Is the Hydrogen Atomic Charge Representative of the Acidity of Parasubstituted Phenols?

María de L. Romero and Francisco Méndez*

Departamento de Quı´*mica, Di*V*isio*´*n de Ciencias Ba*´*sicas e Ingenierı*´*a, Uni*V*ersidad Auto*´*noma Metropolitana-Iztapalapa, A.P. 55-534, Mexico, D.F., 09340 Mexico Recei*V*ed: October 30, 2002; In Final Form: April 13, 2003*

A theoretical analysis is presented concerning the study of the influence of the substituent X on the acidity of a set of parasubstituted phenols $X-C_6H_4OH$. Linear correlation analyses between calculated Gibbs free energy changes on dissociation of parasubstituted phenols in the gas phase (∆*G*°), the hydrogen atom charge of $X-C_6H_4OH$ (q_H), and the electronegativity of the fragment $X-C_6H_4O$ ($\chi_{XC_6H_4O}$) show that acidity is related to q_H and $\chi_{X C_6 H_4 O}$. When the electronegativity increases, the hydrogen atom charge and the acidity of the parasubstituted phenols increase as well. These results suggest that there is no direct interaction between the X substituent and the hydrogen atom; the effect is primarily due to the interaction of X with the C_6H_4O group. The substituent does transmit its effect through the π system of the benzene ring, and q_H shows the effect of the electronegativity of the fragment $X-C_6H_4O$ on the hydrogen atom. Analytical equations obtained from density functional theory (DFT) and the hard and soft acids and bases principle (HSAB) provide guidelines to obtain a quantitative description of the fit parameters in the linear correlation equations. The results obtained suggest that q_H is representative of the gas-phase acidity of parasubstituted phenols.

Introduction

Acidity and basicity play important roles in determining the chemical reactivity of organic compounds. Several organic reactions begin with steps that involve reagent protonation or deprotonation.¹ In the elimination (E2) and substitution $(S_N 2)$ reactions of alkyl halides, the elimination-substitution ratio (E2/ S_N 2) depends on the basicity of the nucleophile.² In particular, the reaction between *p*-nitrophenethyl bromide and parasubstituted phenolates shows that the $(E2/S_N2)$ ratio increases when the phenol acidity decreases (phenolate basicity increases).3

The influence of the substituent on the acidity of benzene compounds has been explained, in general, in terms of resonance and inductive effects.⁴ Although a substituent on a benzene ring is expected to interact by the two mechanisms, the simple linearity of many $\sigma\rho$ relationships might seem to imply the existence of a single interaction mechanism.5 For example, in the benzoic acid ionization where the σ scale is widely applicable, it has been suggested that the substituent effect is primarily inductive, due to the fact that there is no direct resonance interaction between the substituent and the reaction center.6 In the ionization of *p*-nitrophenol, where correlation with the σ scale is not observed, it has been suggested that the nitro substituent can come into direct resonance interaction with the π system of the benzene ring and the reaction center; in these cases the balance of inductive and resonance contributions of the substituent is significantly different from that in the benzoic acid system, as the resonance interaction will become more important.⁶

A quantitative understanding of the acidity substituent effect is of general interest.⁷ However, analytical equations for acidity substituent effects remain absent, and the extra-thermodynamic equations often found are simple linear Gibbs free energy relationships.^{8,9} In the Hammett equation, for example, $log({K_{\alpha}^{X}})/{K_{\alpha}^{H}}) = \rho \sigma$, the assumption is that within a particu-
lar class of acids, the substituents produce free energy changes lar class of acids, the substituents produce free energy changes which are linearly additive.^{10,11}

Recently we were working with a simple linear regression analysis to predict the effect of substituents on the reactivity of parasubstituted phenolate anions.12 The reaction between *p*nitrophenethyl bromide, $NO₂ C₆H₄CH₂CH₂Br$, and a set of parasubstituted phenolates XC_6H_4O ⁻ yielded elimination (E2) and substitution (S_N^2) products.³ The linear regression analysis between equilibrium (pK_a) and kinetic (E2/S_N2 ratio) parameters showed that phenol acidity is related to the $E2/S_N2$ ratio. The extent of charge dispersal in the parasubstituted phenolate anions was considered to be the key to understanding the gas-phase acidity orders. The parasubstituted phenols XC_6H_4O-H , with highly delocalized conjugate base anions (resonance stabilized by an electron-accepting substituent), were relatively strong acids in the gas phase, whereas those whose conjugate base anions were strongly localized behaved as weak acids in the gas phase. Because the effects of the substituents on the acidity of phenols were largely determined by effects in the phenolate anions12-¹⁶ and because there was a close correspondence between the positive charge carried by the phenolic hydrogen atom (q_H) and the p K_a values of the phenols,¹² the objective of this paper is to show that the substituent influence should be described in terms of the properties of phenol (bond polarization $XC_6H_4O^{\delta-}-H^{\delta+}$ and bond dissociation XC_6H_4O-H) and phenolate anion (anion stabilization $XC_6H_4O^-$). To our knowledge, no study has been presented so far in this regard.

In this context, we have calculated the phenol/phenolate Gibbs free energy change (ΔG°) in a set of parasubstituted phenols XC6H4OH in the gas phase. ∆*G*° describes the acidity of the substituted phenol and therefore is sensitive to the substituent effect. Great quantitative agreement between experimental and calculated data was obtained. Linear variations between ∆*G*°, the hydrogen atom charge (q_H) , and the electronegativity of the fragment $X-C_6H_4O$ ($\chi_{XC_6H_4O}$) were obtained; when the electronegativity of the $X-C_6H_4O$ fragment increases, the hydrogen atom charge q_H and the acidity of the parasubstituted phenols XC6H4OH increase as well. To understand the nature of the parameters involved in determining the acid strength of parasubstituted phenols XC_6H_4OH , the phenol/phenolate Gibbs

^{*} Author to whom correspondence should be addressed [telephone (52)55-58046417; fax (52)55-58046415; e-mail fm@xanum.uam.mx].

TABLE 1: Absolute Gas-Phase Acidity ∆*G*° **of the Parasubstituted Phenols (All Values Are in Kilocalories per Mole)**

$\Delta G_{\rm{calcd1}}^{\circ}$ α	$\Delta G_{\mathrm{exptl}}^{\circ}{}^{b}$	$ \Delta G^{\circ}_{\mathrm{calcd1}} - \Delta G^{\circ}_{\mathrm{exptl}} $
325.1	331.1	5.6
339.8	343.6	3.8
340.9	344.1	3.2
321.6	327.2	5.6
332.6	337.1	4.5
320.9	326.4	5.5
326.1	331.3	5.2
324.2	333.2	9.0
336.2	340.7	4.5
339.4	343.0	3.6
339.5	343.1	3.6
343.2	346.3	3.1
314.6	322.1	7.5
340.2	344.2	4.0
340.3	344.2	3.9
339.4	342.4	3.0

a Values obtained through the equation $\Delta G_{\text{acid}}^{\circ} = G^{\circ}(\text{XC}_6\text{H}_4\text{O}^-) + (H^+) = G^{\circ}(\text{XC}_6\text{H}_4\text{OH})$. The gap $G^{\circ}(\text{XC}_6\text{H}_4\text{O}^-) = G^{\circ}(\text{XC}_6\text{H}_4\text{OH})$ $G^{\circ}(H^{+}) - G^{\circ}(XC_{6}H_{4}OH)$. The gap $G^{\circ}(XC_{6}H_{4}O^{-}) - G^{\circ}(XC_{6}H_{4}OH)$ and $G^{\circ}(H^+)$ were obtained by means of a vibrational calculation and statistical thermodynamics, respectively, $G^{\circ}(H^+) = -6.26$ kcal/mol. *b* Experimental values obtained from ref 22.

energy gap was described in terms of bond polarization $XC_6H_4O^{\delta-}-H^{\delta+}$, bond dissociation XC_6H_4O-H , and anion stabilization $XC_6H_4O^-$. An extra-thermodynamic equation was obtained and then was developed in terms of the density functional theory $(DFT)^{17}$ and the hard and soft acids and bases principle (HSAB).¹⁸

Results and Discussion

The ground-state structures and energies of 16 parasubstituted phenols XC_6H_4OH and 16 parasubstituted phenolates $XC_6H_4O^$ were calculated at the B3LYP/6-31+G** level by means of GAUSSIAN 98.19 The dissociation reaction of the substituted phenols XC_6H_4OH is represented in the gas phase by eq 1:

$$
X \xrightarrow{\bullet} \bigcirc H \xrightarrow{\bullet} \mathbb{C} \xrightarrow{\bullet} \qquad X \xrightarrow{\bullet} \bigcirc_{(g)}^{\bullet} + H^+ \xrightarrow{\bullet} (1),
$$

the absolute gas-phase acidity $\Delta G^{\circ}_{\text{acid}}$ is given by

$$
\Delta G_{\text{acid}}^{\circ} = G^{\circ}(\text{XC}_6\text{H}_4\text{O}^-) + G^{\circ}(\text{H}^+) - G^{\circ}(\text{XC}_6\text{H}_4\text{OH}) \tag{2}
$$

The Gibbs free energies G° (XC₆H₄OH) and G° (XC₆H₄O⁻) were obtained by means of a vibrational calculation using GAUSSIAN 98.¹⁹ The Gibbs free energy $G^{\circ}(H^+)$ was obtained considering the translational energy of the proton, using statistical thermodynamic relations.20 In agreement with previous calculations,²¹ good values of ΔG ^o_{acid} were obtained. The calculated $\Delta G^{\circ}_{\text{calcd}}$ values underestimate the $\Delta G^{\circ}_{\text{exptl}}$ values by 9 to 3 kcal/mol.²² From Table 1 we can observe that the acidity of the phenol is altered by adding a substituent X in the para position; the electronic influence of the substituent X can be exerted at the reaction center OH and/or at the base structure C_6H_4 , where X and OH are bonded. We propose that the electronic influence of the substituent X should be assessed in one of the following fragments: X , XC_6H_4 , or XC_6H_4O . If x_i is the electronic property of each fragment, the criterion for deciding whether the variable has been correctly identified is simple: the plot of $\Delta G_{\text{acid}}^{\circ}$ versus x_i must be linear over the range of substituents to which the extra-thermodynamics relationship applies. The two-parameter linear model was used:23,24

$$
\Delta G^\circ = a_0 + a_1 x_1 \tag{3}
$$

In eq 3 a_0 and a_1 are the fitted constants. The electronic properties of the fragments x_i considered in this study were the hydrogen atom charge q_H , the chemical potential μ , and the hardness *η*. ¹⁷ The DFT global properties *µ* and *η* represent the system as a whole, and they have the same value everywhere in the molecule. The chemical potential μ represents the change in energy *E* with the number of electrons N , $\mu = (\partial E/\partial N)_\nu$, and it is identified as the negative of the electronegativity χ (μ = $-$ *χ*).²⁵ Pearson's chemical hardness, *η*, is the change in the chemical potential μ with the number of electrons (*N*), η = (*∂µ*/*∂N*)*^ν* (the chemical softness is the inverse of the hardness $S = \eta^{-1}$.^{17,26} The derivatives can be evaluated under a finite differences scheme²⁵⁻²⁷ as $\mu = \frac{1}{2}(I + A)$ and $\eta = \frac{1}{2}(I - A)$, where *I* is the ionization potential and *A* is the electron affinity. The structures and energies of the XC_6H_4O , XC_6H_4 , and X fragments were calculated at the $B3LYP/6-31+G^{**}$ ground geometry of the XC₆H₄OH by means of GAUSSIAN 98.¹⁹ The *I* and *A* values of the structures were calculated from the energies of the oxidized and reduced (cation and anion) species at the geometry of the neutral for all of the fragments and parasubstituted phenols. There was no spin contamination for the doublet open shell structures calculated at the UB3LYP/6- $31+G^{**}$ level. Table 2 shows the hydrogen atom charge (q_H) and the DFT global properties of the XC_6H_4O , XC_6H_4 , and X fragments and the parasubstituted phenols $XC₆H₄OH$.

Table 3 shows the results of a simple linear regression analysis between the $\Delta G_{\text{exptl}}^{\circ}$ values and the q_H of the XC₆H₄-OH and the DFT global properties of the XC_6H_4O , XC_6H_4 , and X fragments and the XC_6H_4OH . In general q_H , $\mu_{XC_6H_4OH}$, and μ_{XCAH_4O} yield correlation coefficients $R^2 \geq 0.90$. On the other hand, $\eta_{\text{XC}_6H_4}$, $\mu_{\text{XC}_6H_4}$, η_{X} , and μ_{X} yield correlation coefficients $R^2 \leq 0.87$. The correlation analysis shows that the acidity of the parasubstituted phenols depends on the positive hydrogen net charge q_H and the fragment electronegativity $\chi_{\text{XC}_6\text{H}_4\text{O}}$ ($\chi_{\text{XC}_6\text{H}_4\text{O}}$ $= -\mu_{\text{XC}_6H_4O}$). The acidity has no linear dependence on the X and XC_6H_4 fragment properties μ_X , η_X , $\mu_{XC_6H_4}$, and $\eta_{XC_6H_4}$ (there is a significant linear correlation with $\mu_{\text{XC}_6H_4}$). The results suggest that the effect is primarily due to the interaction of X with the C_6H_4O structure. If the substituent perturbation is included in the $XC₆H₄O$ fragment, then the substituent does transmit its effect through the π system of the benzene ring, and q_H should show the effect of the electronegativity of the fragment $\gamma_{\text{X} \text{C}_{6} \text{H}_{4} \text{O}}$ on the hydrogen atom. For this reason, there is no linear regression with the σ scale, mentioned before; the substituent X behaves as a part of the XC_6H_4O fragment.

To obtain an analytical equation for the relationship between the gas-phase acidity and the hydrogen atomic charge, ∆*G*° can be calculated as $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$.²⁸ In general, a thermochemical cycle is used for calculating ΔH° the cycle thermochemical cycle is used for calculating ∆*H*°; the cycle involves the following steps:4,22

$$
XC_6H_4OH \rightarrow XC_6H_4O^\circ + H^\circ \qquad DH^\circ (XC_6H_4O - H) \quad (4)
$$

$$
H^{\circ} \to H^{+} + e^{-} \qquad I_{H} \tag{5}
$$

$$
XC_6H_4O^\circ + e^- \to XC_6H_4O^- \qquad -A_{XC_6H_4O} \tag{6}
$$

$$
XC_6H_4OH \to XC_6H_4O^- + H^+
$$

\n
$$
\Delta H^{\circ} = DH^{\circ}(XC_6H_4O - H) + I_H - A_{XC_6H_4O} (7)
$$

 ΔS° can be evaluated using statistical thermodynamics.²⁹

TABLE 2: Calculated Values for q_H and the DFT-Based Electronic Properties μ and η for Parasubstituted Phenols and Their **Fragments (***µ* **and** *η* **Values Are in Electronvolts)**

X	q_H^a	$\mu_{\text{XC}_6\text{H}_4\text{OH}}$ $(\eta_{\text{XC}_6\text{H}_4\text{OH}})^b$	$\mu_{\text{XC}_6\text{H}_4\text{O}} (\eta_{\text{XC}_6\text{H}_4\text{O}})^b$	$\mu_{\text{XC}_6\text{H}_4}$ $(\eta_{\text{XC}_6\text{H}_4})^b$	$\mu_X (\eta_X)^b$
CF ₃	0.358	$-4.18(4.84)$	$-6.26(3.48)$	$-5.77(4.38)$	$-7.01(5.41)$
CH_2CH_3	0.350	$-3.59(4.48)$	$-5.39(3.34)$	$-5.11(4.19)$	$-4.83(4.84)$
CH ₃	0.350	$-3.55(4.57)$	$-5.40(3.40)$	$-5.12(4.23)$	$-5.69(5.30)$
CHO	0.358	$-4.44(4.42)$	$-6.25(2.71)$	$-5.69(4.19)$	$-5.17(5.01)$
C ₁	0.353	$-3.77(4.63)$	$-5.75(3.45)$	$-5.60(4.28)$	$-9.46(5.74)$
CN	0.357	$-4.29(4.62)$	$-6.31(3.30)$	$-5.94(4.27)$	$-9.59(5.57)$
COOCH3	0.357	$-4.11(4.52)$	$-6.00(3.29)$	$-5.49(4.19)$	$-5.79(4.67)$
COOH	0.358	$-4.25(4.54)$	$-6.15(3.33)$	$-5.61(4.23)$	$-6.30(4.85)$
F	0.352	$-3.82(4.71)$	$-5.75(3.53)$	$-5.56(4.39)$	$-12.46(8.95)$
H	0.351	$-3.68(4.78)$	$-5.68(3.54)$	$-5.22(4.31)$	$-7.18(6.43)$
$i-Pr$	0.351	$-3.58(4.46)$	$-5.36(3.31)$	$-5.09(4.16)$	$-4.40(4.48)$
NH ₂	0.348	$-3.18(4.19)$	$-4.87(3.24)$	$-4.92(4.11)$	$-6.72(6.07)$
NO ₂	0.362	$-5.02(4.28)$	$-6.65(3.34)$	$-6.10(4.30)$	$-7.52(5.15)$
OCH ₃	0.350	$-3.36(4.33)$	$-5.11(3.28)$	$-5.17(4.27)$	$-7.06(5.81)$
OH	0.351	$-3.51(4.40)$	$-5.25(3.38)$	$-5.28(4.31)$	$-9.06(7.30)$
t -Bu	0.351	$-3.57(4.43)$	$-5.35(3.28)$	$-5.07(4.14)$	$-4.27(4.16)$

a Obtained from a Mulliken population analysis. *b* Calculated through the equations $\mu = \frac{1}{2}(I + A)$ and $\eta = \frac{1}{2}(I - A)$.

TABLE 3: Correlation Equation for the Parasubstituted Phenols Involving *q***^H or a Single DFT-Based Electronic Property** (*x_i*): $\Delta G^{\circ} = a_0 + a_1x_1 \ (\Delta G^{\circ} \ \text{Values Are in } \text{Kilocalories per Mole})^a$ **Kilocalories per Mole)***^a*

fragment	x_1	a_1	a ₀	R^2
XC_6H_4OH	$q_{\rm H}$	-1926.34	1018.56	0.96
	$\mu_{\text{XC}_6\text{H}_4\text{OH}}$	15.70	398.24	0.92
	$\eta_{\text{X}_6\text{H}_4\text{OH}}$	-4.93	359.74	0.01
XC_6H_4O	$\mu_{\text{XC}_6\text{H}_4\text{O}}$	14.59	420.97	0.90
	$\eta_{\text{XC}_6\text{H}_4\text{O}}$	13.93	291.31	0.11
XC ₆ H ₄	$\mu_{\text{XC}_6\text{H}_4}$	20.90	450.74	0.87
	$\eta_{\text{XC}_6\text{H}_4}$	-20.09	422.72	0.04
X	$\mu_{\rm X}$	0.38	340.19	0.01
	η_X	1.69	328.01	0.07

^a ∆ G^o_{exptl} values were used for the linear regression analysis.

There is an expression for the interaction energy ∆*E*int between two chemical species $A + B \rightarrow A - B$ in terms of the chemical potential (μ_A , μ_B) and the hardness (η_A , η_B).³⁰ The equation $\Delta E_{\text{int}} = \Delta E_{\nu} + \Delta E_{\mu}$ was obtained by dividing the total interaction energy in two steps, the charge-transfer process between A and B at constant nuclear positions ∆*Eν*, and the electronic density reshuffling at constant chemical potential ΔE_{μ}^{30} Because the DH° (A - B) term can be approximated
by $-\Delta F_{\mu}$, the expression $\Delta F_{\mu} = \Delta F_{\mu} + \Delta F_{\mu}$ provides a by $-\Delta E_{\text{int}}$, the expression $\Delta E_{\text{int}} = \Delta E_{\nu} + \Delta E_{\mu}$ provides a formula to estimate the bond strength DH° (A - B).³¹ ΔH° can be approximated as

$$
\Delta H^{\circ} \approx -\Delta E_{\nu} - \Delta E_{\mu} + I_{\rm H} - A_{\text{XC}_6\text{H}_4\text{O}} \tag{8}
$$

 ΔH° is expressed in terms of the $\text{XC}_6\text{H}_4\text{O}^{\delta-}$ - $\text{H}^{\delta+}$ bond polarization energy (ΔE_v), the XC₆H₄O-H bond stabilization energy (ΔE_{μ}), the anion stabilization energy ($A_{\text{XC}_6\text{H}_4\text{O}}$), and a constant value (I_H) .

It is interesting to observe from eq 8 that the $(I_H - A_{\text{XC}_6H_4O})$ - [∆]*Eν*) term is an energy charge-transfer term, and it corresponds to the energy required to transfer $1 - \Delta N_{\nu}$ electrons from H to XC_6H_4O (ΔN_ν is the contribution of the charge transferred between A and B at constant nuclear positions).¹⁸ In the dissociation reaction, the H atom increases its positive net charge from q_H to $+1$. Reed has studied the influence of the atomic charge on the proton affinity and has shown that the charging energy for the proton affinity reaction is the energy needed to transfer the amount of charge which would bring the conjugate base fragment and the hydrogen to the charges that they would carry in the products.³² The relationship between *q*H and ΔN_v can be stated as $q_H = \Delta N_v + \Delta N_u$, where ΔN_u is the charge shifted in the electronic density reshuffling at constant chemical potential.

By substitution of the local expressions^{33,34} $\Delta E_{\nu} = -(\mu_H - \mu_H)$ $\mu_{\text{XC}_6H_4O}$ ²/2(η_H^- + η_O^+) and $\Delta E_\mu = -\lambda(\eta_H^- \eta_O^+)/2(\eta_H^- + \eta_O^+)$ into eq 8 we obtain

$$
\Delta H^{\circ} = \frac{(\mu_{\rm H} - \mu_{\rm XC_6H_4O})^2}{2(\eta_{\rm H} - \eta_{\rm O}^{+})} + \frac{\lambda(\eta_{\rm H}^{-} \eta_{\rm O}^{+})}{2(\eta_{\rm H}^{-} + \eta_{\rm O}^{+})} + I_{\rm H} - A_{\rm XC_6H_4O} \quad (9)
$$

The condensed hardness values η_{H}^- and η_{O}^+ represent the atomic hardness involved in the process when the O-H bond is broken. They reflect how the electronic density in the H and O atoms may respond to the electronic perturbations resulting from removal and addition of charges in the H and O atoms, respectively. The η_0^+ value is obtained from $\eta_0^+ = \eta_{XCGH_4O}/f_0^+$, where f^+ is the condensed version of the fully function for where $f_{\rm O}^{\dagger}$ is the condensed version of the fukui function for nucleophilic attack, $f^+(r) = (\partial \rho(r)/\partial N)_r^+$. The integration of *f* +(*r*) in the neighborhood of the O atom can be approximated $+(r)$ in the neighborhood of the O atom can be approximated by using the gross population q_0 for the O atom in the $X - C_6H_4O$ neutral and anion species: $f_0^+ = q_0(X - C_6H_4O^-) -$
 $q_0(X - C_2H_1O^{\circ})$ 35.36. The n^- value corresponds to the global $q_0(X-C_6H_4O^\circ)$.^{35,36} The η_H^- value corresponds to the global
hardness of the free H atom: the experimental value is $n^$ hardness of the free H atom; the experimental value is $\eta_{\text{H}} =$
6.43 eV ¹⁸ The λ parameter is a constant related with an *effective* 6.43 eV.¹⁸ The λ parameter is a constant related with an *effective number of* V*alence electrons* that participate in the interaction between H and $X-C_6H_4O$. It bears information on the system XC_6H_4O-H when H and $X-C_6H_4O$ are far away from each other and when the XC_6H_4O-H system is at equilibrium.^{30,37} The results obtained in some organic reactions as 1,3-dipolar cycloadditons,³⁸ and the addition of singlet carbenes to alkenes,³⁹ yielded λ values equal to 1. Using the local expression ΔN_{ν} = $(\mu_H - \mu_{XCGH_4O})/2(\eta_H^{\top} + \eta_O^+)$ and eq 9 in $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$,
 ΔG° can be expressed as ∆*G*° can be expressed as

$$
\Delta G^{\circ} \approx [c_0 + \Delta N_{\mu} (c_2 \Delta N_{\mu} - c_1)] + (c_1 - 2c_2 \Delta N_{\mu}) q_{\text{H}} + c_2 q_{\text{H}}^2
$$
\n(10)

where $c_0 = I_H - A_{\text{XC}_0H_4O} - T\Delta S$, $c_1 = \lambda(\eta_H^T \eta_O^+)/(\mu_H -$
 μ_{IUS_0O} and $c_2 = 2(\eta^T + \eta^+)$. It is interesting to observe in $\mu_{\text{XC}_6H_4O}$, and $c_2 = 2(\eta^-_H + \eta^+_O)$. It is interesting to observe in eq. 10 that ΛG° becomes a quadratic function of σ_V Ickowsky eq 10 that ∆*G*° becomes a quadratic function of *q*H. Ickowsky and Margrave have suggested an energy formulation of a neutral atom as a quadratic function of the charge carried by the atom: $-E_q = aq + \frac{1}{2}bq^2$, where *a* and *b* are empirical constants obtained from spectroscopic data.40 Table 4 shows the calculated values η_0^+ , $T\Delta S^\circ$, and $A_{\text{XC}_6\text{H}_4\text{O}}$ for the X-C₆H₄O species; these

TABLE 4: Electron Affinity (*A*), Entropy (ΔS°), and the **Oxygen Condensed Hardness** (η_0^+) Values for the $\text{XC}_6\text{H}_4\text{O}$ **Species***^a*

X	$A_{\text{XC}_6\text{H}_4\text{O}}^{\qquad b}$	$T\Delta S^{\circ}$	$\Delta N_{\mu}{}^d$	$+$ e $\eta_{\rm O}$
CF ₃	64.3	7.6	0.360	250.0
CH ₂ CH ₃	47.2	7.4	0.354	333.3
CH ₃	46.4	7.3	0.355	333.3
CHO	81.8	7.4	0.361	200.0
C ₁	55.4	7.6	0.358	250.0
CN	69.7	7.5	0.361	166.7
COOCH ₃	62.6	7.5	0.359	333.3
COOH	65.2	7.5	0.360	333.3
F	51.2	7.5	0.358	200.0
H	49.2	7.5	0.355	166.7
$i-Pr$	47.4	7.5	0.354	333.3
NH ₂	37.6	7.9	0.355	250.0
NO ₂	76.4	7.3	0.365	142.9
OCH ₃	42.2	7.9	0.356	333.3
OН	43.1	8.6	0.357	250.0
t-Bu	47.7	7.5	0.354	500.0

^a Values of the charge shifted in the electronic density reshuffling at constant chemical potential (ΔN_μ) (*A* and ΔS° values in kcal/mol and η_0^+ values in eV). ^{*b*} Obtained through the equation $A = E(N) - E(N + 1)$ $\in \Lambda S^{\circ}$ was obtained by means of a vibrational calculation $E(N + 1)$. ^{*c*} ΔS° was obtained by means of a vibrational calculation using GAUSSIAN 98. *d* Calculated through the equations $q_H = \Delta N_v$ $+\Delta N_\mu$ and $\Delta N_\nu = -(\mu_H - \mu_{\text{XC}_0H_4O})/2(\eta_H^- + \eta_O^+).$ ^{*e*} Calculated through the equation $n^+ - n_{\text{Dir}} = \eta_f^{(1)}$. through the equation $\eta_{\text{O}}^+ = \eta_{\text{XC}_6\text{H}_4\text{O}}/f_{\text{O}}^+$.

values and the experimental values $I_{\text{H}} = 313.8$ kcal/mol and $\mu_{\rm H}$ = -7.18 eV can be used to evaluate the *c*₀, *c*₁, and **c**₂ constants. Table 4 also shows the ∆*N^µ* values calculated from equation $q_H = \Delta N_v + \Delta N_u$. Table 5 shows the calculated values $\Delta G_{\text{calod}}^{\circ}$ using eq 10 with $\lambda=1$. Good values of $\Delta G_{\text{calod}}^{\circ}$ were obtained, the $\Delta G_{\text{calc}}^{\circ}$ values underestimate the $\Delta G_{\text{exp}}^{\circ}$ values by 5.50 to 30.96 kcal/mol. At this point, it would be interesting to obtain the λ values for which $\Delta G_{\text{calc}}^{\circ} = \Delta G_{\text{exptl}}^{\circ}$. Table 5
shows the calculated λ values obtained by substitution of the shows the calculated *λ* values obtained by substitution of the $\Delta G_{\text{expt}}^{\circ}$ into eq 10; they are >1. The λ value trends for the parasubstituted phenols in the gas phase are λ -large seconds parasubstituted phenols in the gas phase are *^λ*electron-acceptor > $\lambda_{\rm H}$ > $\lambda_{\rm electron-releasing}$:

$$
\lambda_{\mathrm{CHO}} > \lambda_{\mathrm{NO_2}} > \lambda_{\mathrm{COOH}} > \lambda_{\mathrm{CN}} > \lambda_{\mathrm{CF}_3} > \lambda_{\mathrm{COOCH}_3} = \lambda_{\mathrm{H}} > \lambda_{\mathrm{CI}} = \lambda_{\mathrm{F}} > \lambda_{\mathrm{Me}} = \lambda_{\mathrm{Et}} = \lambda_{i-\mathrm{Pr}} > \lambda_{\mathrm{OH}} = \lambda_{r-\mathrm{Bu}} > \lambda_{\mathrm{OCH}_3} > \lambda_{\mathrm{NH}_2}
$$

To see if there is a relationship between the *λ* values and the

substituent constant σ^- (the Hammet constant that takes into account the resonance interaction between the substituent and the substrate), 2 we made a linear correlation analysis. The result obtained suggests that there is no linear relationship between *λ* and σ ⁻ (R ² = 0.64). However, a simple regression analysis shows that there are linear relationships between σ^- and q_H ; σ ⁻ = 98.125*q*H - 34.393 (R ² = 0.97) and ΔN_{μ} and σ ⁻; σ ⁻ = $124.1\Delta N_{\mu}$ – 44.105 ($R^2 = 0.93$). Haeberlein and Brinck have found a close linear relationship between σ^- and the electrostatic potential (V_{min}) .¹⁶ A multiple-regression analysis shows that there is a relationship between σ^- , q_H , and ΔN_μ : $\sigma^- = 18.292 \Delta N_\mu$ $+ 84.419q_H - 36.093$ ($R^2 = 0.97$); when q_H and ΔN_μ increase, σ^- increases as well. Table 5 shows the experimental σ^- values obtained by Fujio, McIver, and Taft for a set of 10 parasubstituted phenols in the gas phase used by us in the linear regression analysis.22

To obtain an analytical relationship between σ^- , q_H , and ΔN_μ , we use eq 10 and the expression $\sigma^- = -(\log e/\rho RT)(\Delta G_X^{\circ}$ $\Delta G_{\rm H}^{\rm o}$ obtained through the equations $\Delta G^{\rm o} = -RT \ln K_{\rm a}$ and $\Delta G^{\rm o} = -R \ln K_{\rm a}$ and $\Delta G^{\rm o} = -R \ln K_{\rm a}$ $\rho \sigma^-$ = $\log(K_a^H/K_a^X)$. The substituent constant σ^- can be expressed in terms of AN and a_{xx} by the following equation. expressed in terms of ΔN_u and q_H by the following equation:

$$
\sigma^{-} \approx \frac{-\log e}{\rho RT} \{ [c_0 + \Delta N_{\mu} (c_2 \Delta N_{\mu} - c_1) + (c_1 - 2c_2 \Delta N_{\mu}) q_H + c_2 q_H^2]_X - [c_0 + \Delta N_{\mu} (c_2 \Delta N_{\mu} - c_1) + (c_1 - 2c_2 \Delta N_{\mu}) q_H + c_2 q_H^2]_H \} (11)
$$

Table 5 shows the σ^- values calculated with eq 11, and the experimental values obtained by Fujio, McIver, and Taft for a set of 10 parasubstituted phenols in the gas phase.²² The calculated σ^- values underestimate the experimental σ^- values by 0.02-0.22 except for the CHO substituent, which is overestimated by 0.4. The calculated σ^- value trends are $\sigma_{\text{electron}-\text{acceptor}}^{\mathcal{I}} > \sigma_{\text{H}}^{\mathcal{I}} > \sigma_{\text{electron}-\text{relasing}}^{\mathcal{I}}$. If the calculated λ values are used in eq. 11 $\sigma_{\text{H}}^{\mathcal{I}} = \sigma_{\text{H}}^{\mathcal{I}}$ (see Table 5) values are used in eq 11, $\sigma_{\text{calcd}}^- = \sigma_{\text{exptl}}^-$ (see Table 5).

Conclusions

The present analysis allows us to explain the dissociation reaction of the parasubstituted phenols XC_6H_4OH in the gasphase $XC_6H_4OH_{(g)} \to XC_6H_4O_{(g)}^+ + H_{(g)}^+$, in terms of DFT and
the local HSAB principle. The simple linear regression analysis the local HSAB principle. The simple linear regression analysis obtained between the phenol/phenolate Gibbs energy gap and the hydrogen atom charge q_H suggests that there is an important

TABLE 5: Parasubstituted Phenols Absolute Gas-Phase Acidity ∆*G*° **and the Substituent Constants** *σ*- **(∆***G*° **Values Are in Kilocalories per Mole;** $T = 298.15$ **K** and $\rho = 14.66$)

X	$\Delta G^{\circ}_{\text{calcd2}(\lambda=1)}{}^a$	$ \Delta G^{\circ}_{\text{calcd2}(\lambda=1)} $ $\Delta G_{\rm exptl}^{\circ} ^b$	ϵ Λ ($\Delta G_{\text{calc2}}^{\circ} = \Delta G_{\text{exp}}^{\circ}$)	σ^{-d}	σ^{-} $e(\sigma^{-})$
CF ₃	314.4	16.7	1.23	0.59	0.53(0.59)
CH_2CH_3	331.9	11.7	1.16		$-0.12(-0.03)$
CH ₃	332.8	11.3	1.16	-0.06	$-0.15(-0.06)$
CHO	296.2	31.0	1.43	0.79	1.19(0.79)
C ₁	323.1	14.0	1.19	0.30	0.21(0.30)
CN	308.2	18.2	1.25	0.83	0.75(0.83)
COOCH ₃	316.6	14.7	1.20	0.59	0.44(0.59)
COOH	313.7	19.5	1.27		0.55(0.49)
F	326.9	13.8	1.19	0.12	0.07(0.12)
H	328.8	14.2	1.20	0.00	0.00(0.00)
i -Pr	331.8	11.3	1.16		$-0.11(-0.01)$
NH ₂	340.8	5.5	1.08	-0.17	$-0.44(-0.17)$
NO ₂	300.9	21.2	1.30	1.04	1.02(1.04)
OCH ₃	336.3	7.9	1.11	-0.06	$-0.28(-0.06)$
OH	334.3	9.9	1.14		$-0.20(-0.06)$
t -Bu	331.9	10.5	1.14		$-0.11(0.03)$

a Calculated through eq 10 with $\lambda = 1$. *b* Experimental values obtained through ref 22. *c* Calculated λ values. *d* Values obtained by Fujio, McIver,
d Taft ²² *c* Values obtained through eq 11 with $\lambda = 1$ *f* and Taft.²² ^e Values obtained through eq 11 with $\lambda = 1$. *f* Values obtained through eq 11 with calculated λ values.

extra-thermodynamic relationship between ∆*G*° and *q*H. The equation obtained from DFT and the local HSAB principle ∆*G*° $\approx [c_0 + \Delta N_\mu (c_2 \Delta N_\mu - c_1)] + (c_1 - 2c_2 \Delta N_\mu) q_H + c_2 q_H^2$ was developed in terms of the XC-H- $\Omega^{\delta-}$ -H $^{\delta}$ + bond polarization developed in terms of the $XC_6H_4O^{\delta-}-H^{\delta}$ + bond polarization, the XC_6H_4O-H bond energy, and the XC_6H_4O ⁻ anion stabilization. The results obtained suggest that the hydrogen atom charge q_H is representative of the parasubstituted phenols' acidity. The calculated *λ* values were obtained for the parasubstituted phenols using the $\Delta G_{\rm exptl}^{\circ}$ values, they are higher than one, and the trends are $\lambda_{\text{electron}-\text{acceptor}} > \lambda_H > \lambda_{\text{electron}-\text{releasing}}$. A multiple-regression analysis shows that there is a relationship between σ^- , q_H , and ΔN_μ . The equation obtained from DFT and the local HSAB principle shows that the calculated σ^- value trends are $\sigma_{\text{electron}-\text{acceptor}}^2 > \sigma_H^2 > \sigma_{\text{electron}-\text{relessing}}^2$. In general, the analysis suggests that there is no direct interaction between the substituent and the hydrogen atom; the effect is primarily due to the interaction of the substituent with the C_6H_4O group. The substituent transmits its effect through the π system of the benzene ring, and q_H shows the effect of the electronegativity of the fragment $X-C_6H_4O$ on the hydrogen atom. The analytical equations obtained from DFT and the local HSAB principle provide guidelines to obtain a quantitative description of the fit parameters in the linear correlation equations.

Acknowledgment. This work has been supported by a research grant (29299E) and a Ph.D. scholarship (M. L. Romero) from the Consejo Nacional de Ciencia y Tecnología, CONA-CYT-México.

References and Notes

(1) Pine, S. H.; Hendrickson, J. B.; Cram, D. J.; Hammond, G. S. *Organic Chemistry*, 4th ed.; McGraw-Hill: New York, 1980.

(2) March, J. *Ad*V*anced Organic Chemistry, Reactions, Mechanisms and Structure*, 4th ed.; Wiley-Interscience: New York, 1992.

(3) Hudson, R. F.; Klopman, G. *J. Chem. Soc.* **1964**, 5.

(4) Lowry, T. H.; Schueller Richardson, K. *Mechanism and Theory in Organic Chemistry*, 3rd ed.; Harper and Row, Harper Collins Publishers: New York, 1987.

(5) Yukawa, Y.; Tsuno, Y. *Bull. Chem. Soc. Jpn.* **1959**, *32*, 971.

(6) Pross, A. *Theoretical and Physical Principles of Organic Reactivity*; Wiley-Interscience: New York, 1995.

(7) (a) Isaacs, N. *Physical Organic Chemistry*; Addison-Wesley Longman: Reading, MA, 1995. (b) Rablen, P. R. *J. Am. Chem. Soc.* **2000**, *122*, 357. (c) Pe´rez, P.; Toro-Labbe´, A.; Contreras, R. *J. Phys. Chem. A* **2000**, *104*, 11993.

(8) Leffler, J. E.; Grunwald, E. *Rates and Equilibria of Organic Reactions*; Dover Publications: New York, 1989.

(9) Perrin, D. D.; Dempsey, B.; Serjeant, E. P. *pKa Prediction for Organic Acids and Bases*; Chapman and Hall: New York, 1981.

(10) Hammett, L. P. *Physical Organic Chemistry*; McGraw-Hill: New York, 1970.

(11) Johnson, K. F. *The Hammett Equation*; Cambridge University Press: New York, 1970.

(12) Me´ndez, F.; Romero, M. de L.; De Proft, F.; Geerlings, P. *J. Org. Chem.* **1998**, *63*, 5774.

(13) Pross, A.; Radom, L.; Taft, R. W. *J. Org. Chem*. **1980**, *45*, 818. (14) Kemister, G.; Pross, A.; Radom, L.; Taft, R. W. *J. Org. Chem*. **1980**, *45*, 1056.

(15) Karaman, R.; Huang, J.-T.; Fry, J. L. *J. Comput. Chem*. **1990**, *11*, 1009.

(16) Haeberlein, M.; Brinck, T. *J. Phys. Chem*. **1996**, *100*, 10116.

(17) Parr, R. G.; Yang, W. *Density Functional Theory of Atoms and Molecules*; Oxford University Press: New York, 1989.

(18) Pearson, R. G. *Chemical Hardness*; Wiley-VCH: Weinheim, Germany, 1997.

(19) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.7; Gaussian, Inc., Pittsburgh, PA, 1998.

(20) Levine, I. N. *Physical Chemistry*; McGraw-Hill: New York, 1996. (21) Voets, R.; Françoise, J.-P.; Martin, J. M. L.; Mullens, J.; Yperman, J.; Van Poucke, L. C. *J. Comput. Chem*. **1990**, *11*, 269.

(22) Fujio, M.; McIver, Jr, R. T.; Taft, R. W. *J. Am. Chem. Soc.* **1981**, *103*, 4017.

(23) Although relationship 3 is outside the thermodynamics, its mathematical simplicity may result in large part from the tendency of such quantities as the free energy to be additive functions of molecular structure. See ref 8, pp 128-262.

(24) Draper, N. R.; Smith, H. *Applied Regression Analysis*; Wiley: New York, 1966 .

(25) Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke W. E. *J. Chem. Phys.* **1978**, *68*, 3801.

(26) Parr, R. G.; Pearson, R. G. *J. Am. Chem. Soc.* **1983**, *105*, 7512. (27) The finite difference approximation to the $\mu = (\partial E/\partial N)_\nu$ and $\eta =$ (*∂µ*/*∂N*)*^ν* is exact for systems in the grand canonical ensemble at zero temperature, within exact DFT, but for the approximate functionals the finite difference equations $\mu = \frac{1}{2}(I + A)$ and $\eta = \frac{1}{2}(I - A)$ are also approximate (see: Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L., Jr. *Phys. Re*V*. Lett.* **1982**, *42*, 1691, and Ayers, P. W.; Parr, R. G. *J. Am. Chem. Soc.* **2000** *122*, 2010). However, Pearson has incorporated μ and η into the commonly used orbital energy diagrams: $\eta = \frac{1}{2}(\epsilon_{\text{LUMO}} - \epsilon_{\text{HOMO}})$ and $\mu = \frac{1}{2} (\epsilon_{\text{LUMO}} + \epsilon_{\text{HOMO}})$ (see: Pearson, R. G. *Proc. Natl. Acad. Sci. U.S.A.* **¹⁹⁸⁶**, *⁸³*, 8440). Hard molecules have a large HOMO-LUMO gap. To test these definitions, we compared them and observed that the trends do not change.

(28) Atkins, P. W. *Physical Chemistry*; Freeman: New York, 1998.

(29) Cumming, J. B.; Kebarle, P. *Can. J. Chem.* **1978**, *56*, 1.

(30) Ga´zquez, J. L. Chemical Hardness. *Struct. Bonding* **1993**, *80*, 27.

(31) Ga´zquez, J. L. *J. Phys. Chem. A* **1997**, *101*, 9464.

(32) Reed, J. L. *J. Phys. Chem.* **1994**, *98*, 10477.

(33) Me´ndez, F.; Ga´zquez, J. L. *J. Am. Chem. Soc*. **1994**, *116*, 9298.

(34) Méndez, F.; Gázquez, J. L. Theoretical Models for Structure and Dynamics in Chemistry. *Proc. Indian Acad. Sci., Chem. Sci.* **1994**, *106*, 183.

(35) Yang, W.; Mortier, W. J. *J. Am. Chem. Soc*. **1986**, *108*, 5708.

(36) In previous papers we have determined the condensed fukui function

 f_k^* for several organic compounds through Mulliken population analysis.
We found that the trends do not change when we use a finite differences for several organic compounds through Mulliken population analysis. scheme $f^+(r) = \rho_{N+1}(r) - \rho_N(r)$ to evaluate the derivative $f^+(r) = (\partial \rho(r))$ scheme $f^+(r) = \rho_{N+1}(r) - \rho_N(r)$ to evaluate the derivative $f^+(r) = (\partial \rho(r)/\partial N)_v^+$ (see refs 33 and 34 and Méndez, F.; Galvan, M.; Garritz, A.; Vela, A. Ga´zquez, J. L. *J. Mol. Struct.* **1992**, *81*, 277).

(37) Parr, R. G.; Ga´zquez, J. L. *J. Phys. Chem*. **1993**, *97*, 3939.

(38) Me´ndez, F.; Tamariz, J.; Geerlings, P. *J. Phys. Chem*. *A* **1998**, *102*, 6292.

(39) Me´ndez, F.; Garcı´a-Garibay, M. A. *J. Org. Chem*. **1999**, *64*, 7061. (40) Ickowski, R. P.; Margrave, J. L. *J. Am. Chem. Soc*. **1961**, *83*, 3547.