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The aim of this work is twofold. In the first part, a detailed description is given of a specific vibrational
model, designed for calculations on the vibrational energy levels in benzene and benzene isotopic species of
Den symmetry. For the description of the-Gi stretch system in benzene, a local mode (LM) formalism was
applied, while, for the remaining non-@H stretch vibrations, a symmetrized mode (SM) treatment was
applied: this was called the combined LM/SM model. The model is based on a set of complex symmetrized
curvilinear vibrational coordinates, which can be expressed as simple linear combinations of Whiffen's
coordinates. The description in terms of complex symmetrized coordinates and wave functions allows for the
construction of a separable symmetrized infinite-dimensional vibrational basis set, which is of crucial importance
for large-scale calculations. In the second part of this work, using the described complex symmetrized LM/
SM vibrational model, calculations have been carried out on a large number of vibrational energy levels of
four benzeneDg, isotopomers. The aim of the calculations was to redetermine a reliable set of harmonic
force constants for benzene. Some of the force constant values obtained in the present work are substantially
different from previous determinations by other authors. Using the presently determined set of harmonic
force constant values in the calculations, a very good fit has been obtained to a large number of experimentally
measured vibrational (both fundamental and overtone) energy levels of various symmetries, belonging to all
four D, benzene isotopomers: ¢ids, CsDs, 3CeHs, 3CoDe.

. Introduction Fi 12whose values are most essential for the expansion in

The ground electronic state potential surface of benzene has®d 1. In general, two possible routes can lead to the determi-

been the object of numerous studled® For a semirigid hation OfFi'k'_ _ _ N
molecule such as benzene, the potential field can be expanded Chronologically the one established earlier was the empirical
as a Taylor series in terms of displacement coordinates from determination of the force constarits, which proceeds in the

the equilibrium position: following way. Regardind-ix as variable parameters, calcula-
tions are being perfomed (e.g., making use of Wilson’'s FG
V= (1/2)ZF“<$S< + (1/6)2 FiiSSS + ... 1) analysid) to establish a correspondence between a s&; of
0 K] values and certain experimentally observable quantities (mainly

_ . . e, . fundamental vibrational frequencies fogHz and some of its
Here S = symmetrized curvilinear (Whiffens) coordinatés, isotopomer& 816-27)  |In general, the empirical determination

Fi« = harmonic force constant;; = anharmonic cubic force Fix is carried out for each symmetry block of vibrations
constants, etc. Despite the large number of vibrational degrees '

; ; separately:® A full account of the work done in this direction
of freedom in benzene (30), due to the high molecular symmetry can be found in the benchmark paper by Goodman, Ozkabak
(Den), the number of independent harmonic force constants ' '

is 34, there being only 237 unique cubic force const&is, and Thaku# A serious problem with this approach comes from

: the fact that benzene is a strongly anharmonic molecule (mainly
etc. In general, the molecular potential energy surface can be L
- . . due to the anharmonicity of the-GH stretch bonds). As a result
expanded in a variety of coordinate types. Very often the

A : . ; of this many anharmonic force constafis; andFiy;, attain
expansion in terms of normal coordinates is used in preference y Rk, bl

o th symmetzed coordinasn hat case he nondagonal 707" *0I0Ie valhes a1 o fave (0 b faken i ccourt
quadratic force constant®;y vanish; however, the relevant P y 9

series expansion is more slowly convergent, because a considerf-orlu"’lesre“able determination of the harmonic force constant

able number of higher order force constants (cubic, quartic, etc.)Va o ) )
attain significant values. Another advantage of symmetrized ~ The second route, which is drawing enhanced interest lately,
curvilinear coordinates over mass-weighted normal ones is thatconsists of the ab initio or density functional computations on

the force constantiy, Fiyj, ... are identical for all isotopic ~ Fix®!9*%!* or even higher order force constanksy; and
species, which sustain tiik;, symmetry of benzene (e.g.¢ls, Fikj1-111528So far, the most accurate ab initio harmonic force
CeDs, 13CsHs, and3CgDg).23 field for benzene has been obtained by Martin, Taylor, and

A great deal of work over the years has been concentratedLee!? In general, the verification of the computationally

on the accurate determination of the harmonic force constantsobtained force field is carried out by using the harmonic force
constants as input parameters for the calculation of fundamental

T E-mail: rashev@issp.bas.bg. Fax: 00 359 2 975 36 32. frequencies or other quantities, which can be checked against
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the experimentally measured data. However, here the samemodel. A model of this type was previously used by Zhang et
problem arises again, which is due to the strong molecular al37:38 however in nonsymmetrized form. We have used a
anharmonicity: it is not clear to what extent the mismatch preliminary version of our model previously for studying higher
between the theoretically calculated and the experimentally C—H stretch overtone absorption specttd?

measured values is due to inaccuracies in the calculated |y our recent work® we have investigated only the totally
harmonic _force constantix or to the interference of the  symmetrical vibrational block A(v1,v2) of benzene. From a
anharmonic force constants, suctFag andFiy;,.%**4In fact, very good fit achieved between the calcul&feand experi-

the harmonic force constanks, are related rigorously to the  mentally measurée?23fundamental frequencies and, for
harmonic normal mode (NM) frequencies but not to the all four benzene isotopomersgds, CeDs, 3CsHs, 13CeHs, and
fundamental frequencies;, which are the experimentally 13c,pg a set of force constant valugs andF; 1 1 (character-
observable quantities. However, in such a strongly anharmoniczing the ring moder,), a set of force constants, f1 5, f1.3, f14,
molecule as benzene, the anharmonic corrections i — v; and fess (pertaining to the €H stretch system), andry

are quite large, especially for some of the modes. In second- gescribing the coupling between both vibrational systems) have
order perturbation theory (disregarding resonance effects), thepeen determined. In a subsequent wWrkhe E(visviev20)

anharmonic correctiona; are given by mode block was studied and the harmonic force constant values
Fis18 Fig19 F2020 Fis19 Fig20 andFig20 were determined
A= —%(1+d)— (1/2)inkdk — Gi (2) empirically from a fit to the experimentally measured funda-
=1

mentalsvig, 19, andvy (as well as some €H stretch overtone
energies) for benzene;B.17:18:31.40n both cases, limited scale
calculations have been carried out, encompassing only the
Hamiltonian terms, pertaining to a single symmetry mode block
in benzene, Ay(v1,v2)?° and B(v1sv19,v20),2° respectively. At
present it has become clear that the calculatf8#%involving

: . : only a single symmetry vibrational block, can yield correct
monic force constants, whose values are still less reliably known X ;
values for the force constants belonging to the ring modes, e.g.,

than the harmonic ones. Without going into further detail, we
going F1,1, Fis1a Fi910 Fis19 Fis20 Fi920 €tc., but not for the

just note that at present in the literature there exist several Setsnarmonic force constants. describing the KT stretch svstem-
of harmonic force constants for benzene, derived using different o 9 Y :
fss f1.2, f1,3 f1,4 Determination of correct values for these latter

methods, which have been discussed in refs 14 and force constants requires the implementation of large-scale
elsewhere. They differ substantially from each other. - . q plen 9
calculations, involving the Hamiltonian terms for all four

Our approach to an empirical determination of the harmonic . L
force constanf83Cis based on two main points. First is the symmetry mode blocks in benzene, containing-ahCstretch
vibration: Ay, Epg, B1u, Eru. Such large-scale calculations will

well-known fact that anharmonicity in benzene, although b ied out in th i K 1o obtai iricall
extremely strong, is almost entirely concentrated on the (six) . € carried out In the present work to obtain empirically an
improved set of harmonic force constant valéigd o, f1 3, and

individual C—H bond stretches. The €H stretch system in In addition th | iously obtaife@for the i

benzene is most adequately described in terms of the local mod(=.f1~“'dn 2 tion fe vaiues p:re\tnous y O” al or be.) r:qu |

(LM) formalism, where the anharmonicity is of entirely diagonal Mode harmonic force constants as Well as some cubic diagona
force constants will be essentially confirmed (with small

type31—34 The main advantage from using the LM approach S . , :
consists of the fact that, for the vibrational characterization of modifications), on the basis of a very good fit achieved between

the C—H stretch system in benzene, only a single (diagonal) the theoretically calculated and the experimentally measured
anharmonic force constarftss is required (instead of seven fundame_ntals as well as some overtone energies (of different
cubic ones in terms of symmetrized coordinat€s, s F277, symmetries) for all four benzerigs, isotopomers, €Hs, CeDe,

1 1
F22020 F21313 F7.7,% F7.2020 andF7.1328%), besides the four *CeHs, and**CeDe.

wherex;, Xk, andg; are the anharmonic constants aiés the
degeneracy of theh mode. The anharmonic constamis Xi,

and g; can be expressed analytically through the cubic and
quartic force constants ij andF;; xk. Thus, the relation between
harmonic,w;, and fundamental;;, frequencies involves anhar-

harmonic force constantlss 12 fi3 andfi4 replacing the This work is organized as follows. In section Il a brief outline
symmetrized force constarfs », Fao.20 F77, andFiz13 Second,  of complex symmetrized formalism in symmetric top point
we are making full use of the high molecular symmetDyj groups as well as a more detailed treatmeridgf(the benzene

by employing a specific complex symmetrized vibrational Symmetry group) complex symmetry species (irreducible rep-
treatment (basis sef§;353éwhich is outlined further below. The ~ resentations) is given. On this basis, expressions for the
main advantage from the completely symmetrized separablecurvilinear complex symmetrized vibrational coordinates (simple
(infinite-dimensional) vibrational basis set employed is that linear combinations of Whiffen’s coordinatgsare listed and
large-scale vibrational calculations can readily be performed discussed. In section Il the theoretical LM description of the
with reasonably small Hamiltonian matrix sizes. This is so C—H stretch Hamiltonian in benzene and its symmetry-adapted
because all selected basis states, required for a convergengigenfunctions is given in detail, in particular local and nonlocal
calculation on the molecular vibrational levels of a certain basis states of all possible symmetry types. In section IV the
symmetry type, can be chosen to belong to one and the samezeroth-order and interaction Hamiltonians are defined, as well
symmetry type. as the basis set functions in symmetrized and product form.
Taking all this into account, in our wotk as well as in Next, a search procedure for selection of an active space of
the present work, a specific combined vibrational model was basis vectors and derivation of the relevant Hamiltonian matrix
employed, designed to reduce the number of significant force is outlined, whose diagonalization is subsequently carried out
constants, required for the adequate description of benzeneusing a Lanczos tridiagonalization routine. In section V are
vibrational levels, to the minimum. This is achieved by using presented and discussed the results from the block-limited and
local bond coordinates (and force constants) for the descriptionlarge-scale numerical calculations, yielding they,A>g, Bay,
of the C-H stretch system and symmetrized coordinates and and B, fundamentals as well as some vibrational overtone
force constants for the non-aH stretch (“ring”) modes. This energies for the fouDg, benzene isotopomersgds, CeDe,
is called the combined LM/SM (SM= symmetrized mode) 13CsHe, and13CeDe. By adjustment of the calculated vibrational
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TABLE 1: Transformation Table of the Complex Symmetry TABLE 2: Character Table of the Symmetry Species of
Species of Point GroupDgh? Point Group Dgp?

Den Cs ' (p—y*) ' (y—y*) i Dén Cs c' c’ i
Ag=Axg = iAy 1 1 1 1 Axg 1 1 1 1
Au=AxEiAy 1 -1 -1 -1 Agg 1 -1 -1 1
By=Big+iBy  —1 1 -1 1 Ay 1 1 1 -1
B, =By, +iBuy, -1 -1 1 -1 Az 1 -1 -1 -1
Eiga F 1 1 1 Big -1 1 -1 1
Eigo F* 1 1 1 Bag -1 -1 1 1
Eiua F -1 -1 -1 Biu -1 1 -1 -1
Eiub F* -1 -1 -1 Bou -1 -1 1 -1
Eoga F2 1 1 1 = 1 0 0 2
EZgb FZ 1 1 1 Ezg -1 0 0 2
Eoua F2 -1 -1 -1 =M 1 0 0 -2
EZub FZ -1 -1 -1 EZu -1 0 0 -2

@ The notation ¢—1*) attached to the symmetry operatiosand a Reference 1. X« A=S ExB=E,EExB=E,E xE
¢’ means that, in addition to multiplying by the indicated factor, =E, x E;=A;+A;+ E;, B x E;=B1+ B+ E;, g x u=u, and
complex conjugation must also be performee: space inversioncs uxu=g.

= rotation about the top axis of the molecule #8. c; andc;” =
rotations by about two axes, perpendicular to the top axis of the conjugated CSSs (described by complex conjugated functions),
molecule, and perpendicular to each others €73, andF* = e 753, e.g., Bu — (Ewa Ewp), Exg = (Exga Exgy), etc., which can

SxA=S, Eiabx B = Ezva Ezap x B = Eiba Eiba X Eiba= Ezan : i
Ezab X Eina= A, Esap X Espa= A, E1ap X Esap= B, Erapx Esna= effectively be regarded as 1-D symmetry species D@ﬁ_,
Ewa g x U=U, and ux U= g. analogous to those occurring in the point graCg! There is

important distinction in the definition of symmetry operations

energies to the experimentally measured frequencies, values fol€2 and ¢ (rotations by z/2 around two in-plane axes,
the most important harmonic and anharmonic force constants,Perpendicular to each other) between Tables 1 and 2. In the
relevant to the &H stretch vibrational system as well as to Ccase of CSSs (Table 1) besides rotations, these operations also
the relevant ring vibrations in benzene, have been determined.include complex conjugation of the function transformed (e.g.,
In section VI we conclude. Eiuvaand Byp are transformed into each other). The nondegen-
erate real symmetry speciesgAAzg By By etc. (Table 2)
are replaced by CSSsyAB,, etc. (Table 1). These latter
symmetry species are a new concept and should be explained
in more detail. The real symmetry specieggATable 2) is
In Dgn Symmetry (as well as in any symmetric top point readily seen to transform according to thgs¥mmetry species
group) it can be showf that specific “complex symmetry in Table 1. However, the symmetry specieg Aable 2) does
species” (irreducible representations of the group) can be not transform like any one of the complex symmetry species
defined, replacing the conventional real representations (sym-displayed in Table 1. But if we take the produidg the
metry species).For a quantum (molecular) system, belonging obtained complex function is readily seen to transform according
to a symmetric top point group, the Hamiltonian eigenfunctions to CSS A again (Table 1). What is more interesting, a complex
(electronic, vibrational, etc.) can be defined in complex form, function can be defined ds= (A1 + iA2g)/2Y? (whose real
as eigenfunctions of the angular momentzoomponent as well and imaginary parts are ortho-normalized and transform ac-
(z is the symmetric top axis). The main advantage from the cording to the symmetry speciesifand Ay, respectively),
introduction of complex symmetry species (CSSs) is that they which transforms according to the CSg (Fable 1). Functions
behave effectively as 1-D (nondegenerate) symmetry speciesof this type, with both real and imaginary parts nonzero,
in the sense that (i) they are multiplicative, i.e., the product of naturally arise in cc pairs, as the excited vibrational states
any two CSS functions belongs to a well-defined CSS of the (overtones) of a 2-D harmonic oscillator, being the eigenfunc-
group again, and (ii) a Hamiltonian matrix eleméeit kL] can tions of both Hamiltonian and angular momentmtomponent
be nonzero (and totally symmetric) only in the case wiien  operators. In the general case, a product of two functifins,
and |kObelong to one and the same CSS. Otherwise it will andf,, belonging to the complex symmetry speciesand
necessarily be zero. Such an approach allows the symmetryEiun respectively (which do not belong to the same cc pair,
properties of symmetric top point groups (where doubly i.e.,fi* = fy), is a function fs, belonging to the §CSS of the
degenerate irreducible representations E occur) to be reducedyeneral form, i.e., with both componentsgand Ay nonzero,
to the simple multiplicative form of abelian groups (with orthogonal, and normalizedfa(Ag) = fi(E1ug f2(E1un) = (Axg
nondegenerate irreducible representations only). Using CSSs;+ iA2)/2Y2 In a similar manner, the complex symmetry species
it is possible to define readily infinite dimensional molecular Ay = Azy £ iAwy, Bg = Big £ iBag, and B = Bay & iByy have
Hamiltonian eigenfunction basis sets (electronic, vibrational, been defined in Table 1.
etc.) in separable (product) form. A brief discussion is due concerning the correspondence
In Table 1 the transformation properties of complex symmetry between multiplication rules for real symmetry species (Table
species of the symmetric top point groDg, are summarized, ~ 2) and CSSs (Table 1). E.g., consider the rule (Table 2)
under the basic symmetry operations (generators) of the group.
In the same table also the multiplication rules for the CSSs are E1ux Epy=Eyg+ Byg+ By 3)
given. Table 1 can be compared to the well-known character
table for this group (e.g., ref 1), displayed in Table 2. There In the case of complex symmetry species, using,{HE;uy)
are several important distinctions between real and complexinstead of &, and (Bus Eaup) instead of kg, the following
symmetry species. Each real 2-D symmetry species (e:g., E system of multiplication rules corresponds to the above rule
Eyy etc., Table 2) has been decomposed into two complex (eq 3):

II. Complex Symmetry Species forDg, and Symmetrized
Curvilinear Vibrational Coordinates for Benzene
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Elua
E.px E

x Epa=By =By + By, E

Tlua
E ElubX E2ub= Bg* =B

X BEpup= Ejgp TABLE 3: Complex Symmetrized Vibrational Coordinates
(4) g of Benzené

2ua ™ 1ga 19— I BZg St S S8 S S5 Ss

As already discussed in our pervious wé?R® benzene gzg(“g:;ﬂg) g gG* 3((3*)2 gg(G*)g gg(G*)4 g%G*)S
. . . . A |7 29
vibrations can be described in terms of complex curvilinear /(e ") g G e e gG* G

symmetrized vibrational coordinatgg(transforming according oA E1ud) ig igF*  ig(F*)2  ig(F*)® ig(F*)*  ig(F*)®
to the CSSs oDgh, Table 1), which are obtained as simple linear  dzoi(Exu) —ig —igF  —igF?  —igF®  —igF*  —igF®
combinations of Whiffen’s symmetry coordinateExpressions Qus(Bu=iBuw) ig —-ig1g —ig ig —ig

for the gx coordinates as linear combinations of local (bond

X . . . t1 t2 t3 ta ts ts
stretch and angle distortion) coordindttas well as vice versa,

i i i i iven i QA=A g g g g g g
since the tran_sformatlon matrixes are unitary, are given in Table deEad) gG g g gG*? oG  gGH
3. T_he coordlrjateqk have already been mtroo_luced inref 36,  ggy(Ergn) gGs g oG 9G gG* 9G
in slightly modified form. These complex coordinates have been q4B,=B2) —g g -g g —g g
used in our previous work on benzene and will be used in the Gi9dEiud oF*»® g gF*  gF)?  gF*)?  g(F*)
present work as well. Cho(Erur) 9P g oF gP 9F gF

agt ot ast oty sty ot
Ill. LM Symmetrized Description of the C —H Stretch dEor) glo géi g(éf)z g(G4*0)3 g(GS*O) y 9(2*0)5

] 5 H 6: 29

Vibrational System in Benzene Gen(Ezo) g oG oG oG? oG* oG°
The zeroth-order HamiltoniamCH for the C—H stretch QBy=iBw) ig  —ig g —ig ig —ig

vibrational system in benzene is written in the form fise Poso Biso Biso Beso Beso

6 hz 32 B(Ag=iA2g) g ig ig s ig , ig y ig ]
CH _ g — _ qrassi2 oo E2g9) ig igG*  ig(G*)* ig(G*)® ig(G*)* ig(G*)
HO Z 2955 P + Ds(l e ) (5) ng(Eng) *ig *igG *ing *igG3 *igG“ *igG5
1= 83 = _ _ _
hs(B=B2) g -9 g -9 g -9
. ) . . . s Erud) g igF*  ig(F*)?  ig(F*)? ig(F*)*  ig(F*)?
consisting of six uncoupled identical Morse oscillatags. = Quet(Exu) —ig —igF —igF2  —igF®  —igF%  —igF®
1/my + 1/mc (Mmy, me = the masses of the H and C atoms,
6]10 62&) 53to 64to 55&] 66t0

respectively),as = the anharmonic parameter, abd = the
dissociation energy. The Morse potential can be expanded in%edEzxq  igF* igF*G* igF*(G*)* igF*(G*)* igF*(G*)* igF*(G*)°
powers ofs: QueolEau)  —igF —igFG —igFG? —igFG® —igFG* —igFG®

Gu(Bg=iBzg) ig  —ig  ig —ig ig —ig
— 2 __ 3 4
Ds(l —€e 85) - (1/2)f3532+ (1/6)fss§ + (1/24)SSS§ + ... Y10 720 V3% V4S0 V5% V6%
(6) s(By=iBo) g g g . —-ig g g
. hod E1gd) ig igF*  ig(F*)?  ig(F*)®  ig(FF)* ig(F*)
wherefss= 2Dgas)?, fsss= —6D4(ag)® = —3adss etc. are diagonal thoo(Eagp) —ig —igF —igF?2  —igF3  —igF*  —igFS
harmonic, cubic, etc. force constants. Hence, all force constants ti(Av=Az2) ¢ g 9 9 9 .9
of a Morse oscillator, of arbitrary order, can be expressed qm('é%a) g 1gG . @_(GGQ 'E_(GGg 'E’_(GGZ 'EJ,(GGg
through the two parameter®s and as. A Morse oscillator Gure(Ezur) 9 g '9 9 9 9
Hamiltonian is exactly solvable, with eigenfunctiofrég]and @ Conversion matricegy of complex symmetrized vibrational
eigenvalueE,: coordinategy in terms of curvilinear internal coordinates (s, i, o,

Bi, v, 0i) and vice versa. Rowsg = Y AiX. Columns: i = > Ai*q.

1 1\2 S andtp are equilibrium C-H and C-C bond lengths, respectively,
En: wCH(n —+ E) — XCH(n —+ E) (7) =1/612 F = g8 F* = g3 G = @3 andG*= e 273,
wherewey = (1/27)(fsgs) 2 = harmonic frequencyscy = (1/ below. To introduce the necessary notation
2)wch(aks)? = anharmonic constant, argd = [A(gsdfs9 32 1Lt
; . oH ;
The eigenfunctionsy of Ho ar(Z products of six Morse @ = |IL;SO;mn,. k= —Y Cmy e K (8)
oscillator eigenfunctionsy = [1i=1°|niG] corresponding tay =
excitation quanta in théth oscillator, the energy of such a
configuration being given b¥, = ¥i=1°E,. E.g., [204|1[Q = where L = the normalization factor (it can take one of the

2113 is an eigenstate which has two excitation quanta in bond following values, 1, 2, 3, 6, 125 = the (complex) symmetry
oscillator 1 and one quantum in oscillator 3, while oscillators 2 species ofp, f = the type specifier, which will be introduced a
and 4-6 have zero excitation quanta. A configuratigns of little later, the subscript+k should be read as-k—6 whenever
purely local type, since only one bond oscillator (iltle) is i+k exceeds 6, and the symmetrized state is obtained by rotating
excited withn quanta, while a state with more than one oscillator the initial configurationmn,...ks L — 1 times in clockwise
excited is of nonlocal character; the stronger, the more evenly direction around the benzene ring by an appropriate angle
are the excitations distributed among the six bond oscillators. (fraction of 2r) and multiplying each time by an appropriate
A state (configuration)y = []i=:|ni[lis said to belong to the  phase factoCy. In ref 29 expressions have been given for the
n = []i=1®n; overtone system. A1g symmetry states only, which are required for investigation
To obtain complex-symmetry-adapted orthogonal wave func- of the A.g(v1,v2) vibrational system in benzene. In the present
tions ¢, appropriate linear combinations of the configurations work, the C-H stretch states of all possible symmetry types
1 must be taked?-34 which can have one of the following are described in detail and an algorithm is designed for
complex symmetry species (Table 1) A& Aig, Ag = 1Ay, generating these states.
Bu = iB1y, Bu = Bau, Ezga Ezgh Erua Erub This is an entirely Overtone manifolch = O consists of one # (the ground)
combinatoric problem, which can be solved in the way described state, with allng = 0: ¢o = |1;A14,0...01]
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Next, overtone manifolsh = 1 contains six states, each of
them obtained from the initial configuration(... by using the

Rashev

the configuration d1,0s... of the symmetry speciesgA= Az,
Bu = iB1u, Exga Exgn E1ua and By (S-type). Here we give only

phase factors identical to those used to obtain the CST the Ay state:
coordinatest, Ois, Qrap and Ooap from the six local bond
stretchess (stype, Table 3):

1 5
123 $10= 16;A15 11,0 T2001+k12+k03+k04+k05+k16+k
1= 16,A1 51,0 6721(2011+k02+k'"06+k =

And to finish with manifoldn = 2, there is still the configuration

i 5
i
— 6B =iB. ‘1.0 1K
@2 = 16:B,=1By1y 61’21<ZD( DLy 0zc-- O 1114, which yields three more symmetrized states:

i 5
I 2
@3=16;E, 51 D=—ZD(F*)'<1 O ic--0s L 1
3 ua—1 6L2E 2Tk ©) @25 = I13iA15 111, 0= 31/2; 1, 10511051114 +105 11061k

e o —ig k 2
¢s= 0B L= 61/2|<;F LDz G Poe = |3;E296; 1,1,0= %IZKEO(G*) k11+k02+k03+k14+k05+k06+k
15 37 (11)
¥s5 = |6;E5g5 11— TZ;ZO(G*) “U Oz O 12,
6= @27 = 13 B 111,05 3T/2kZDG 11105110341 141105 1106 4

1 5
e k
Pe = |6’Engv11D= 612 E G110k 05

Next, consider the = 3 overtone manifold. This manifold
contains 56 symmetrized states in total. In the first place, there

21 symmetrized states. Here there are already both purely local® © > purely localgtype) statesgzs-qss, arising from the
configurations (giving rise to 6 symmetrized states) and nonlocal confl_guratlon 3 (located at the lowest energy W'th_m the
configurations (15 symmetrized states). The six purely local Manifold, analogous to the= 1 andn = 2 cases, considered
statesp;—q1, are obtained in a manner identical to that of the above). Here, only the first one of them will be displayed:

n = 1 states (nine). As an example, the first one of them is
shown here:

whereF = eirr/3, F* = efi:r/3’ G= e2irr/3’ andG* = 672irt/3_
Next, overtone manifoleh = 2 is considered, encompassing

1 5
12 @25 = 16;A143,LF 722031+k02+k"'06+k
p7=16,A152,[ = 6TZKZ>21+|<02+1<---Oe+k 67%=

Next, there are six nonlocal states,:—¢1s, originating from The remaining 47 states belonging to the= 3 manifold are

the configuration 11,0s..., which are obtained analogously to ~©f nonlocal character. There are s&type) statespzs—gss,
thet-type (local bond € C stretches;) coordinatesy;, 014, Ogap originating from the configurationgl;1,, the first one of which
and gioap (Table 3): is

5

1
P13 = 16:A151,150= _22001+k12+k13+k04+k'"06+k 12
= P34 = 16:A15161,1,0= 6T/2k2011+k12+k03+k"'16+k

1 5
®14= 16;B;=By; 1,15 = TZ(_l)kol+k12+kl3+k'"06+k
= Next, there are twh = 2 statesgpao andgas, originating from

1 5 the configuration 11315, which are given by the expressions:
¢15= 16;Ey 5 11500= GT’ZKZ)(F*) k01+k12+|<13+|<---06+k
B (10) 1

15 Pa0= 12:A151,1510= 2T/2(111315 +1,1,1)
¥16= 16;E1p 1 150= TZKEOFk01+k12+k13+k"'06+k 1 (12)

67%= P41 = 12;B5=B151,1515= 2T/2(111315 -1,1,1)
1 5

—rE - K

P17 = |61E29a! 1,1,0= TZkZ)(G*) 01 Lo icda i Os

6= The remaining configurations belonging to= 3 are asym-
metical with respect to botty’ andc,” rotations (Table 1) and
therefore are symmetrized &s= 12 states. Consider first the
configuration 21,, which gives rise to 12 symmetrized states,
Pa2—Ps3:

1 5
P18 = 16:Epgp 151500 GT/ZKEOGKO1+k12+k13+k"'06+k

Next, there are six nonlocal states,e—g24, Originating from
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5
P2 = 112,A=A42,1,0= 1—

1
21’sz0

( 16+ k21+ k02+ k03+ k04+ k05+ k + 21+ k12+ k03+ k04+ k05+ k06+ k)

H 5
i
Qa3=112;A=1A,;2, 1,0 —
Ag=iAzg ]

(21+ k12+ k03+ k04+ k05+ k06+ k~ 01+ k02+ k13+ k24+ k05+ k06+ k)

H 5
|
@uu=12;B,=iB,;2,1,00= —Z}(—l)k
’ 1Y%
(2111121054104-1105+1 06+ — O14102-1d51424+105+106.+1)
5

1
Pas= |12;B,=B,;2,1,0= ——
45 2we1-2 121/2k:

(211124103110411051106 1 T 01410211 134124110541 06140
= 12,5,{9);:2,1,0F 5 (F%)"
Pus= 112,E,,{9);241, 121/21(;
(2111200310411 051106 11 T 2141021103410411 051 L6140
—j 5
P47 = 112,E,((9);2,1,00= _ZkEOFk
1Y%

(211122110511041405-1406+ T 2140241054104 05-41L6+1)

N (13)
Pas= 112;5 {1);2,1,0= E/ZkZO(F*)

(2111241031104-11051106 11 T 01410211 134124110541 06140
126, (02,1, — 5Fk
$a9= 112,E,(1);2,1, 121’21;)
(211124103104-11051106 11 T 01410211 134124110541 06140
. . 12 5\ K
¥s0= 112,E,4{9);2,L,L= 121’2kZo(G )
(21112410310411051106 11 T 01410211 134124110541 06140
1 5
¥s51= 112,E,4(9);2,1,00= _ZIZOGK
1244
(211112110341041195 11061 + 014102 1115112410541 06 110
i 5
Pso = 112:E50B): 24 1,L= Jzk;(e*)k
(21+k12+ko3+ko4+k05+k06+k B 21+k02+k03+k24+k05+k16+k)
—i S
P53 = 112;E,4):211,0= EZKZDGk

(21+k12+k03+k04+k05+k06+k - 21+k02+k03+k24+k05+k16+k)

As is seen, an asymmetrical configuration such ds gields
12 states with the following symmetries: there are twe,4E

Eiup) pairs of stype andt-type, respectively (Table 3); there

are two (kga Exgn pairs of stype andf-type, respectively
(Table 3); the remaining symmetry species ageA1g Ag =
iAgg, B, = iBlu, and B, = Bo..

The remaining two asymmetrical configurations from the
= 3 manifold, each of them giving rise to= 12 states (with
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the symmetries described above for th&2Zonfiguration) are
2113 and 11514,

So far, all possible schemes, required for the symmetrization
of any configuration, belonging to arbitrary overtone nuber
have already been explored. An algorithm has been designed
and incorporated into the general code for calculation of benzene
vibrational frequencies for automatic symmetrization of an
arbitrary configuration, arising in the course of the search and
active space selection procedure.

IV. Zeroth-Order and Interaction Hamiltonians, Basis
Set Functions, Al Search Procedure, and Hamiltonian
Matrix Manipulation

Ho®H (eq 5) is the zeroth-order Hamiltonian pertaining to the
C—H stretching system, whose symmetrized eigenstates are the
functionsgy, described in detail in the preceding section. The
full zeroth-order Hamiltonian (for the present model treatment)
is written asHp = Ho®H + Hg™"9, whereHg™M9 is the sum of
(1-D and 2-D) harmonic (or Morse) oscillator Hamiltonians
describing the ring symmetrized modes in benzene, in terms of
complex symmetrized coordinatgs(Table 3).

The model representation of the ring modes in benzene
requires some additional clarification. These modes are described
as symmetrized modes (in terms of complex symmetrized
coordinates) in contrast to the-&1 stretches, described as local
modes. According to their symmetry species, the symmetrized
modes are either 1-D (e.g.aBand Ay or 2-D (e.g., &y, Exg,
etc.). The easiest way to proceed is to regard them as (1-D or
2-D) harmonic oscillators, characterized by harmonic frequen-
cies wx. The formalism employed for description of 1-D and
2-D harmonic oscillator Hamiltonian eigenfunctions (and their
complex symmetry species), as expressed in terms of complex
symmetrized coordinateg, has been detailed in our previous
work3536|n the present work, some of the symmetrized modes
involved will be considered as anharmonic oscillators, in the
following empirical sense. For a vibratidg described as an
anharmonic 1-D oscillator with harmonic frequenay and
anharmonic constants, the energy levels are given by a
spectroscopic formula analogous to eq 7:

En = ox(n + 1/2) + x(n + 1/27

. In the framework of the Morse oscillator formalism, the
anharmonic constamt can be related to an effective cubic force
constantF'ykx, through the relatiof’ . x = —3(2wi) Y2 This
“effective force constant” does not have a distinct physical
meaning in the case of a nontotally symmetric mode (i.e., any
mode, other tham;) but is a parameter representative of the
overall effect of several (unknown) cubic and quartic force
constants. Even in the case of the totally symmetric made
F'1,11does not usually coincide with the molecular specific force
constantry 1 5, but it is an empirical parameter describing the
overall effect of a multitude of anharmonic force constants
contributing to the anharmonicity of thg mode.

Next, an empirical formula describing the energy levels of a
2-D anharmonic oscillator i&(n,l) = wy(n + 1) + x(n + 1)2
+ gd?, wherel = n, n — 2, ..., —n. By substitutingn = n, +
np andl = n, — n, (N, andn,, are the occupation numbers of the
two separate oscillators) and taking for simplicity= gk, this
formula takes the fornkE(n,l) = E(nanp) = ww(ng + 1/2) +
2x(nNa + 1127 + wi(np + 1/2) + 2x(n, + 1/2¢. Hence, the
energy levels of a 2-D oscillator can be obtained as the
superposition of two identical anharmonic oscillators, whose
harmonic frequency isx and anharmonic constant is2 In
that case, the effective cubic force constant characterizing the
anharmonicity of this oscillator can be given by a formula
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analogous to that in the 1-D oscillator ca$éx = —6(wix) 2
In the following, the “effective cubic force constan®s'y k for

Rashev

(d7a q7p) (Table 3).Gjk are Wilson’s nondiagonaB-matrix
elementsandF; x are the relevant nondiagonal harmonic force

some of the considered 1-D or 2-D symmetrized modes (in constants. One of the coordinatesr k can be a €H stretch

addition to the harmonic force constaris determining the
harmonic frequenciesvy) will be regarded as adjustable

coordinate @, 07ab Gi3 Coap- IN Such a case, for the calculation
of the relevant interaction Hamiltonian matrix elements, this

parameters, whose values will be varied to reproduce the coordinate has to be expanded in terms of the local bornHl C

experimentally observed fundamental frequenacigsas well
as some overtone levels.
In the calculations presented below, only the following ring

stretches (Table 3). Besides the terms of typds¢ andH )X,
the quadratic interaction Hamiltonian also contains three small
terms, corresponding to the (potential) coupling between dif-

modes belonging to the four symmetry blocks in benzene ferent C-H bond stretches:

containing a G-H stretch vibration (Ag, Exg, B1u, E1y) have
been included:

(A1g block) v, mode, described by symmetrized coordinate
g1 = S (Whiffen’s coordinaté); the harmonic force constant
involved isF; 1, and the effective cubic force constantis 1 i

Eiu block) vis, v19 modes; each of them is described as a
2-D oscillator in terms of symmetrized coordinatpg.anddisn
(of complex symmetry species and Byp, respectively)fioa
(E1ua), @andtop (Eaup) (Table 3); the harmonic force constants
involved areFig1s and F1919 and the effective cubic force
constant ig'15.18,18 (

B1u block) v12, mode, described as a 1-D oscillator in terms
of the coordinatey, (complex symmetry species,B= iBy);
the harmonic force constant involvedks; 13 (

Eog block) vs, vs, v9 modes; each of them is described as a
2-D harmonic oscillator in terms of symmetrized coordinates
Osa (E2gd), Oeb (E2gn), Gea (E2ga), dsb (E2gh), Goa (E2gd), and gop
(E2gp) (Table 3); the harmonic force constants involvedfagg
Fss andFg o, and the effective cubic force constants Blgg s
and F'g,g,g

The eigenfunctiong of the ring zeroth-order Hamiltonian
H¢"9 are obtained as products of harmonic oscillator eigen-
functions yk(qx) for each one of the ring modes summarized
above:

xX= |_|Xnk(qk) = INy,Ny5Ng, Nepy -1 (14)
K

The eigenfunctiongiUof the full zeroth-order Hamiltonian
Ho = Ho®™ + Hg™™9 are obtained as the product gf (the
symmetrized eigenfunction of the-& stretch Hamiltonian
Ho®H) and of y (the symmetrized eigenfunction of the ring
HamiltonianHo®H):  [i0= ¢y. All of the harmonic oscillator
eigenfunctiong(ax) have well-defined CSSs (which has been
detailed in our previous wofR), and therefore, their product
has well-defined CSSs as well. And singg is also sym-
metrized, the basis vectors of the present descrigiidalso
have a well-defined CSS.

H =V, =1 55, + 5,8+ ...+ §8) + S8+
S8 T . T 53) T8 + 55+ 555) (17)

wherefy 5, f1,3 andf, 4 are small nondiagonal quadratic force
constants:® The complete form of the quadratic interaction
Hamiltonian is given by

HU — 12 4 12134 H(d)6'7+ H(d)6,8+ H(d)6,9+ H(d)7,8+
7,9 8,9 18,19 18,20 19,20 CH

Ha *+ Ha®* + Ha> "+ Ho® 2+ H 02+ H,
(18)

The quadratic nondiagonal force constants involved in the
interaction Hamiltoniandnt areFl,z, Flg,lg F18,20 Flg,zo F12,13

Fey7, Feyg, Fe’g, F7’8, F7’9, ngg, f1,2| f1’3, andf1,4, In this work we

are not taking into account any cubic or higher order Hamil-
tonian interaction terms.

In our preceding work9 the calculation of matrix elements
of the type [|HY3kE] with both basis functiongiCand |k
belonging to the totally symmetric speciesi,gAhas been
discussed in considerable detail. For the general case, jifen
and [kObelong to an arbitrary CSS, and when other terms of
the interaction Hamiltonian besidead'? are involved, the
calculation of coupling matrix elemenfH™|k(is a nontrivial
task. The main difficulties arise in the calculation of that part
of the matrix element involving a symmetrized-€ stretch
coordinate. A specific algorithm has been designed for calcula-
tion of the C-H stretch containing part, and incorporated into
the general algorithm, employed for computing the matrix
elementdi|Hnt KCR9

The Al search procedure, employed for selecting an active
space (AS) from the infinite manifold of available symmetrized
basis stategk[] and setting up of the Hamiltonian matrix, has
been delineated befof@3° Starting with an appropriately chosen
initial basis state|0[] the algorithm proceeds to select all basis
stategkJ(of the same CSS 460, coupled to this state through
matrix elements of the interaction Hamiltonib#". In practice
this is implemented by applying successively |6hlall terms

Since the modes have been described in terms of Symmetrizeq’rom Hint (18), expressed in operator form. Simu|tane0us|y, the

curvilinear (not normal) coordinates, two basis statgsand

energieskEy of the selected statdkl] as well as the relevant

|kd(belonging to one and the same CSS), can be coupled tocoupling matrix element&|Hi"|k(] are calculated and stored

each other by quadratic interaction Hamiltonian terms:

82

ik_ 32
H G 0,00, *

+ F g (15)

for the case of two nondegenerate coordinates, @.gandds,
and

& &
00,00 9090

H(d)i'k = _hZGi,k( J *+ Fi (@%b Tt GinOa)
(16)

for the case of two degenerate coordinates, egga, §sn) and

into computer memory, as the diagonal and nondiagonal
elements of the Hamiltonian matrbtx andHoy, respectively.

The search algorithm has several adjustable parameters. One
of them isC, which determines the minimum matrix element
to energy difference ratio, for which a new state is selected. In
the next stage of the search, each one of the initially selected
stategkllis explored, applyindd™ in operator form as above,
and as a result more basis stajésre selected. Their energies

E; and coupling matrix element&|/H|jCare calculated and
built into the Hamiltonian matriX; x. This procedure is carried

on until a sufficiently large and representative AS of dimen-
sionality N (which is another one of the adjustable parameters)
has been selected. For the purpose of the calculations in this
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work, the initial statd0Cwas usually chosen as one of the 8@ increasing the dimensionaliti, the calculated €H stretch
stretch fundamental€= |6;S;1;[{whereSis one of the CSSs  fundamental frequencies (at3000 cnt!) were found to
Ag = A1g By = iByy, Exga and Byg), with no ring modes excited. ~ converge at a much smaller value Bf (as a rule around

To obtain the eigenvalues of the selected Hamiltonian matrix ~40000), as compared to the nor-8 stretch (ring) frequen-
Hix it had to be diagonalized numerically. For this purpose, cies, which required values of 70000 and higher to converge.
because of the large dimensionality a Lanczos tridiagonal- It was also found that, for a given set of input force constant
ization procedure has been ugéd? For each isotopomer of  values, the converged values of the ring fundamentals obtained
CsHs explored, an additional calculation had to be carried out from the (rather difficult) large-scale calculations practically
to obtain the energy of the ground vibrational state. For this coincided with those obtained from the (quite fast) block-limited
calculation, the initial state was chosen|@5= |1;A;400 To calculations. However, this was not true for the-i& stretch
obtain the molecular vibrational levels, which can then be fundamentals, whose values obtained from the block-limited
compared to experimentally observed fundamental, overtone,calculations could differ by as much as-280 cn1! from the
or combination frequencies, the ground vibrational state energy results of large-scale calculations. Of course, theHCstretch
must be subtracted from the computed eigenvaluds; pfin frequencies obtained from the large-scale calculations should
each calculation, the dimensionalityof the selected AS has  be considered as the correct ones. Both block-limited and large-
been increased, and some other parameter values varied, untiscale calculations have shown that the ring mode fundamentals

convergent and realistic results have been obtained. calculated were sensitive to the input values of the harmonic
force constants related to these modes, EQ.,F1.2, Fs.6 Fo.7,
V. Results and Discussion etc., but depended negligibly upon the values of the force

) ) constantdss f1 2, f13 andfiy 4 characterizing the €H stretch
As already mentioned above, in benzene there are foursystem. These latter force constant values were however
V|brat|0na| Symmetry b|OCkS |nV0|V|ng a-€H Stre'[Ch Vlbl’a- determ|ned for the four eH stretch frequencieszl V7, V13,
tion: Agg(v1,v2), Exg(vev7,ve,ve), Bruvizvia), Eru(vievievao). and v only, not affecting the ring fundamentals.

In general, using the model described above, two types of From these observations the following practical rules could

calculations are possible and_ have been pe_rformed in th? Preseile gerived, which were used for adjustment (variation) of the
work, according to the specific case considered. The first one input forcé constant values to obtain a good fit of the

IS bIQCk'I.'m'tEd calculatlo.n,. i.e., taking mto ?‘CCOU”t only the theoretically calculated fundamentals to the experimentally
H_amll_tonlan terms pertaining to .the vibrations of a smg_le measured fundamentals. As a first step, the harmonic force
Vlrtc)gatlc?unrzl ism;r?aelob?ucsk t(;Ntlrtwhe Seﬂl\liﬁgvigvvwggng%%aagz constants pertaining to the ring modes can be determined, using
guch bIock—Iimitedgcalculations have already been erformed fast block-limited calculations, by adjustment of their values
; . 20 o y pertol (regarded as variable parameters), until a good fit was achieved
in our previous worke3%for the vibrational blocks of symmetries of the calculated to the experimentally measured ring funda-

Ag and B, The second type of (large-scale) calculation mentals. Having determined the values of the ring mode

incorporates all t.he Hamiltonian terms pertaining to all the harmonic force constants{, F1 5 etc.), as a second step, large-
vibrations belonging to the four symmetry blocks in benzene scale calculations can be performed to obtain the best values
containing a C-H stretch. In the block-limited calculations, the P -

for the force constantkg fi1 5, f13 andfi 4 characterizing the

available vibrational level density is small. As a result of this, C—H stretch svstem. Fortunately. these large-scale calculations
the Hamiltonian matrixes required for convergent results to be 1Sy . Y.t ge-
do not require very higiN values, since, as pointed out above,

obtained are comparatively small dimensiomahot exceeding . N
2000 as a rule. Hence, the block-limited calculations are tArhOeogOHstretch fundamentals converged already at &

conveniently fast, because they do not involve manipulation of . .
large dimensional Hamiltonian matrixes. Block-limited calcula-  Table 4 presents the results from the calculations on the ring
tions can easily be performed for each one of the four vibrational fundamental frequencies belonging to the four KL stretch
symmetry blocks involving a €H stretch by selecting basis containing symmetry blocks in benzene for each one of the four
states (of the relevant symmetry type) whose composition Den isotopomers €Hs, CeDe, **CeHs, and *3CeDs. These are
includes only excitations of the vibrations belonging to this the values corresponding to the best possible fit with the
block. On the other hand, in the large-scale calculation, the level experlmen.tally measured fundam.entals_ The latter are also
density involved is already quite high and very large dimensional displayed in the table for comparison. A survey of the data
Hamiltonian matrixes are required (on the ordeNo& 70000) pres_ented in Table 4 shows that there is a particularly good fit
to obtain convergent results. Of course the large-scale calcula-2chieved of the calculated to the experimentally measured
tions are expected to yield results which are closer to reality, fundamentals, practically for all foude, isotopomers. The first

as compared to the block-limited calculations, because theyand second overtone energy levels of the totally symmetric mode
encompass more fully the levels of the-8 stretch vibrational V1 are also shown in Table 4 and are seen to be in satisfactory
system of benzene. Therefore, the feasibility of the results agreement with the corresponding experimentally measured
obtained from block-limited calculations should be checked Values:>*3

against the results from the large-scale calculations performed The values of the relevant harmonic force constants corre-
at a sufficiently largeN value (after convergence has been sponding to this set of ring fundamentals (Table 4) are
achieved). In the present work, both types of calculations, block- summarized in Table 5a. The active space dimension, required
limited as well as large-scale, have been performed. The choicefor convergence of these block-limited calculations, did not
between one or the other type of calculation has been made forexceed 2000 as a rule. The values for theHCstretch force
each concrete case, taking into account a number of considerconstants employed in these calculations, whose effect upon
ations of convenience and feasibility of the results obtained. the ring fundamentals was negligible, were used as determined
Our experience with both types of calculations has led to the in our previous work?® Part of the results contained in Table
following observations and conclusions, which were helpful to 5a were published previousty3°The present calculations have
make the right choice. In the large-scale calculations, upon confirmed the previously obtained results concerning the
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TABLE 4: Calculated Fundamental Frequencies of Non-C-H Stretch Vibrations (cm~1) for Dg, Symmetry Benzenes,
Corresponding to the Best Fit Values for the Force Constant Parameters (mdyn and A), Given in Table 5

CGHG CGDG 13C(5H6 13C6D6
calc exptl calcd exptl calcd exptl calcd exptl

Asg v 993.0 993.071 [23] 945.7 945.583 [23] 957.4 957.4 [40] 915.6 916.6 [8]
2v;  1984.6  1984.9[2543]  1889.9  1889.8[25]
3y,  2974.6  2975.4[2543]  2832.8  2832.6[25]

Ew  vis 10384  1038.2670[17] 814.1 814.2969[17]  1018.6  1018.379 8[17] 808.1 808.5479 [47]
vie 14840  1483.9854[17]  1336.8  1335.2212[17]  1453.3  14542576[17] 12953  1295.756 4 [47]

Bw v 1013.7  1013.7[27] 964.6 97[L6] 977.3 934.0

= Ve 609.0 608.13 [23] 576.2 580.2 [48] 587.1 584.2 [49] 558.5 561.3 [8]
ve 11772 1177.776[23] 866.3 867.0 [23] 1169.9 862.4
vs 16025  1600.9764 [50]  1554.3  1558.3 [23] 1548.9 1499.0

a Estimated from combinations in ref 16.

TABLE 5: Calculated Harmonic as Well as Some Important Cubic Diagonal Force Constants Pertaining to the Four €H
Stretch Containing Vibrational Blocks in Benzene, Ay, Ezg, Biy, E1w, Compared to the Previously Empirically Determined
Values by Goodman et al. [Ref 8] (for the Harmonic Constants) or Obtained from ab Initio Computations by Maslen et al. [Ref
11] (mdyn and A)

(a) Harmonic Force Constants Pertaining to the NefHCStretch (Ring) Vibrations

Fl,l F1,2 F18,18 F19.19 F18,19 F18,20 F19,20 F12,12 F12,13
calculated 7.630 0.030 0.931 7.403 0.221 0.214 0.590 7.661 —0.010
Goodman et & 7.616 0.157 0.926 7.380 0.209 0.151 0.572 7.658 —0.237

Fe.6 Fes Foo Fe.7 Fe.s Fe.9 F78 F79 Fso
calculated 0.667 6.690 0.910 0.020 0.388 —0.235 0.054 —0.066 —0.030
Goodman et a. 0.644 6.690 0.895 —0.136 0.308 —0.140 0.054 —0.066 —0.398

(b) Harmonic Force Constants Pertaining to theHCStretch System
fss fi2 fi3 fia F22 F77 Fi313 F20.20

calculated 5.515 0.007 0.008 —0.005 5.540 5.495 5.522 5.519
Goodman et &. 5.547 0.007 0.008 —0.022 5.554 5.510 5.571 5.568

(c) Cubic Diagonal Force Constafgisand Effective Anharmonic Force ConstaRtgy xfor Some of the More Strongly Anharmonic
Symmetrized Modes

fsss F’l,l,l F’S,B,B F'Q,Q,Q F’18,18,18
calculated —29.72 —-16.73 —-10.71 —-1.08 —1.50
Maslen et al! —34.289 —18.289 —11.633

TABLE 6: Calculated Fundamental Frequencies of C-H Stretch Vibrations (cm~?) for Dg, Symmetry Benzenes, Corresponding
to the Best Fit Values for the Force Constant Parameters (mdyn and A), Given in Table 5b

CGHG CGDG 13C6H6 13C6D6
calc exptl calcd exptl calcd exptl calcd exptl
Ay v 3076.1 3073.942 [23] 2300.3 2303.44 [23] 3064.9 3049.8 [40] 2283.6 2283.9 (8]
Eiy V20 3064.8 3064.3674 [17] 2285.7 2289.3 [40] 3055.3 3065.4540 [17] 2268.8 2266.0796 [47]
CH(nh=2) 6004.5 6005 [44] 4489.3 4497 [31]
CH(n=23) 8836.4 8827 [44] 6660 6634 [31]
B V13 3027.2 3028[39] 2249.4 2285[16] 3019.6 2234.1
3057[16]
= V7 3059.1 3056.7 [23] 2285.6 2272.5[23] 3049.2 2267.3

a Estimated from combinations in ref 16Estimated from combinations in ref 14.

harmonic force constants; 1, F1 2, Fig1s Fi9,19 F1s19 Fis20 employed in this case is described, some additional consider-
andFig 20 (With slight modificationsf®-3° ations should be mentioned. It is well-known that the kC

As already pointed out, the block-limited calculations were stretch fundamentals, due to their high frequencie8000
found not suitable for determination of the—& stretch cm™ 1Y), are inevitably more or less strongly perturbed by nearby
fundamentals. This is probably due to the fact that each one of combination or overtone levels of the ring modes through higher
them involved only partially the excited (overtone) levels order (mainly cubic) interactions. Since in the present work we
belonging to the €H stretch system (as described in detail in are not taking into account any cubic or higher order nondi-
the previous section). Hence, the values for the force constantsagonal Hamiltonian coupling terms, it is not reasonable to expect
fss f1.2, 1,3, andfy 4, obtained in our previous wotk3°by block- that a particularly good fit could be achieved of the calculated
limited calculations, were not correct and will have to be to the experimentally measured—€l stretch frequencies.
modified in the present work. For the correct determination of Nevertheless, as will be seen below, we have been able to
C—H stretch fundamental and overtone frequencies, large-scaledetermine a set of harmonic force constant valiges: o, f1 3,
calculations had to be carried out, encompassing all Hamiltonian andf; 4 for the C—H stretch system, allowing for a satisfactory
terms and vibrational modes belonging to the four symmetry reproduction of the majority of €H (C—D) stretch fundamen-
blocks Ay, Exg Biw, and By Before the fitting procedure  tals (as well as some of the lower overtone energies), which
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have been experimentally measured. There are several prominenderived for the three nondiagonal small force constantd; s,
exceptions of strong mismatch between calculated and experi-andfi 4 Fo2 — fss= 0.025= 2(f12 + f13) + f14.

mentally observed values. Some of them can be presumably Next, large-scale calculations on the-8 stretch fundamen-
explained as strong Fermi resonances, which have not beenalsvz, v13, andvy for all four benzene isotopomers were carried
deperturbed, or as wrongly indirectly estimated frequencies from out, with the force constant§ ,, fi3 andf; 4 being varied
experimentally observed combinations in the literature. To carry independently, however satisfying the above constraint. The aim
out the adjustment procedure, we have proceeded in thewas to achieve the best possible fit for the calculated to the
following way. First of all, we are taking into account the experimentally measured (where available} K stretch fun-

observatio?® that the calculated values for the(A1g) C—H damentals’7, v13, andv,o. As a result of the calculations, the
(C—D) stretch fundamentals of all four benzene isotopomers following values have been determined for the small nondi-
solely depend on the value of the force constag = fss + agonal force constantgj , = 0.007,f; 3= 0.008,f; 4= —0.005.
2(f12 + f13) + 14, but not on the values dfs f1 5, f1,3 andfi 4 All obtained harmonic force constant values pertaining to the

separately. To make use of this observation, we have set initially C—H stretch system are summarized in Table 5b. TheHC

fio = fi3 = fi4 = 0, Fo» = fss and performed large-scale stretch fundamentals;, vi3, and v for the four benzene

calculations on the(A1g) fundamentals of the four benzene isotopomers considered, calculated with this set of input force

Den isotopomers, varying the value Bf » = fss and aiming to constant values (Table 5b), are displayed in Table 6. The values

achieve a satisfactory fit with as many as possible of the four of experimentally measured frequencies are also displayed for

v, fundamentals experimentally measuféd° It was found comparison, where the data are available.

that the best fit was achievedfai, = 5.540. The calculatech For the v,y fundamentals (strongly IR active) the most

frequencies are displayed in Table 6, together with the relevantaccurate experimentally measured data exist. It is seen that the

experimentally measured values. The fit is quite acceptable for results from the calculations for they, fundamentals are

the isotopomers g (A = 2.15 cn1?), CsDg (A = 3.14 cn1?), satisfactory fits for all isotopomers with the exceptiod#sHs

and 13CsDe (A = 0.3 cn1l), but very poor forl3CeHg (A = (similarly to the case of,), where the calculated value deviates

15.1 cnl), whereA is the difference between theoretically by as much as 10 cm from the experimentally measured one.

calculated and experimentally measured frequencies. This latterln the case of the; (Raman active) frequency, experimental

case can be attributed to strong Fermi interaction. On the basisdata are available for benzene and deuteriobenzene only. The

of this fit, Fo» = 5.540 was accepted as the correct value. calculated value ofv; for CgHe fits satisfactorily to the
C—H (C—D) stretch vibrations in benzene are an example €xperimentally measured value, while foglii the fit is rather

. — 1
of well-expressed local mode behavior due to the weak PPOr @ = 13.1 cnm’). In the case oby;, the fundamentals
interactions among different-€H bonds. For such a system it have not been measured directly, but estimated for benzene and

follows from LM theory that the €H (C—D) stretch overtone deuteriobenzene from combinations with other modes. For this
energies are determined almost entirely by the values of thefur;dame}ntalhthe mtljsmat%h br(]adt\g(_aen caIcuIaLed and_ eTtlrInated
bond diagonal force constanfs and fsss being practically values (for the condense P A seen o be particularly
independent of the values of the small nondiagonal force strong (Table 6). However, this mode is known for its extremely

constantsf; », f15 and f,4 Those latter force constants are strong Fermi interactions with other mpde corT_]binations.
determined only for the four fundamentat+-@l (C—D) stretch Furthermore, recently Cane et_lélh_ave estimatedz in gas-
frequencies. Consequently, purely locatB stretch overtone phase GHs from anlother.combma_tlon and.ha_ve obtgmed the
states of different symmetries (e.¢5;A1gn0) 6;Egnil] etc., value qf 3028 cmt, which practically coincides with the
for n > 1) are practically isoenergetic, while the fundamentals theoretically calculated one (Table 6).

atn= 1 are not. On the other hand, the energies i&ertone In Table 5 all harmonic and diagonal anharmonic force
states|6:E;;n0for CeHg and GDg isotopomers have been constants determined in the present work have been summarized,
3’ Us

measured experimentaffy#4 Taking this into account, large- together with a set of values obtained by other auth’érﬁpr
scale calculations were performed on several loweHJC— comparison. As.p.omted out above, the values fgr harmonlc force
D) stretch overtone energies of the sta@sE;nfor both constants pertaining to the-& stretch systemfgin particular)
CéHs and GDg isotopomers, varying the v:'jllues of force deviate considerably from that determined in our previous
' 29 .
constantsssandfsss and trying to obtain a reasonable fit of the work.2® The calculated force constant values pertaining to the

calculated to the experimentally measured overtone energy?é?:g:te'al!ﬁ dh?r:mobnIth:?%/er?Od?)i)jr}ﬁu;?:ht;gvgedg?)f&de:: t\fery
levels. These large-scale calculations were carried obit &t  Judging by y 9

50000, which ensured good convergence of the results. The bes alculated and _experlmentally measured fundamentals for all
. X ; ~ _ our benzene isotopomers. Some of these force constants

possible fit was achieved & = 5.515 andsss= —29.72. The however diverge considerably from the best available empiri-

calculated first and second- (C—D) stretch g, overtone 9 y P

energies for the isotopomersi and GDs are displayed in cally _determined set_of Goodman et8alin particular,_ some
Table 6 (lower rows), together with the available experimentally nondiagonal quadrat_|c force constants were obtained much
measured data. It is’ seen that the fit for theEovertones is smaller than the previous dete_rmlnatloﬁs,ﬁ Fer Fas F12’13.

. : . Table 5). The presently determined set of i€ stretch quadratic
par_tlcularly good, Wh'le that for s can _hardly be called force constantss f1 2, f1 3, andf; 4 should probably be regarded
satisfactory. However, it should be taken into account th?t the as less reliable, because of the uncertainties connected with the
absorption peaks fordD overtones measured _b_y Reddy et'al. multitude of Fermi interactions, affecting more or less strongly
are very broad, and therefore, the transition energy was most of the G-H stretch fundamentals.
determined only approximately. In fact, the estimates of Reddy
et al3! for the lower GHg overtone transitions were also found
to be rather poor approximations when the high-precision data
became availabl# 46 So, the valuedss = 5.515 andfsss = In the first part of this work, it has been our aim to introduce
—29.72 were accepted as the correct ones. Having so fara specific vibrational model designated for calculations on the
determined the values &%, andfss a linear relation could be  vibrational energy levels in benzene. The first key feature of

VI. Conclusion
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the model is its combined LM/SM character. For the description Goodman et at.(Table 5). Another important conclusion from
of the C—H stretch system in benzene, an LM formalism was the results of the present calculations is that the LM/SM model
applied (using the six local bond-H stretch coordinates), based on the combined LM/SM expansion of the potential
while, for the remaining non-€H stretch vibrations, a sym-  energy (eq 19) is a very good representation.
metrized mode treatment based on symmetrized vibrational Our work in this direction will be continued. In the first place,
coordinates was applied. The model is entirely based on thea complete set of symmetrized harmonic force constants for
Morse oscillator formalism: the local €H stretches are  benzene will be obtained (by considering the nontCstretch
regarded as six identical Morse oscillators, and some of the containing blocks of vibrations, Ay(vs), Bz o(va, vs), E1 o(v10),
symmetrized ring vibrations are also considered as Morse Axy(v11), Bau(via, v15), Eou(vie v17), in addition to the already
oscillators, the remaining modes being described as harmonicstudied four C-H stretch containing blocks). Using them, a set
oscillators. Our main reason for using such a combined model of internal (valence) harmonic force constants will be calculated
was to achieve the fastest possible convergence of the benzen& check the physical feasibility of the obtained harmonic force
potential energy expansion, i.e., the smallest possible numberfield. Having determined a reliable set of benzene ground
of higher order force constants, attaining nonnegligible values. electronic state harmonic force constants, we shall introduce a
When expanded in terms of the combined LM/SM set of number of nondiagonal cubic (as well as some quartic) force
coordinates, the potential function takes the following form:  constants in the large-scale calculations, together with the
relevant higher order kinetic Hamiltonian terms. In this way

6 (1 1 we hope to be able to achieve a better fit to the experimentally
V= (—fsss2 + —fssgq3 + ) +fsS, +55+ ...+ known C-H stretch fundamental frequencies as well as a
=1\2 6 realistic description of the vibrational structure and IVR in the
SS) ThasSs+ 58+ ... +55) (88 + 55+ range of the first GH stretching overtone (at 6000 c®),

1 , 1 . where very detailed experimental data have become available
S5 + EFMSl + éFl’l'lSl +F, . SS+ ... (19) lately 3436
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