbor hop-
ping, which is then formulated. A microscopic rate constant is
derived in section 3 for a transition between delocalized
electronic states. Account is taken of the local coupling to
effective harmonic oscillators, described by a spectral density.
The latter is extracted from an independent quantity, the
absorption and fluorescence spectra of ethidium intercalated in
DNA. The model is applied in section 4 and compared with
experimental data26 on yields for cleavage of DNA. The results
are discussed in section 5.

II. Kinetic Scheme and Phenomenological Model for the
Giese Experiment

In the experiment of Giese et al.,26 a single guanine is oxidized
following a continuous UV irradiation. The reaction scheme is
described in Figure 1, in which the rate constant for hole
injection into a guanine is denoted byP. After injection, the
hole may be either trapped by an irreversible reaction with water,
leading to the productPG and described by a rate constantkd,

or transferred to a sink, GGG, and trapped there with a rate
constantk′d (as noted in ref 9, only about 10% of the injected
holes react irreversibly with water and can be detected, whereas
the major part of oxidized G and GGG is repaired by
deprotonation and subsequent H-abstraction. Therefore, a critical
assumption in the interpretation of these types of experiments
is that the ratio of the irreversible reaction with water and repair
does not depend on the distance between G and GGG). In the
experiment, the productsPG andPGGGare measured for different
bridge lengths, that is, the numberN of intervening A’s in
G(A)NGGG. The relative yieldPGGG/PG depends on the rate of
hole transfer between G and GGG across theN A’s. As noted
earlier, two distinctly different pathways contribute to this rate
constant. The hole may tunnel directly from G to GGG as
described in Figure 1 by the rate constantk3, or thermally
activated, it may hop through the bridge, a process that is
described in Figure 1 by the rate constantsk1, k-1, kB, k2, and
k-2. The kinetic equations for the scheme in Figure 1 are given
by

whereP(t) describes the rate of production ofG by a pump
pulse or by continuous illumination. In the latter case,P(t) )
P0 so does not depend on time. When a steady-state is used for
the An’s (dAn/dt ) 0), the above scheme becomes

where the effective hopping rate constants,kh
eff(N) andk-h

eff (N),
are obtained (Appendix A) as

Figure 1. Scheme of hole transfer investigated in Giese’s experiment.26

dG
dt

) P(t) - (k1 + k3 + kd)G + k-1A1 + k-3GGG (1a)

dA1

dt
) k1G - (k-1 + kB)A1 + kBA2 (1b)

dAn

dt
) kBAn-1 - 2kBAn + kBAn+1, n ) 2 to (N - 1) (1c)

dAN

dt
) kBAN-1 - (kB + k2)AN + k-2GGG (1d)

dGGG
dt

) k3G + k2AN - (k-2 + k-3 + k′d)GGG (1e)

dG
dt

) P0 - (k3 + kd + kh
eff(N))G + (k-3 + k-h

eff (N))GGG
(2a)

dGGG
dt

) (k3 + kh
eff(N))G - (k-3 + k-h

eff (N) + k′d)GGG (2b)
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and

with the equilibrium constantK

Here,∆GG,GGG
0 denotes the standard free energy difference for

hole transfer from G to GGG, which in principle could depend
on N.

In the experiments of Giese et al.,26 there was a steady state
for G and GGG during the continuous optical excitation
generating the hole injection. The relative yieldR of products
PGGG/PG in the scheme in Figure 1 is then obtained from eq 2b
as

When the trapping rate constantk′d is small compared to the
back transfer rate constant,k-3 + k-h

eff (N), the above yield
reduces to (k′d/kd)/K, assumingk3 ) Kk-3. It then becomes
distance-independent if∆GG,GGG

0 and (k′d/kd) do not depend on
distance. Such a behavior can be identified by first noting the
relative yieldsR for the smaller bridge lengthsN. The back
transfer rate constantk-3 decreases exponentially withN because
superexchange dominates the rate at short distances, and the
trapping ratek′d is expected to be relative insensitive toN. In
the experiment of Giese et al.,26 the rate was not distance-
independent at short bridge lengths, so the trapping ratek′d can
be assumed to be larger than the back transfer rate constant,
k-3 + k-h

eff (N), rather than smaller. The relative yieldR in this
case becomes

We consider next the hopping regime of the transfer, which
dominates the transfer rate forN > 3 in the experiment of Giese
et al.26 In this case, the superexchange rate constantk3 in eq 7
can be approximately neglected, and the relative yieldR
becomes

where

A test of eq 8 is given in Figure 2. A fit to the data atN )
5 shows how the curve ofR(N) vs N satisfies the data for
different values ofx. It is seen thatx ) 5 gives agreement for
intermediate values ofN but fails forN ) 16, whereasx ) 30
describes the experimental yield forN ) 5 andN ) 16 but
deviates for the intermediate bridge lengths. Given the smallness
of the experimental values forN > 3, some caution in the

interpretation of the single experimental value atN ) 16 is
necessary. Experimental data in the rangeN ) 9-15 would be
helpful, as would similar experiments in other laboratories
covering the wide range ofN. Measurements of other products
of the reaction of the G+ and of the GGG+ with water would
be also particularly desirable (only 10% of the total products
are measured).9 In any event, valuesx > 1 mean that the hopping
inside the bridge is faster than hopping from the bridge to G or
than hopping from the bridge to GGG or than both, for example,
as seen from the definition ofx in eq 9. We consider next
variable-range hopping as a mechanism for explaining the results
in Figure 2. We return to possible other origins of thisx . 1
behavior in the Discussion section.

III. Theory

A nearest-neighbor tight-binding Hamiltonian14 used in the
following includes the local coupling of electrons and vibrations.
The Hamiltonian is expressed in terms of the local hole states,
|i〉, as a basis, where the indexi denotes the site at which the
hole resides:

Ei is the local energy of the hole state at sitei and Vi,i+1 is
〈i|V|i + 1〉, whereV is an interaction potential. The nuclear
environment is described by a set of harmonic oscillators,
Tnucl, denoting the kinetic energy of the nuclei (e.g., ref 33).Qê

and Pê are dimensionless nuclear coordinates and mo-
menta related to the spatial coordinatesqê and their conjugate

momentapê via Qê ) qêx2µêωê/p and Pê ) pêx2/(µêωêp).
The mass and frequency for theêth oscillator are denoted by
µê and ωê, respectively. The electronic energiesEi, as well
as the interactionsVi,i+1, depend on the nuclear coordinates
{Q}. The latter are then related viaQê ) Cê

† + Cê andPê )
i(Cê

† - Cê) to creation and annihilation operator of vibrational
quanta.33

The energies and couplings are expanded around the equi-
librium position of nuclei, defined here as the configuration of
nuclei in the absence of a charge carrier. An expansion of up
to first-order inQê yields

kh
eff(N) ) kB

k1

k-1

N - 1 +
kB

k-1
+

kB

k2

(3)

k-h
eff (N) ) kh

eff(N)/K (4)

K ) exp(-
∆GG,GGG

0

kT ) (5)

R≡ PGGG

PG
)

k′d
kd

GGG
G

)
k′d
kd

k3 + kh
eff(N)

k-3 + k-h
eff (N) + k′d

(6)

R )
k3 + kh

eff(N)

kd
(7)

R ) a
N - 1 + x

, N > 3 (8)

a ) (kB/kd)(k1/k-1) x ) kB/k-1 + kB/k2 (9)

Figure 2. Yields R ) PGGG/PG calculated from eq 8 forN g 3 for
different valuesx in comparison to experimental values.26 The parameter
a in eq 8 has been chosen to give agreement with the experimental
yield for N ) 5.

H ) ∑
i

Ei({Q})|i〉〈i| + ∑
i

Vi,i+1({Q})(|i〉〈i + 1| +

|i + 1〉〈i|) + ∑
ê

pωê

4
(Qê

2 + Pê
2) (10)
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The delocalized electronic states|M〉 ) ∑ici
(M)|i〉 are defined

with respect to the equilibrium position of nuclei in the lowest
electronic state. The Schro¨dinger equation is solved,

where the HamiltonianH0 is

In the proposed eigenstate representation, the Hamiltonian eq
10 becomes

where the coupling constantgê(M,N) is given in terms of the
modulation of electronic energies,∆Ei(ê), and intersite coup-
lings, ∆Vi,i+1(ê), and the eigencoefficients,cj

(K), of extended
states

Next, the potential energy surfaces (PES) for the extended
electronic states are constructed by first rewriting the Hamil-
tonian in eq 14 as

with the PES minimum at

where

is the solvation energy of the Mth extended electronic state.
Until now, both descriptions, the one using local states in eqs
10 and 11 and the one in eq 16, are completely equivalent.
However, when rate constants are calculated in the following a
critical assumption will be that the nuclei are initially relaxed
either in potential energy surfaces of extended states|M〉 or in
that of local states|i〉. We consider first the case that the initial
relaxation occurs into delocalized electronic states. That is, for
a transfer between two different delocalized states M and N, it
is assumed that before the transfer occurs the initial extended
electronic state M is vibrationally relaxed. The equilibrium
position of nuclei for the two states is different because of the

coupling to different local vibrational modes and a different
degree of electronic delocalization.

A. Rate of Hole Transfer Between Extended Electronic
States.A statistical operatorŴ(t) is introduced and expanded
with respect to the basis|M〉 defined in the previous section.
The occupation probabilityPM of the state|M〉 is given as

and the trace is over the vibrational degrees of freedom. A
perturbation theory second order in the couplingV̂MN between
different extended states M and N

is used in Appendix B to derive a master equation for the
populationsPM(t):

where the rate constantkMfN is

The pωMN in eq 22 denotes an energy difference between two
vibrationally relaxed delocalized electronic states (eq 17)

Weq(M) is the equilibrium statistical operator of the vibrations
in the Mth PES, andUM(t) is the time-evolution operator of the
Mth PES

with

The rate constantkMfN in eq 22 obeys detailed balance,

(This relation can be obtained by substitutingt by -t - (ip/
(kT)) in eq 22, a substitution, which corresponds to an
interchange of the symbols M and N.)

Because harmonic PES are assumed, the rate constantkMfN

in eq 22 can be calculated without further approximation. The
new result, obtained in Appendix B, is

where the time-dependent functions

Ei({Q}) ≈ Ei
(0) + ∑

ê

∆Ei(ê)Qê

Vi,i+1({Q}) ≈ Vi,i+1
(0) + ∑

ê

∆Vi,i+1(ê)Qê (11)

H0|M〉 ) EM|M〉 (12)

H0 ) ∑
i

Ei
(0)|i〉〈i| + ∑

i

Vi,i+1
(0) (|i〉〈i + 1| + |i + 1〉〈i|) (13)

H ) ∑
M

EM|M〉〈M| + ∑
MN

∑
ê

pωêgê(M,N)Qê|M〉〈N| +

∑
ê

pωê

4
(Qê

2 + Pê
2) (14)

pωêgê(M,N) ) ∑
i

∆Ei(ê)ci
(M)ci

(N) +

∆Vi,i+1(ê)(ci
(M)ci+1

(N) + ci+1
(M)ci

(N)) (15)

H ) ∑
M

[E′M + ∑
ê

pωê

4
((Qê + 2gê(M,M))2 + Pê

2)]|M〉〈M| +

∑
MN

M*N

∑
ê

pωêgê(M,N)Qê|M〉〈N| (16)

E′M ) EM - λM (17)

λM ) ∑
ê

pωêgê
2(M,M) (18)

PM(t) ) trvib{Ŵ(t)|M〉〈M|} ) trvib{ŴMM(t)} (19)

V̂MN ) ∑
ê

pωêgê(M,N)Qê (20)

d
dt

PM(t) ) -kMfNPM(t) + kNfMPN(t) (21)

kMfN ) 1

p2∫-∞

∞
dt eiωMNt trvib{UM

† (t)V̂MNUN(t)V̂NMWeq(M)}
(22)

ωMN )
E′M - E′N

p
(23)

Weq(M) ) e-Hvib(M)/(kT) (24)

UM(t) ) e-iHvib(M)t/p (25)

Hvib(M) ) ∑
ê

pωê

4
((Qê + 2gê(M,M))2 + Pê

2) (26)

kMfN

kNfM
) epωMN/(kT) (27)

kMfN ) ∫-∞

∞
dτ eiωMNτ eφMN(τ)-φMN(0)[(λMN

p
+ GMN(τ))2

+

FMN(τ)] (28)
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were introduced with

The preceding function contains the mean numbern(ω) of
vibrational quanta of energy,pω, at temperatureT,

and a spectral density,J(ω),

characterizing the fluctuations of local hole energies. The same
spectral density will be assumed for all sites, and the correlation
between fluctuations at different sites and any fluctuations of
electronic couplings will be neglected. The time-independent
part in the integrand in eq 28,λMN, is

where a reorganization energyEλ is introduced as33

The solvation reorganization energyλM of extended state M in
eq 18, using the above approximations, then becomes

whereLM
-1 is the so-called inverse participation ratio34 that is

a measure for the delocalization of state M. It can vary between
1 for localized states andN-1 for completely delocalized states,
whereN is the number of coupled sites. Herein, the standard
result for the rate constant between localized states will be given
first, and in the Discussion section, an interpretation of the
present result in eqs 28-37 is given in terms of a comparison
with the rate constant for localized states.

B. Rate of Hole Transfer between Local Electronic States.
To recover from the Hamiltonian in eq 10, the usual expression
for the nonadiabatic electron transfer between localized states
this Hamiltonian is rewritten as

where eq 11 was used for the modulation of electronic energies
and where the modulation of the couplings was neglected as
before, that is,Vi,i+1 ) Vi,i+1

(0) . The modulation of energies,
∆Ei(ê), is contained in the coupling constantgê(i) at sitei,

using the ∆Ei(ê) in eq 11. The energiesE′i, namely, the
energies of the localized states, are

The rate constantkifj for hole transfer between states of the
system where the hole is localized at sitesi and j then follows
as

whereωij ) (E′i - E′j)/p is given in terms of the energies in eq
40 andUi(t) is the time-evolution operator of the vibrations in
the PES of the state with a localized hole at sitei (that PES is
called theith PES in the following).

where

The equilibrium statistical operator of the vibrations in theith
PES isWeq(i):

The rate constantkifj in eq 41 for transfer between localized
states can be calculated in a manner similar to that used for the
delocalized states in Appendix B. The calculation is simplified
by the fact that the coupling between different states does not
depend on the coordinates, in contrast with Appendix B. The
well-known result for nonadiabatic electron transfer between
localized states is33,35-37

where the time-dependent function is

with the spectral density

which is zero for negativeω. When the fluctuations of energies
at sitesi andj are not correlated, this spectral density becomes

where the local spectral density, given in eq 34, was also
assumed here. Theφ(t) in eq 46 then equals 2φ0(t) in eq 32.

The well-known classical limit of the rate constant in eq 45
is33,35,36

φMN(t) ) ∑
i

(|ci
(M)|2 - |ci

(N)|2)2
φ0(t) (29)

GMN(t) ) ∑
i

((ci
(M))3ci

(N) - (ci
(N))3ci

(M))φ1(t) (30)

FMN(t) ) ∑
i

|ci
(M)|2|ci

(N)|2φ2(t) (31)

φn(t) ) ∫-∞

∞
dω e-iωt (1 + n(ω))ωn(J(ω) - J(-ω)) (32)

n(ω) ) (exp{pω/(kT)} - 1)-1 (33)

J(ω) ) ∑
ê

(∆E(ê)

pωê
)2

δ(ω - ωê) (34)

λMN ) ∑
i

[(ci
(M))3ci

(N) + (ci
(N))3ci

(M)]Eλ (35)

Eλ ) ∫dω pωJ(ω) (36)

λM ) EλLM
-1 with LM

-1 ) ∑
i

|cM
(i)|4 (37)

H ) ∑
i

[E′i + ∑
ê

pωê

4
((Qê + 2gê(i))

2 + Pê
2)]|i〉〈i| +

∑
i

Vi,i+1(|i〉〈i + 1| + |i + 1〉〈i|) (38)

gê(i) )
∆Ei(ê)

pωê
(39)

E′i ) Ei - ∑
ê

pωê(gê(i))
2 (40)

kifj )
|Vi,j|2

p2 ∫-∞

∞
dt eiωij t trvib{Ui

†(t)Uj(t)Weq(i)} (41)

Ui(t) ) e-iHvib(i)t/p (42)

Hvib(i) ) ∑
ê

pωê

4
((Qê + 2gê(i))

2 + Pê
2) (43)

Weq(i) ) e-Hvib(i)/(kT) (44)

kifj )
|Vi,j|2

p2 ∫-∞

∞
dt eiωij t eφ(t)-φ(0) (45)

φ(t) ) ∫-∞

∞
dω e-iωt(1 + n(ω))(Jij(ω) - Jij(-ω)) (46)

Jij(ω) ) ∑
ê

(gê(i) - gê(j))
2δ(ω - ωê) (47)

Jij(ω) ) Ji(ω) + Jj(ω) ) 2J(ω) (48)
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where the reorganization energyλ38 is related to the local
reorganization energy in eq 36 by

and the standard free energy of the reaction is∆G°ij ) -pωij.

IV. Numerical Calculation of Hole Transfer

A. Estimate of the Spectral Density from Optical Spectra
and Normal-Mode Analysis.In the following, a rough estimate
of the spectral densityJ(ω) in eq 34 is obtained from the
calculation of absorption and fluorescence spectra of a dye
molecule intercalated in DNA. Although theJ(ω) in eq 34 is a
spectral density for charge transfer and theJ(ω) extracted in
the following is an optical spectral density, the latter is an
approximation for the former as discussed in detail in the
Discussion section.

The optical line shapes of absorption,DR, and fluorescence,
DI, then are related to the spectral density in eq 34 according
to33,37,39

where the functionφ0(t) in eq 32 was used andpω10 is the
energy difference between the minima of the potential energy
surfaces of the ground and excited state of the dye. As seen in
eq 34, the spectral density is given as a combination of coupling
factors and density of states. The density of states

of a DNA fragment with intercalated ethidium was calculated
from a normal-mode analysis in ref 40. For the local spectral
densityJ(ω), the following ansatz is chosen:

with

and the well-known Huang-Rhys factor

A frequencyωc was introduced in eq 54 to take cognizance of
the fact that the high-frequency normal modes are typically more
localized than the low-frequency modes and therefore only few
of the former belong to the local site where the ethidium is
intercalated and thus couple to its optical transition. In addition,
κ(ω) takes into account the difference in coupling constants for
the different normal modes. The selected functional form is a
major simplification in that it limits the number of adjustable
parameters to two, namely, the amplitude of the couplingSand
the cutoff frequencyωc. The absorption and fluorescence spectra
obtained forS) 8 andpωc ) 300 cm-1 are compared in Figure
3 to the experimental values.41 From the spectral density so-
obtained, a local reorganization energyEλ ) 0.24 eV is
calculated from eq 36. The reorganization energyλ for hole

transfer between two localized states then is obtained from eq
50 asλ ) 0.48 eV.

The deviations between the theoretical and experimental
absorption curves in the blue wing of the spectrum can be
attributed to the vibrational frequencies being different for the
ground and excited state or to higher excited electronic states.
The latter are seen in the absorption spectrum but not in
fluorescence (because of relaxation to the lowest excited state).
There is support for the latter proposition from early quantum
chemical studies.42

B. Calculation of Experimental Cleavage Yields.Assuming
steady-state conditions as before, the following set of equations
is next solved for the populations of extended states

whereP0
(M) describes the rate of production of M by the local

hole injectionP0 (production of G),

The trapping rate constantkd
(M) in eq 56 for a given extended

state M includes the contributions from the G and the GGG
state to this extended state

where we assumedkd ) k′d for simplicity, that is, the same
local trapping rate at G and GGG. There is at present no direct
information on the trapping rates available in the literature. An
analysis of hole-hopping data on a similar system in ref 21 gave
a ratio kd/k′d ) 1.6. Considering the uncertainties of other
parameters, this small difference in trapping rates, if real, does
not need to be taken into account in our present approximate
treatment.

The measured yield,R, is then obtained from the resulting
occupation probabilities,PM, and eigencoefficients,ci

(M)

where 〈...〉dis denotes an average over disorder. The latter is
described as a static fluctuation in site energies. A Gaussian
distribution function of fwhm∆dis is assumed independent of

kifj ) 2π
p

|Vi,j|2

x4πλkT
e-(λ-pωij)2/(4λkT) (49)

λ ) 2Eλ (50)

DR,I(ω) ≈ e-φ0(0)(2πδ(ω - ω10) +

∫-∞

∞
dt e(ı(ω-ω10)t{eφ0(t) - 1}) (51)

d(ω) ) ∑
ê

δ(ω - ωê) (52)

J(ω) ) Sκ(ω)d(ω) (53)

κ(ω) ) 1
ωc

e-ω/ωc (54)

S) ∫ dω J(ω) (55)

Figure 3. Room-temperature absorption and fluorescence spectra of
ethidium bromide intercalated in DNA. Circles are the experimental
data,41 and lines show the calculations.

∑
N

(kMfN + kd
(M))PM - ∑

N

kNfMPN ) P0
(M) (56)

P0
(M) ) (cG

(M))2P0 (57)

kd
(M) ) {(cG

(M))2 + (cGGG
(M) )2}kd (58)

R )
〈PGGG〉dis

〈PG〉dis

)

〈∑
M

(cGGG
(M) )2PM〉dis

〈∑
M

(cG)2PM〉dis

(59)
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the site index, and the energies at different sites are assumed to
vary in an uncorrelated manner. The same mean site energyEA

is assumed for all A’s. From the spectral densityJ(ω) obtained
as described earlier, the functionsφn(t) were calculated according
to eq 32. Those functions were then used to calculate the
functionsFMN(t), φMN(t), andGMN(t), eqs 29-31, which enter
the rate constant expression in eq 28. Each disorder average in
eq 59 was performed numerically using a Monte Carlo
algorithm. The numerical procedure used to obtain the relative
yield consists of the following steps: (i) random generation of
site energies from Gaussian distribution functions that are
centered around the mean site energiesEA, EG, andEGGG, (ii)
calculation of extended states by diagonalization,43 (iii) calcula-
tion of rate constants, (iv) solution of linear equations for the
population of extended states and calculation of populations for
G and GGG sites, (v) repetition of steps i-iv for about 10 000
configurations of disorder and calculation of average population
of G and GGG sites and the relative yieldR.

In addition to the delocalized states channel, a hopping
channel through localized states is investigated. When a
localized state description is used, the master equations are

where the rate constantskifi+1 are calculated from eq 49 using
the same parameters as in the extended states calculations. The
yield R averaged over disorder is given by

where the disorder average was calculated numerically by a
Monte Carlo algorithm as before. In our calculations, the two
thermally activated hopping rates, via localized and delocalized
states, are treated as independent channels. In this case, the
overall yield is just the sum of the two individual yields.
However, as will be shown below, it is possible that one channel
dominates the yield. Our primary focus is on the thermally
activated hopping part of the signal observed forN > 3. In this
case, both channels are related by an equilibrium constant and
the dominant channel is the one for which the product of thermal
activation and intrachannel transfer between the respective
(localized or delocalized) states is larger.

Besides the spectral density,J(ω), estimated above, a number
of other quantities are needed for the calculations: (i) the
electronic couplings,Vi,i+1, (ii and iii) the energy gaps,∆EAG

and∆EG,GGG, of the local hole states, (iv) the trapping rate,kd,
and (v) the amount of disorder described by the width (fwhm),
∆dis, of the Gaussian distribution function assumed for the local
hole energies. The quantities i and iv were estimated from
independent theoretical calculations,18,44,45 an upper limit for
quantity v was obtained from an independent calculation,28 a
lower value for quantity iii was obtained from the present
calculation, and quantity ii was fitted to the present experiment.
The details are as follows:

Two different sets of electronic matrix elements are reported
in the literature.44,45In ref 45, the coupling between neighboring
A’s was calculated to range between 0.125 and 0.198 eV.46 For
the interstrand coupling between A and G and A and GGG, 1
order of magnitude smaller couplings ranging between 0.011
and 0.076 eV were obtained.45 In contrast to these results, a 1
order of magnitude smaller coupling between A’s was obtained
in ref 44; the intrastrand A-G and A-GGG couplings are
similar in both references. The calculations in Figure 4 refer to

the couplings of ref 45; we used 0.165 eV for the intrastrand
coupling between A’s and 0.03 eV for the interstrand coupling
between A and G and A and GGG. The second set of
couplings44 is investigated later.

For item iv, the trapping ratekd, a value of∼108 s-1 was
estimated earlier from an analysis of a relative yield of hole
trapping measured on a similar system.18 From the calculations,
we obtain 7× 108 s-1 for kd. This value does not influence the
shape of the yield versus distance plot; as long as the trapping
is fast compared to the back transfer from GGG to G, it just
shifts the whole curve along the yield axis.

Item ii, the energy gap∆EAG, was extracted from the yield,
measured in the present experiment for short bridge lengths
where superexchange dominates: An energy gap of∆EAG )
0.27 eV gave the observed slope of the yield versus distance
curve in this region and also gave a transition between
superexchange and hopping at aboutN ) 3, as observed in
experiment. This value for∆EAG lies between the difference in
ionization potentials for A and G measured in the gas phase47

(0.2 eV) and in acetonitrite solution48 (0.47 eV).
The question of the effect of disorder,∆dis, in site energies

arises. Without use of disorder but with use of extended states,
a qualitative fit to the data was obtained (upper part of Figure
4). However, the yield for long bridges shows some nonmono-
tonical behavior that is not observed in the experiment. This
behavior is averaged out in the calculation that takes into account
static disorder; a∆dis ) 0.08 eV (fwhm of Gaussian distribution
function) was used (Figure 4). We compare this result later with
one by Yu and Song28 obtained from the temperature depen-
dence of conduction.

The yields obtained for a localized states model shown in
the lower part of Figure 4 are smaller by 1-2 orders of
magnitude than the delocalized states yields. Obviously, the
delocalized states hopping channel dominates the transfer for
this set of electronic couplings.45 It is seen also that disorder
decreases the localized states yield, an effect discussed in detail
later. In addition, the localized states yield shows a stronger
distance dependence for long bridge lengths in disagreement
with the experimental data.

(kifi+1 + kifi-1 + (δi,GGG + δi,G)kd)Pi - ki+1fiPi+1 -
ki-1fiPi-1 ) δi,GP0 (60)

R )
〈PGGG〉dis

〈PG〉dis

(61)

Figure 4. Calculation of relative yields of DNA strand cleavage in
dependence on bridge lengthN for the electronic couplings of Troisi
et al.45 Circles are the experimental values of Giese et al.26 The upper
and lower curves are obtained for the two channels, involving partly
delocalized and localized states, respectively. The calculations of solid
lines include static disorder, whereas the dashed curves were obtained
without taking into account static disorder.
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Next, we consider the second set of electronic couplings from
the recent literature,44 which results in the calculated yields
shown in Figure 5. Because of the smaller electronic couplings
in the bridge, now both localized and delocalized states
contribute to the yield. An electronic matrix element of 0.03
eV for hole transfer between A’s was calculated by an ab initio
method in ref 44. A similar value (0.02 eV) was obtained44 for
the interstrand coupling of G and A. For simplicity, we used
the same couplingVi,i+1 ) 0.03 eV between all bases. For item
iv, the trapping ratekd, we used 1.3× 108 s-1, which is close
to the∼108 s-1 estimated earlier.18

For item ii, the energy gap∆EAG was extracted from the yield
as before; a∆EAG ) 0.14 eV49 gave the observed slope of the
yield versus distance curve in this region and also gave a
transition between superexchange and hopping at aboutN ) 3,
as observed in experiment. Without use of disorder but with
use of extended states, a fit to the data was not obtained. To fit
the experiment, a∆dis ) 0.08 eV (fwhm of Gaussian distribution
function) was used (Figure 5) as before in Figure 4. The tran-
sition between the tunneling and the hopping regime is some-
what smoother (N ) 4, ..., 8) in the absence of disorder, while
in the presence of disorder a sharp transition is obtained atN
) 3 as apparently observed in the experiment. By comparing
the solid with the dashed line and the dot-dashed with the
dotted line in the right part of Figure 5, one sees that disorder
in site energies decreases the localized states hopping rate and
enhances the delocalized states hopping, a result discussed later.

In the calculations in Figures 4 and 5, the energetic difference
∆EG,GGG) 0.2 eV was also assumed.50 However, the calculated
yield does not depend on∆EG,GGGas long as this energy gap is
large enough to prevent the back transfer (GGG)+ + G f GGG
+ G+ from being faster than the trapping (rate constantkd).
For smaller energy gaps, the calculated yields for short bridges
become independent of distance, in disagreement with the
experimental observation.26 As discussed earlier, the rapid
transfer rate constantkGGGfG obtained in the calculation for
small energy gaps∆EG,GGG allows the system to equilibrate
before the trapping can occur and leads to this discrepancy for
small ∆EG,GGG.

V. Discussion

A. Theoretical Aspects.We consider first a phenomenologi-
cal nearest-neighbor hopping model, and its use to obtain an

effective hopping rate in eq 3 between a donor and an acceptor.
The latter are connected by a bridge with hole orbital energies
in the bridge being higher than those of the donor and the
acceptor. The distance dependence obtained for the rate allows
one to estimate a certain ratio of rate constants of the individual
transfer processes by comparison with experiment. A density
matrix study51 on activated conduction in molecular junctions
gave an (R1 + R2N)-1 dependence of the numerically obtained
rate, where the constantsR1 and R2 depend on the molecular
properties and on the strength of electron-vibrational coupling.
The same distance dependence of the effective rate is obtained
here, and the two constants are related to the individual rate
constants of the present phenomenological model asR1

-1 )
k-1 + k2 - kB andR2

-1 ) kB. In a recent paper24 on thermally
induced hopping, anN-2 dependence of the effective transfer
rate was inferred in the limit ofkB/k2 , 1. The present result
gives, instead, an (N - 1 + kB/k-1)-1 distance dependence in
this limit.52

The more general theory, more general in the sense of being
more microscopic, that was used to obtain a rate constant in eq
28 for hole transfer between partly delocalized states is related
to an earlier theory due to Mukamel and co-workers.14,53,54They
describe charge transfer in DNA14 and exciton transfer in
photosynthetic systems.53,54 The present theory is simpler
because it assumes fast vibrational relaxation. The latter
assumption leads to the reduction of the entire set of equations
for the dynamic variables to master equations. However, the
part of the earlier theory14 that describes the transfer between
different electronic states was treated in the Markov approxima-
tion, and hence, a similar expression for the rate constant is
obtained. The results for the rate constants nevertheless at first
glance appear to be quite different from the present ones because
of the use of the Brownian oscillator approach for the coupling
to vibrations in ref 14. In the present paper, a harmonic oscillator
approach is used. The equality of the two rate constants is shown
in Appendix C.

The introduction of the PES of the extended electronic states
takes into account the dependence of the configuration of nuclei
on the delocalization of the electronic state. It is seen in the
following section that, as expected, electronic delocalization
leads to smaller reorganization energies of charge transfer.
Disorder in energies tends to localize the electronic states. Here,
localization due to static disorder was taken into account and
dynamic localization, the so-called self-trapping,55,56 was ne-
glected.

Self-trapping of electronic states could be included in the
theory by a higher-order perturbation theory in the off-diagonal
part of the coupling of extended states to the vibrations. The
use of second-order perturbation theory for the off-diagonal parts
of the electron-vibrational coupling relies on the assumption
that the off-diagonal part,gê(M,N), is smaller than the diagonal
part,gê(M,M). Thegê(M,M) is taken into account exactly. This
relation is a result of static disorder. For completely localized
states, thegê(M,N) ) ∑ici

(M) ci
(N)gê(i) would be zero for M* N

because one of the two coefficients,ci
(M) or ci

(N), would vanish
for M * N. Instead of taking into account the self-trapping
explicitly, we consider two competing channels of thermally
activated hopping through partly delocalized states and through
localized states as is discussed in detail in section 5.3.

In the present formulation, we have not included a possible
dependence of the reorganization energyλ on distance between
hopping sites.57 We expect that a distance dependence will
mainly have an influence on the yield for short bridge lengths
where tunneling dominates. However, our focus here is on the

Figure 5. Calculation of relative yields of DNA strand cleavage for
the electronic couplings of Voityuk et al.45 Circles are the experimental
values of Giese et al.26 The solid line in the left part is the logarithm
of the sum of the yields obtained for localized states and those obtained
for delocalized states. The separate yields are shown in the left part as
dashed (for delocalized states channel) and dotted (localized states)
lines. A static disorder of∆dis ) 0.08 eV was assumed. The latter two
curves are shown again in the right part and are compared there with
calculations neglecting disorder.

Variable-Range Hopping Electron Transfer J. Phys. Chem. A, Vol. 107, No. 41, 20038411



thermally activated hopping observed for longer bridges. In the
case of nearest-neighbor hopping, there is just a singleλ, and
in the case of variable-range hopping, it can be expected that
an effectiveλ can be introduced that takes into account an
average over different distances.

B. Comparison of Rate Constants for Extended and
Localized States.The three major differences between the rate
constants for transfer between extended and localized states
occur in (i) the free energy difference, (ii) the different
displacement of free energy curves, and (iii) the presence of
inelastic tunneling processes. The free energy difference,pωMN,
between the extended states M and N in eq 23, using eqs 17
and 18, is

It is seen to depend on the difference in the inverse participation
ratio (the delocalization) of extended states M and N. If the
states M and N are localized at sitesi and j, respectively, then
pωMN ) pωij usingLM

-1 ) LN
-1 ) 1.

To illustrate the points ii and iii, it is assumed, for simplicity,
that every site couples to only one local vibrational mode with
frequencyω0. The spectral density in eq 34 in this case reduces
to

where g0 ) ∆E/(pω0), and the functionφn(t) in eq 32 now
becomes

The function eφMN(τ) in eq 28 then can be expanded as

with

The extended state rate constant in eq 28 then can be written as

with the two Poisson distributions

and

The constantsA0, A(1, and A2 in eq 67 are obtained from

∆1(M,N) ) ∑i((ci
(M))3ci

(N) - (ci
(N))3ci

(M)), a ) 2λMNω0g0
2∆1-

(M,N)/p, andb ) ω0
2g0

2∑i|ci
(M)|2|ci

(N)|2 becauseA+1 ) (a + b),
A-1 ) (b - a), andA2 ) ∆1(M,N)2ω0

2g0
4.

With the use of the same single local vibrational mode
approximation and a similar expansion, the rate constantkifj

between local states in eq 45 is

The δ-functions on the rhs of eqs 67 and 70 describe energy
conservation during the charge transfer. The transfer occurs
between thelth vibrational state of the initial electronic state
and thekth vibrational state of the final electronic state.

The two Poisson distributions, eqs 68 and 69, determine the
contribution of the vibrational statesk andl to the transfer. The
maxima of those distributions occur atl ≈ yg0

2n(ω0) andk ≈
yg0

2(1 + n(ω0)). For example, if the two free energy surfaces
are strongly displaced (i.e.,yg0

2 is large), those distribution
functions are large for large numbersk and l because a large
number of vibrational quanta are necessary for sufficiently strong
vibrational overlap and energy conservation.

The factorPi(l,y)∆MN)Pf(k,y)∆MN) in eq 67 depends on the
function y ) ∆MN in eq 66. The latter depends on the de-
localization of electronic states; it varies between 0 for com-
pletely delocalized electronic states (the probabilities|ci

(M)|2
and |ci

(N)|2 to find a local hole statei in the extended states M
and N are equal) and 2 for completely localized states (a local
hole statei will contribute to either extended state M or extended
state N). In the latter case, the factorPi(l,y)2)Pf(k,y)2) in eq
70 for localized electronic states is recovered. The Poisson
distributions for the localized states peak at higher values ofk
and l than the distribution functions for extended states,
reflecting the fact that a delocalization of electronic states leads
effectively to a smaller horizontal displacement of the free
energy surfaces of the different states and hence to a smaller
reorganization energy of the reaction.

The third difference between eqs 67 and 70 is the appearance
of non-Condon terms in the extended state rate constant. Those
terms, which appear in eq 67 after the coefficientsA(1 andA2,
result from the coordinate dependence of the coupling (eq 16)
between the extended states M and N and describe an inelastic
tunneling between the initial and final state, that is, during the
transfer of the electron (or hole) vibrational quanta are absorbed
and emitted by the electron (or hole). The term afterA-1 contains
the emission of one quantum, and theA+1 term contains the
absorption of one quantum. The two vibrational quanta inelastic
tunneling processes are described by theA2 terms.

C. Localized States versus Partly Delocalized States
Hopping: Which Channel Dominates?In the calculation, we
distinguish between two channels of thermally activated hop-
ping, via localized and via partially delocalized states.

Depending on the electronic couplings and reorganization
energies of the states, it will be easier for the hole, initially
localized at the donor G, to reach a localized or a partly
delocalized state in the bridge. The overall efficiency of a
channel then depends on the probability to reach a certain state
and on the transfer efficiency between the states (localized or
delocalized) within one channel. In the limit where the electronic
coupling is comparable to or larger than the reorganization
energy of a local hole state, the splitting between electronic
eigenstates of the bridge will determine the gap between donor
and bridge. In addition, electronic delocalization decreases the

pωMN ) EM - EN + Eλ(LM
-1 - LN

-1) , (62)

J(ω) ) g0
2δ(ω - ω0) (63)

φn(t) ) g2ω0
n(e-iω0t(1 + n(ω0)) + eiω0tn(ω0)) (64)

eφMN(τ) ) ∑
k)0

∞

∑
l)0

∞ (∆MNg0
2)k+l

k!l!
e-i(k-l)ω0τ(1 + n(ω0))

k(n(ω0))
l

(65)

∆MN ) ∑
i

(|ci
(M)|2 - |ci

(N)|2)2 (66)

kMfN ) ∑
k,l)0

∞

Pi(l,y)∆MN)Pf(k,y)∆MN) ×

({(λMN/p)2 - 2A2(1 + n(ω0))n(ω0)}δ(ωMN - ω0(k - l)) +
A+1(1 + n(ω0))δ(ωMN - ω0(k + 1 - l)) +

A-1n(ω0)δ(ωMN - ω0(k - l - 1)) +

A2{(1 + n(ω0))
2δ(ωMN - ω0(k + 2 - l)) +

n(ω0)
2δ(ωMN - ω0(k - l - 2))}) (67)

Pi(l,y) ) e-yg0
2n(ω0)

[yg0
2n(ω0)]

l

l!
(68)

Pf(k,y) ) e-yg0
2(1+n(ω0))

[yg0
2(1 + n(ω0))]

k

k!
(69)

kifj )
|Vi,j|2

p2
∑
k,l)0

∞

Pi(l,y)2)Pf(k,y)2)δ(ωij - ω0(k - l)) (70)
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nuclear reorganization energy of the states and thus leads to
fast intrabridge rates. Those two effects are responsible for a
faster transfer through the delocalized states channel.

If, on the other hand, the reorganization energy of localized
states is larger than the electronic coupling, the equilibrium
constant is shifted in favor of thermal activation of the localized
states. This effect can overcompensate the decrease in transfer
efficiency between localized states caused by the larger reor-
ganization energy, and the localized states channel will domi-
nate.

An interesting effect is observed in the presence of static
disorder. The latter barely changes the transfer efficiency in the
first limit of strong electronic coupling, but it strongly decreases
the transfer efficiency via localized states hopping. This decrease
is a result of local barriers created by the disorder in the bridge.
Because the localized states hopping is a nearest-neighbor
hopping, such barriers in the bridge will be critical bottlenecks
for the overall transfer rate, and thus, the efficiency of the
transfer goes down with increasing disorder. In the case of partly
delocalized states, the hole (electron) can tunnel through such
local barriers in the bridge, a phenomenon that is termed
variable-range hopping.31 It was used recently by Yu and Song28

to explain the temperature dependence of conductivity mea-
sured32 in λ-phage DNA. Because of this phenomenon, the
transfer efficiency between extended states does not depend as
critically as the one for the localized states on the disorder.
Hence in a situation where the localized states channel dominates
the thermally activated transfer, an increase in disorder in bridge
energies will change the branching ratio of the two channels in
favor of the delocalized states channel.

Finally, we note that the present formulation in terms of two
channels is an approximation of the real situation where just
one channel exists that contains partly delocalized states but
takes into account a dynamic localization of the states by so-
called self-trapping. A more exact but more complicated
formulation (involving the solution of a nonlinear Schro¨dinger
equation) in terms of solitary electronic states can be found in
a series of papers by Fischer and co-workers (ref 55 and
references therein).

D. Explanation of the Flat Distance Dependence of the
Hole Transfer Rate.The principal finding in that article is that
the delocalization provides at least one explanation of the
reported flat distance dependence of the relative yield found
by Giese et al.26 When one uses a phenomenological nearest-
neighbor hopping model, the ratio of rate constants,kB/k-1 or
k2/k-1, appearing in eq 8 is large. An explanation of this result
is obtained within the present framework by interpretingkB as
an effectiVe hopping rate constant, the hole transfer involving
partly delocalized states in the bridge. Hence, the hole will not
hop between neighboring bases but between larger regions. In
addition, this “length” of the hole leads typically to a smaller
reorganization energy for transfer in the bridge than for transfer
from a local donor or acceptor state into the bridge. This
difference in reorganization energies in turn also leads to faster
intrabridge transfer.

In the comparison between theory and experiment in Figures
4 and 5, for short (N < 3) bridges, the superexchange
mechanism dominates, so an exponential distance dependence
of the yield results, whereas forN > 3, the hole transfer involves
thermally populated bridge states. This interpretation of the
behavior is now well-known.13,14

In the calculation of the thermally activated hopping that
occurs at bridge lengthsN > 3, two different channels, via
localized states and via delocalized states, have been taken into

account. Furthermore, two different sets of ab initio electronic
couplings were considered. Using the couplings obtained by
Troisi and Orlandi,45 we obtain the yields in Figure 4, which
show a clear preference of the delocalized states hopping
channel. The splitting between electronic bridge states brings
some of the bridge states to low enough energies so that thermal
activation of the hole at the donor G to those states is easier
than thermal activation leading to a localized bridge state. The
flat distance dependence results from the efficient transfer
between the partly delocalized states due to a small reorganiza-
tion energy as discussed above and because the splitting between
the bridge states is larger for longer bridge lengths thus
decreasing the energy gap between donor and bridge even
further and so promoting thermal activation. The nonmonotoni-
cal behavior obtained in the absence of disorder is due to the
symmetry of the electronic states in the bridge and is washed
out by the disorder. As discussed before, the variable-range
hopping mechanism leads to a relative robustness of the overall
hopping rate against static disorder.58

The second set of electronic couplings obtained by Voityuk
et al.44 leads to a more complicated situation, as shown in Figure
5 for the present static disorder. Both channels, the one with
localized and the one involving partly delocalized bridge states,
contribute to the observed yield. As before, the delocalized states
hopping shows a weaker distance dependence than the localized
states hopping. An interesting difference with respect to the
calculations in Figure 4 concerns the disorder dependence of
the delocalized states hopping. It increases with increasing
disorder, as shown in the right part of Figure 5, whereas it did
not depend much on distance in the upper part of Figure 4. The
difference between the two results is due to the different
electronic couplings. In Figure 4, the electronic coupling is
strong enough to determine the energy gap between the donor
and the bridge. The electronic coupling is an order of magnitude
smaller in Figure 5, and in this case, the energy gap between
the hole donor G and the bridge is a function of disorder.
Disorder in the bridge, which localizes the states, brings some
bridge energies closer to the energy of the donor state, as
discussed below, and thus thermal activation becomes more
likely via these states, and the relative yield increases with
disorder. This effect of decreasing the energy gap between G
and the bridge of A’s by disorder is explained by the dependence
of the reorganization energies of the extended states on the
disorder, as discussed in detail in Appendix D.

The question may arise: Is there any set of parameters in
the nearest-neighbor hopping model that gives agreement with
the reported experiment? This question can be answered by
returning to the phenomenological hopping model studied in
section 2 that yielded agreement for large values ofx ) kB/k-1

+ kB/k2, where kB is the hopping rate constant between
neighboring bridge sites andk-1 (k2) is the rate constant for
transfer between the first (last) bridge site and the donor
(acceptor). In Appendix E, several possible reasons for a large
x are discussed, but we judge them to be improbable. Recently,59

we became aware of an alternative explanation in terms of
localized states that is based on quantum chemical calculations60

of hole energies of base pair triplets. It involves local barriers
created at the first and last A in the bridge. Such barriers would
be due to the different nearest-neighbor bases seen by those
terminal A’s of the bridge. Applying the triplet rule of Voityuk
et al.,60 a -∆G° ) 234 meV for the hole transfer from the first
to the second A in the bridge and a-∆G° ) -127 meV for
the transfer between the (N - 1)th and theNth A in the bridge
are obtained. Because the latter value is smaller than zero, the
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corresponding rate can be assumed to be slower than the rates
between the other A’s in the bridge (which have-∆G° ) 0 or
234 meV). Therefore the hole transfer between the (N - 1)th
and theNth A in the bridge can create a bottleneck of the
reaction on the basis of the quantum chemical calculations.60

However, we note that this bottleneck effect will be much
weaker if variable-range hopping is included in the theory
because the hole can tunnel through the terminal A’s. To help
to settle this question, experiments on a DNA duplex in which
G, AN, and GGG are placed in one 5′-G-(A)N-GGG-3′ strand
(instead of having G and A at different strands) would be
helpful. In this case, if the triplet rule60 is correct, there are no
bottlenecks at the terminal A’s and the localized state hopping
model then predicts a steeper distance dependence, whereas the
delocalized state hopping model predicts still a flat distance
dependence.

E. Discussion of Dynamic and Static Disorder.The disorder
is both dynamic, described by the spectral densityJ(ω), and
static, described by∆dis. The two forms of disorder have their
origin in the conformational dynamics of DNA and the solution.

The fast fluctuation of the DNA structure leads to a dynamic
modulation of local hole energies and is treated by the spectral
densityJ(ω). This J(ω) was extracted here from fluorescence
and absorption line shapes of intercalated ethidium. It is a
simplification to assume that the modulation of the optical
transition energy is the same as the fluctuation of a local hole
energy. However, the extractedJ(ω) results in a reorganization
energyλ ) 0.48 eV for hole transfer between two localized
states, which is close to the 0.4 eV estimated6 from time-resolved
measurements5,6 of hole transfer between two intercalated
ethidium molecules. Our estimatedλ ) 0.48 eV is about half
of the reorganization energy obtained in experiments on DNA
hairpins.61 In these hairpins, the hole donor, a stilbene, is
exposed to the solvent, which may explain at least part of the
larger reorganization energy (see Appendix F). Cho and
Fleming62 investigated how the two types of spectral densities,
those for optical transitions and those for electron transfer, are
related. They concluded that the same functional form ofJ(ω)
can be assumed but that the two spectral densities can differ by
a scaling factor. We have set this scaling factor to unity on the
basis of a comparison of the reorganization energy obtained
with experimental values. (The scaling factor can be expected
to depend on the tightness of the pair in the excitation.)

Any dynamics that is slow compared to the charge-transfer
process is considered as static disorder and described by a
distribution in site energies.63 Here, a Gaussian distribution of
width (fwhm) ∆dis ) 0.08 eV was estimated. This value is
smaller, and is expected to be smaller, than the value of 0.15
eV used by Yu and Song28 to explain the temperature depen-
dence of conduction measured32 in λ-DNA because in the latter
study an additional change of local energies by a random DNA
sequence had to be considered.

VI. Summary

We summarize the results obtained in the present paper as
follows: An electron (hole) transfer rate constant for vibra-
tionally induced transitions between extended electronic states
was derived. The rate constant includes the tunneling, as well
as the hopping-like, transfer of the electron (hole). An explana-
tion of the reported flat distance dependence of the relative yield
of strand cleavage measured by Giese et al. for long bridges (N
> 3) is given. It involves thermally activated transfer between
partly delocalized states of the bridge and disorder. An
interesting effect of disorder found here is that it suppresses

the thermally activated hopping via localized states and promotes
the hopping via partly delocalized states because of variable-
range hopping and the disorder dependence of reorganization
energies of the extended states.
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Appendix A: Derivation of the Effective Hopping Rate
Constant, kh

eff(N)

In steady-state approximation for theAn’s, eq 1b can be
written as

and for j ) 2 to N - 1, the following recursion relation is
obtained from eq 1c

From eq 1d, we have

Equation A2 defines a continued fraction that is terminated by
the AN/AN-1 in eq 73. From these two equations, an explicit
formula for AN-n/AN-(n+1) is obtained

The preceding equation and eq A3 are then used to obtain

Introduction of eq A5 forn ) 2 into eq A1 yields a relation
betweenA1 and AN, while eq A5 for n ) 1 yields a second
relation. Elimination ofA1 yields

From eqs A6 and A5 forn ) 1, A1 is obtained as

A1 )
-k1G

-(kB + k-1) + kB

A2

A1

(A1)

Aj

Aj-1
) 1

2 -
Aj+2

Aj+1

(A2)

AN

AN-1
) (1 +

k2

kB
)/(1 -

k-2

kB + k2

GGG
AN

) (A3)

AN-n

AN-(n+1)
)

n - (n - 1)AN/AN-1

n + 1 - nAN/AN-1
n ) 0 toN - 2 (A4)

An

AN
)

k2

kB
(N - n) + 1 - (N - n)

k-2

kB

GGG
AN

(A5)

AN )

k1

k-1

kB

k2

N - 1 +
kB

k-1
+

kB

k2

G +

k-2

k2
(N - 1 +

kB

k-1
)

N - 1 +
kB

k-1
+

kB

k2

GGG (A6)
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By introducing eq A7 into eq 1a and eq A6 into eq 1e, the
equations 2a and 2b of the text are obtained with the effective
rate constants given in eqs 3 and 4.

Appendix B: Derivation of an Expression for the Rate
Constant kMfN

The Liouville-von Neumann equation for the statistical
operator reads64

where the couplingV̂MN, the energy differencepωMN, and
vibrational Hamiltonian of the Mth PESHvib(M) were defined
in the text in eqs 20, 23, and 26, respectively.

For a perturbation treatment of the couplingV̂MN, the
following interaction representation of the statistical operator
is used

where the time-evolution operatorUM(t) is given in eq 25. The
equation of motion for the statistical operator in eq B2 is

with

Equation B3 leads to a second-order generalized rate equation
for the populationPM(t),

namely

with a generalized rate constant

WhenkMfN(t) decays rapidly on the time scale of the dissipative
dynamics of the occupation probabilities,PM(t) andPN(t) of eq
B6, then the occupation probabilities can be extracted from the
integral by approximating them by their value at timet, that is,
PM(t-τ) ≈ PM(t). The upper integration limit in eq B6 may
then be replaced by+∞, and one obtains the rate equation 21
of the text with the rate constant eq 22 obtained from

where the propertykMfN(t) ) kMfN
/ (-t) of the generalized rate

eq B7 was used.
To calculate the generalized rate in eq B7, the trace has to

be performed over the thermally equilibrated vibrational states
of the Mth PES. The PES’s of states|M〉 and |N〉 are shifted
parabolas. This shift can formally be expressed by a shift
operator:65

Any operatorOM that depends on the coordinates of the shifted
PES M is changed usingOM ) DM

† O0DM. In particular, the
time-evolution operator for the unshifted PES,

becomes

Similarly, eq B7 can be written as

With the use of the identity

and of the definition of the couplingsV̂MN (eq 20), the
DMV̂MNDM

† in eq B11 then is

where a reorganization energy

was introduced. ThekMfN(t) in eq B11 becomes

where a new shift operator,DMN, was introduced

Here ∆gê ) ∆gê(M,N) ) gê(M,M) - gê(N,N). In evaluating
eq B15, it is convenient66 to introduce two exponentials, exp-
(-λ1(V̂MN/(2Kr))) and exp(-λ2(V̂MN/(2Kr))), and to define a
function, f(λ1,λ2), as

A1 )

k1

k-1
(N - 1 +

kB

k2
)

N - 1 +
kB

k-1
+

kB

k2

G +

k-2

k2

kB

k-1

N - 1 +
kB

k-1
+

kB

k2

GGG (A7)

d

dt
ŴMN ) -iωMNŴMN +

1

ip
(Hvib(M)ŴMN - ŴMNHvib(N)) +

1

ip
∑

L

(V̂MLŴLN - ŴMLV̂LN) (B1)

ŴMN
(I) (t) ) eiωMNt UM

† (t)ŴMN(t)UN(t) (B2)

d

dt
ŴMN

(I) (t) )
1

ip
∑

L

(V̂ML
(I) (t)ŴLN

(I) (t) - ŴML
(I) (t)V̂LN

(I) (t)) (B3)

V̂MN
(I) (t) ) eiωMNt UM

† (t)V̂MNUN(t) (B4)

PM(t) ) trvib{ŴMM(t)} ) trvib{ŴMM
(I) (t)} (B5)

d

dt
PM(t) ) -Re∑

N
∫0

t
dτ [kMfN(τ)PM(t - τ) -

kNfM(τ)PN(t-τ)] (B6)

kMfN(t) ) eiωMNt 2

p2
trvib{UM

† (t)V̂MNUN(t)V̂NMWeq(M)} (B7)

kMfN ) 1
2∫-∞

∞
dt kMfN(t) (B8)

DM
† ) exp∑ê{gê(M,M)(Cê - Cê

†
)} (B9)

U0 ) exp{-
it

p
∑

ê

pωê

4
(Qê

2 + Pê
2)}

UM(t) ) exp{-(i/p)t∑ê(pωê/4)((Qê + 2gê(M,M))2 + Pê
2)}

(B10)

kMfN(t) )

eiωMNt 2

p2
trvib{DM

† U0
†(t)DMV̂MNDN

†U0(t)DNV̂NMDM
† Weq

(0)DM} )

eiωMNt 2

p2
trvib{U0

†(t)DMV̂MNDM
† DMDN

†U0(t)DNDM
† DMV̂NMDM

† Weq
(0)}

(B11)

DM(Cê + Cê
†)DM

† ) Cê + Cê
† - 2gê(M,M) (B12)

DMV̂MNDM
† ) V̂MN - 2Kr (B13)

Kr ) Kr(M,N) ) ∑
ê

pωêgê(M,N)gê(M,M) (B14)

kMfN(t) ) eiωMNt
8Kr

2

p2
trvib{U0

†(t)(1 -
V̂MN

2Kr
) ×

U0(t)U0
†(t)DMNU0(t)DMN

† (1 -
V̂MN

2Kr
)Weq

(0)} (B15)

DMN ) DMDN
† ) exp{-∑ê∆gê(Cê - Cê

†
)} (B16)
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an expansion of which retaining only the first two terms and
settingλ1 ) λ2 ) 1 yields eq B15. The use of such a function
will make it possible to apply a second-order cumulant
expansion for the evaluation of expectation values as shown
below.

The time-dependence ofV̂MN(t) andDMN(t) is given by the
time-evolution operator,U0(t), as that

where a scaled coupling constantVê was introduced:

Using the relation eA eB ) eA+B e1/2[A,B], valid when the higher-
order commutators, such as [A,[A,B]], vanish, one obtains for
A ) ∑ê(a1êCê + a2êCê

†) andB ) ∑ê(a3êCê + a4êCê
†)

The first product in eq B17 using the above relation becomes

Treating the remaining products in the same way yields

The coefficients in the last line reada1ê ) ∆gê - λ2Vê - (∆gê
+ λ1Vê) e-iωêt anda2ê ) -(∆gê + λ2Vê) + (∆gê - λ1Vê) eiωêt,
where a second-order cumulant expansion, which is exact for
harmonic oscillators, gives for the thermal average in eq B23

where

was introduced. The functionf(λ1,λ2) then follows as

whereφMN(t), G̃MN(t), andF̃MN(t) denote the functions

and

Vê being defined in eq B20. Finally, expanding eq B26 up to
bilinear terms inλ1 andλ2 and settingλ1 ) λ2 ) 1 yields

whereGMN(t) ) (2Kr/p)G̃MN(t) andFMN(t) ) (4Kr
2/p2)F̃MN(t).

The time-dependent functions entering the generalized rate
constant can be expressed in terms of spectral densities

The functionφMN(t) is related to the spectral density containing
the shift∆gê

2 ) gê(M,M)2 + gê(N,N)2 - 2gê(M,M)gê(N,N)

whereJMN,KL ) 0 for ω < 0 and also the relationn(ω) ) -(1
+ n(-ω)) were used. The notation in terms ofJMN,KL(-ω) in
eq B32 and below does allow one to relate different time-
dependent functions to a single functionφn(t) in eq 32 in the
text.

The functionFMN(t) contains the off-diagonal parts,gê(M,N),
of the coupling

And the functionGMN(t) contains the mixed contributions

f(λ1,λ2) ) eiωMNt
8Kr

2

p2
trvib{exp(-λ1

V̂MN(t)

2Kr
)DMN(t)DMN

†

exp(-λ2
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2Kr
)Weq

(0)} (B17)
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†(t) exp(-λ1
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2Kr
)U0(t) )

exp(-λ1∑
ê

Vê(Cê e-iωêt + Cê
† eiωêt)) (B18)

DMN(t) ) U0
†(t)DMNU0(t) )

exp(-∑
ê

∆gê(Cê e-iωêt - Cê
† eiωêt)) (B19)

Vê ) Vê(M,N) ) pωêgê(M,N)/(2Kr) (B20)

eA eB ) exp(∑
ê

((a1ê + a3ê)Cê +

(a2ê + a4ê)Cê
†) exp(12∑ê

(a1êa4ê - a2êa3ê)) (B21)

exp(-λ1
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)DMN(t) ) exp(∑
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{-(λ1Vê +

∆gê) e-iωêt Cê + (∆gê - λ1Vê) eiωêt Cê
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λ1Vê∆gê)
(B22)

f(λ1,λ2) )
8Kr

2
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∆gêVê)
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(∆gê - λ2Vê)(∆gê - λ1Vê) eiωêt}) trvib{exp(∑
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†))Weq
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n(ωê) ) trvib{Cê
†CêWeq

(0)} ) 1

epωê/(kT) - 1
(B25)
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8Kr

2
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eφMN(t)-φMN(0)

e(λ1+λ2)(G̃MN(t)-G̃MN(0)) eλ1λ2F̃MN(t) e(λ1
2+λ2

2)F̃MN(0) (B26)

φMN(t) ) ∑
ê

∆gê
2((1 + n(ωê)) e-iωêt + n(ωê) eiωêt) (B27)

G̃MN(t) ) ∑
ê

∆gêVê((1 + n(ωê)) e-iωêt - n(ωê) eiωêt) (B28)

F̃MN(t) ) ∑
ê

Vê
2((1 + n(ωê)) e-iωêt + n(ωê) eiωêt) (B29)

kMfN(t) ) 2 eiωMNt eφMN(t)-φMN(0)[(2Kr

p
+ GMN(t) -

GMN(0))2

+ FMN(t)] (B30)

JMN,KL(ω) ) ∑
ê

gê(M,N)gê(K,L)δ(ω - ωê) (B31)

φMN(t) ) ∫-∞

+∞
dω e-iωt(1 + n(ω))([JMM,MM (ω) +

JNN,NN(ω) - 2JMM,NN(ω)] - [JMM,MM (-ω) +
JNN,NN(-ω) - 2JMM,NN(-ω)]) (B32)

FMN(t) ) ∫-∞

+∞
dω e-iωt(1 + n(ω))ω2[JMN,MN(ω) -

JMN,MN(-ω)] (B33)
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The quantity 2(Kr/p) - GMN(0) in eq B30 can be obtained from
the above spectral density via

where a new reorganization energyλMN was introduced. The
generalized rate constant becomes

Neglecting in eq 15 the dynamic modulation of the electronic
couplings, that is, setting∆Vij(ê) ) 0 and assuming that the
electronic energies at different sites fluctuate independently, the
spectral density eq B31 becomes

If the local coupling constants∆Ei(ê) are assumed to be
independent of the site indexi, that is, there is the same local
modulation of the site energy, eq B37 becomes

in terms of the local spectral density in eq 34. The reorganization
energyλMN in eq 35 then is obtained from eq B35 using eq
B38. The time-dependent functions eqs B27, B28, and B29 can
then be expressed in terms of a functionφn(t) in eq 32 as shown
in eqs 29-31. Using eqs 29-31, together with eq B36 and B8,
one arrives at thekMfN in eq 28.

Appendix C: Relation of the Rate kMfN to an Expression
Derived Earlier by Okada, Zhang, Meier, Chernyak, and
Mukamel

Using the Brownian oscillator approach29 and a projection
operator technique, Mukamel and co-workers14,53,54derived a
rate constant that is identical with the present result in the limit
of a large number of primary oscillators and zero damping by
the bath oscillators, as will be shown in the following. The
function g(t) of the Brownian oscillator approach in this limit
and the functionsφn(t) in eq 32 and reorganization energyEλ
in eq 36 in the present treatment are related by29

For the calculation of the rate constant in ref 53, the first and
second derivatives ofg(t) are needed. They are

and

The rate constantkMfN, given in eqs A24, C6, and C17-C19
of ref 53, reads

with

whereKNM
F (t) is

and theλ’s are defined as

For localized vibrations considered there,53 as well as in the
present paper, the functiongMNKL(t) is

and therefore it holds alsoğMNKL(t) ) ∑ncn
(M)cn

(N)cn
(K)cn

(L)ğ(t).
The functionλMNKL in eq C7 then follows, using eq C2, as

With the use of eqs C1, C8, and C9, the functionKNM
F (t) in eq

C6 becomes

where the functionφMN(t) is given in eq 29 and theωMN is
defined in eqs 23 and 17. The fact that theλM in eq 17 equals
λMMMM was used.

From eqs C3 and C8, theg̈NM,MN(τ) in eq C5 is seen to equal
the functionFMN(τ) in eq 31,

The product of square brackets on the rhs of eq C5 can be
written in terms of the functionsGMN(t) in eq 30 andλMN in eq
35,

where eqs C2, C8, and C9 were used. Equation 28 of the text
is obtained by introducing eqs C10-C12 into eqs C5 and C4.

Appendix D: Disorder Dependence of Thermal
Activation for Weak Electronic Couplings

The more delocalized the states of the bridge are, the smaller
is their solvation-vibrational reorganization energyλM in eq 37.
Any ion reorganization energy accompanying the hole transfer
might be included in a reorganization energy as one possibility

GMN(t) ) ∫-∞

+∞
dω e-iωt(1 + n(ω))ω[JMM,MN(ω) -

JNN,MN(ω) - JMM,MN(-ω) + JNN,MN(-ω)] (B34)

2
Kr

p
- GMN(0) )

λMN

p
) ∫0

∞
dω ω(JMMMN(ω) + JNNMN(ω))

(B35)

kMfN(t) ) 2eiωMNt eφMN(t)-φMN(0)[(λMN

p
+ GMN(t))2

+ FMN(t)]
(B36)

JMN,KL(ω) ) ∑
i

ci
(M) ci

(N) ci
(K) ci

(L)∑
ê

(∆Ei(ê)

pωê
)2

δ(ω - ωê)

(B37)

JMN,KL(ω) ) J(ω)∑
i

ci
(M)

ci
(N) ci

(K) ci
(L) (B38)

g(t) ) φ0(0) - φ0(t) - it
Eλ

p
(C1)

ğ ) -φ̇0(t) - i
Eλ

p

) i(φ1(t) -
Eλ

p ) (C2)

g̈ ) φ2(t) (C3)

kMfN ) ∫-∞

∞
dt KNM

L (t) (C4)

KNM
L (t) ) KNM

F (t){g̈NM,MN(τ) - [ğMN,MM(τ) - ğMN,NN(τ) +
2iλMN,MM][ ğMM,NM(τ) - ğNN,NM(τ) + 2iλNM,MM]} (C5)

KNM
F (t) ) exp{- i

p
(EN - EM)t - gNN,NN(t) - gMM,MM (t) +

gMM,NN(t) + gNN,MM(t) - 2i(λMM,MM - λNN,MM)t} (C6)

λMNKL ) -lim
tf∞

Im[ğMNKL(t)] (C7)

gMNKL(t) ) ∑
n

cn
(M)cn

(N)cn
(K)cn

(L)g(t) (C8)

λMNKL ) ∑
n

cn
(M)cn

(N)cn
(K)cn

(L)Eλ (C9)

KNM
F (t) ) eiωMNt+φMN(t)-φMN(0) (C10)

g̈NM,MN(τ) ) FMN(τ) (C11)

[g̈MN,MM(τ) - ğMN,NN(τ) + 2iλMN,MM][ ğMM,NM(τ) -

ğNN,NM(τ) + 2iλNM,MM] ) (λMN

p
+ GMN(τ))2

(C12)

Variable-Range Hopping Electron Transfer J. Phys. Chem. A, Vol. 107, No. 41, 20038417



(ref 67 and references therein). Because the states at G and GGG
are strongly localized, their energies are shifted byEλ, whereas
the bridge energies are shifted by less thanEλ becauseLM > 1
for these states. The size ofLM depends on the relative strength
of electronic coupling and disorder. The energy differencepωGM,
eq 23, that enters the rate constantkGfM for thermal activation
from a state localized at G to a bridge state M then is (eq 62)

whereEG andEM are the eigenenergies obtained from the site
energies and couplings by a diagonalization procedure at the
equilibrium configuration of the ground state (no charge carrier
present). Because the state G is strongly localized at G,LG was
set to unity as discussed above. BecauseLM will always decrease
with increasing disorder, on average, the absolute value of the
energy differencepωGM will become smaller, and therefore,
thermal activation from G to M will become more likely.

Appendix E: Possible Alternative Explanations of the
Flat Distance Dependence within the Nearest-Neighbor
Hopping Model

Within a nearest-neighbor hopping model, the large value of
x from eq 8 is unexpected because the free energy difference,
-∆G°, for hole transfer from the bridge to either the G or the
GGG is larger than that for transfer inside the bridge. A possible
explanation for such largex then could be that the hopping from
the bridge to the GGG and (or) to the G happens in the inverted
regime of electron transfer. To decide whether the individual
transfer steps occur in the normal or in the inverted region of
electron transfer, the standard free energy,∆G°, of an individual
reaction step has to be compared with the reorganization energy,
λ, for that step. There are no direct measurements of∆G° and
λ for all of the individual steps. A detailed discussion of
estimates resulting from different experimental47,48,57,61 and
theoretical60,68studies is given in Appendix F. Those estimates
provide no indication for the presence of a-∆G° that is larger
than the reorganization energy.

Another possible explanation for the largex could be that
the reorganization energies for the hopping from the bridge are
much larger than those for the intrabridge hopping. In a
numerical study on a model donor-bridge-acceptor system,16

the peculiar case in which the two reorganization energies differ
by an order of magnitude lead to a flat distance dependence.
Because in the present system neither the G nor the GGG are
solvent-exposed, such a difference in reorganization energies
is not easy to understand. However, as we saw before in an
extended states model, the extension of the bridge states
decreases their reorganization energies and thus gives faster
transfer.

Another possibility is a difference in electronic couplings for
inter- and intrastrand transfer,69 because the transfer in the bridge
is of the former and the transfer from G to A and from A to
GGG is of the latter type. Recent ab initio calculations44,45

yielded different results. In ref 44, similar intrastrand A-A and
interstrand G-A couplings were obtained, whereas in ref 45,
the interstrand G-A couplings were calculated to be 1 order
of magnitude smaller than the intrastrand A-A couplings.
Nevertheless, as seen in Figure 4, the localized states model
predicts a steeper distance dependence than is observed in the
experiment also for the latter difference in interstrand and
intrastrand couplings.

In summary, the microscopic parameters that would explain
the flatness of the experimental curve within a nearest-neighbor

hopping model seem unlikely in the light of recent independent
experiments and theoretical calculations.

Appendix F: Estimate of Free Energies and
Reorganization Energies

For a hole transfer from G to A, that is, for the reaction G+

+ A f G + A+, -∆G° in the gas phase can be estimated from
the vertical ionization potentials for G and A in the gas phase
to be approximately 0.2 eV.47 From measurements of oxidation
potentials in acetonitrite solution,48 a value of 0.47 eV is inferred
for -∆G°. However, ∆G° may well be solvent-dependent.
Recently, the effect of neighboring bases on the value of the
local hole energies has been estimated theoretically.60 It was
inferred that, except for bases close to the terminal, the nearest
neighbors of a base have the strongest influence on the energy
of a local hole at that base. If correct, the free energy difference
for hole transfer between two bases X and Y, where X has
nearest neighbors S and V and Y has nearest neighbors W and
Z can be estimated from the difference of local hole energies
of the triplets SX+V and WY+Z. The local hole energies were
calculated for all possible combination of triplet bases in ref
60. On this highly uncertain basis,-∆G° ) 0.36 eV would be
deduced for the reaction A+ + G f A + G+ at the GGG side
of the bridge.

Different values forλ have been measured in different
systems:λ ) 0.4 eV was measured for hole transfer between
intercalated ethidium molecules,5,6 andλ ) 1.22 eV was reported
from time-resolved measurements of hole transfer between a
solvent-exposed stilbene and a neighboring guanine in DNA
hairpins.61 The latterλ was decomposed into a contributionλs

) 0.23 eV from low-frequency solvent modes and a contribution
λi ) 0.99 eV from a high-frequency (1500 cm-1) quantum
mode.61 However, the distinction between intermolecular and
intramolecular contributions toλ on the basis of a measured
rate constant is quite uncertain, and hence, the influence of the
solvent could have been different than assumed there.61 Recent
quantum chemical and molecular dynamics calculations of
Tanaka and Sengoku68 on the same hairpin yielded a somewhat
largerλ ) 1.51 eV and a contribution of 1.25 eV to thatλ from
low-frequency modes with energies smaller than 800 cm-1.
Because of the solvent exposure of the stilbene, theλ might
have been larger than that in the ethidium study. In a recent
experimental study57 of hole transfer in DNA between an
acridine dye and a guanine,λ ) 0.6 eV was determined for a
nearest-neighbor reactant pair. For longer distances between hole
donor and acceptor, an even larger reorganization energy was
reported.57 All λ’s are larger or only slightly smaller than all of
the -∆G°’s.
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