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We develop a Feynman rule for energy-level diagrams emphasizing their connections to the double-sided
Feynman diagrams and physical processes in the Liouville space. Thereby, we completely identify such
diagrams and processes contributing to the 2D response function in the Brownian oscillator model. We classify
such diagrams or processes in quartets and numerically present signals separately from each quartet of diagrams
or Liouville-space processes. We find that the signal from each quartet is distinctly different from the others;
we can identify each peak in the frequency domain with a certain quartet. This provides the basis for analyzing
and assigning actual 2D peaks and suggests the possibility of Liouville-space path-selective spectroscopy. As
an application, we demonstrate an example in which two familiar homogeneous models of relaxation are
distinguished by the existence or nonexistence of certain peaks on the 2D map; the appearance or disappearance
of certain peaks is sensitive to the choice of coupling models. We also point out some confusion in the
literature with regard to the inclusion of relaxation effects.

I. Introduction relaxation processes from physical insight is less intuitive and

Th f ultrashort | | i be th . fis restricted to some special cases, this model has the advantage
€ use ot ultrashort laser puises 1o probe the properties of ¢ identifying peak positions of the optical signal in the

molecules has been propelled by rapid advances in laser meafrequency domaif”4° The anharmonicity of potential and
surement techniquéskecently, 2D vibrational spectroscopy has nonlinear modembde coupling is also easily taken into
been ac_tively stut_jied, where th_e sp_e_ctral properties of multibody account. Phase-matching conditions, which chose a specific
correlzi'%)n fupctlons of polarlzab'lllty (2D Raman specgros- Liouville path contribution by the configuration of laser beams,
copyy° or dipole moments (.2D mfrare_d sp_ectrosc&ﬁﬁ are also easy to take into account. In the oscillator model or
are measured. _The 2D techmque pro_wdes information abOUtmolecular dynamics simulations, the phase-matching condition
the inter- and intramolecular interactions that cause energy .an be used only after calculating entire response functions.

i 4—28
relaxat|on§. . . . The rate of increase in the number of diagrams, however, with
_ Theoretically, optical responses of molecular vibrational mo- y,q increase in laser interactions is more severe in the energy-
tions have been studleg?malnly by either an oscillator mi8del  |o/6| model than in the oscillator model; this becomes a serious
or an energy-level modét.The oscillator model utilizes molec- o5 tical problem for multidimensional spectroscopy, where
ular coordinates to describe molecular motions. This description many laser interactions are included.
is physically intuitive since optical observables (dipole moments In this paper, we try to bridge the two complementary models

or Réa_man P(;]lar'szab'l't'e?) iare also dﬁ.sﬁ“bed by n;c;)lec_ular by transferring some results obtained in the oscillator model to
coordinates; the effects of relaxation, which are caused by Inter- o onargy-level language. Although we lose simplicity (e.g.,

actions of the coordinate with some other degrees of freedom, .« <mall number of diagrams), we gain insight into the optical

g:i:;trrl';;:f‘nizgfc'g%ﬁg‘; ?:nlggigsclir;e?;gﬁ églgggmn'c processes; we can assign each peak to a certain set of optical
' : or Liouville-space processes. The resulting energy-level Fey-
~On the contrary, the energy-level model employs the energy nman rule for the oscillator system allows the inclusion of
eigenfunctions of a molecular motion but is physically equiva- g|axation in an ad hoc way. As an application, we compare
lent to the oscillator model. Accordingly, laser interactions are system with different damping constants. This example
described by transitions between the energy levels; the opticalyeyeqls that the existence of certain peaks in the 2D spectro-

processes, including the time ordering of laser pulses, are scopic map sensitively depends on the relaxation model.
conveniently described by diagrams such as Albrecht diagfams

or double-sided Feynman diagrafalthough the inclusion of || |nteraction of Energy-Level Diagrams
T Part of the special issue “A. C. Albrecht Memorial Issue”. We consider a molecular vibrational motion described by a
* Corresponding author. E-mail: okumura@phys.ocha.ac.jp. single molecular coordinat®. In the energy-level representa-
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Contributions to 2D Spectroscopy
tion, the Hamiltonian is expressed as
2
2
where a and a' are the creation and annihilation operators,
respectively, and

Ho = hQ(aTa + @

_h

+
2MQ(a+a)

Q= (2)
for the system with maddl. The energy levels of this harmonic
system are given b, = hQ, with Q, = (n + 1/2)Q for which
we introduce the frequency differen€s,, = Qm — Qn. If the
system interacts with the laser fieift), then it is governed by
the full Hamiltonian

whereu is the dipole for infrared (IR) and. is the polarizability

Ho + 1E®) (IR)
H, + oE(t)* (Raman)

H(t) ®)
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for Raman spectroscopy. Both operators can be expanded as

1 1
x=x0+le+§x2Q2+§x3Q3+--- (4)

We consider the response function

RO(T, ) = 6t ~ ) 0(t, ~ )] 0. )] )]
©)

which is pertinent to 2D second-order IR (for nonisotropic
media) or 2D fifth-order Raman spectroscopy, whetgis the
Heisenberg operator affor the noninteracting Hamiltoniald
and [O0= Tr[pe0] with pg = e PHyTr[e~ AHd. (When we
include the effect of dissipation at the level of the Hamiltonian,
Ho includes the bath Hamiltonian and the systemath interac-
tion.) The operato stands foru (IR) or oo (Raman). The

T
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Figure 1. Energy-level diagrams d®?(Ty, T,) for Raman processes.

guantum excitation or de-excitation where@&can result in a
two-quantum excitation or de-excitation in addition to a zero-
quantum transition. For example, fro@1— Q?|00~ [(ah)? +

generalization to the combined IR and Raman cases such asa']|0[]we see that by the action of the opera@rthe ground

M pe(tz), w(ta)], ou(ty)] 38 4244 will also be treated below.
R@(Ty, T) for the harmonic system can be expanded in terms
of Q by eq 4. The leading order is given as

R(Z)(Tlv Ty = (Iﬁ)z % R TR TR

(6)
where
R, = QIQ%(T, + T,), Q(T))], Q(0)]0 @
R,= MIQ(T, + T,), Q((Ty], QO)I0 ®)
Ry=MIQ(T, + T,), Q(Ty)], Q*(0)]0 ©
with
{:z _ E _ % (10)

A. Raman SpectroscopyFor the moment, we concentrate
on the Raman case (i.€[[ a(ts), o(tz)], o(t1)]D. Some of the
processes in eq 6 are represented by the energy-level (Albrecht
like) diagrams in Figure 1. The differences from the original
Albrecht diagram are mentioned at the end of this section.
Before explaining the diagrams, let us review the rudiments of
possible transitions by operatd@sandQ?, Q can cause a one-

ket statg0Ccan be converted int®(zero-quantum transition)
or |20(two-quantum excitation). In the same wdg| can be
brought into [0] (two-quantum de-excitation) of2| (zero-
quantum transition).

In the diagrams, time runs from the left to the right. Each
pair of arrows stands for a Raman excitation. The pair with a
wavy arrow signifies the Raman induction dectgs{interac-
tion). The first interaction occurs &f; the second, aty; and
the last, ats.

The full description of a quantum state at a certain time
requires both the bra stafi| and the ket statgnlj at any time
the state is fully specified by the Liouville staft@m|. In the
diagrams, the excitation or de-excitation of thea state is
expressed by a pair dfiin arrows whereas that of thet state,
by thick ones. For example, the first interaction tatof (i)
and (ii) is a two-quantum excitation of the ket state whereas
that of (iii) and (iv) is of the bra state.

In the Liouville space, the diagram (i) is interpreted as
follows. The system is initially in the ground (Liouville) state
|000|. The first interaction causes a two-quantum excitation
of the ket state|000| — |200| att;. The second interaction
causes a one-quantum de-excitati@y0| — |100| att,. The
last shows a one-quantum de-excitatifdi,[0] — |OC0| at ts.

As a whole, we denote this as

4 t i3
|OU0| — |20 — |10J0| — |0CI0| (12)
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Figure 2. Energy-level diagram oR®(T,, T,) for IR processes. 0 . 2 ~ 1 1
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Figure 3. Energy-level diagrams oR®(T;, T,) for IR—Raman O Oo—
processeslx(ts), u(t)], ()]0 0~ 2 Lo
. - . . 0 0 0 1
The diagrams (iiy-(iv) are interpreted as follows: : i ?_
t t t 1 | 1 |
|0CTO| = 2070 = |1070| = | 1017 (12) (@iv) o——0———
t t t
|OLI0| = |02 = |OC = |OLIO| (13) Figure 4. Double-sided Feynman diagrams RP(Ty, T2).
|0CT0)| N |02 & |OCTL| 5 |17 (14) in Figure 4 are the translations of the diagrams in Figures 1, 2,

or 3. In the double-sided diagrams, time runs from the left to
right (as in the energy-level diagram). However, there are always
two horizontal lines-the upper and lower lines. The former rep-
resents the ket state whereas the latter, the bra state. The single
circle stands for a one-quantum transition whereas the double
circle stands for a two-quantum transition. The quantum number
of the bra and ket states is denoted explicitly in the diagram.

It is noted that there are some differences in diagrammatic
notation among articles. For example, in some literature, the
guantum transition is not represented by circles but by arrows.
In another one, diagrams are rotated by 80 that the time

Note here that a pair a¢hin arrows always correspond to the
excitation or de-excitation of thiera state.

We define the population state Iy lm| and the coherence
state byin[Tmn| (n = m). We notice that, after the last interaction,
in all of the above four diagrams, the system is always in a
population state|QCT0| or |1[11]). In summarya diagram does
not vanish only when the final state is a population state
(Theorem 1). This corresponds to the trace operation in the
definition of the response function.

In this paper, we simplify the original Albrecht diagraths
for comparison with the Liouville paths. The main differences . ns from the bottom to the top.

are the following: (1) we always use the same horizontal lines |, general, as seen below (section VI. Ae double-sided

regardless of ket or bra states, which is not the case in thediagram is comenient for enumerating all possible diagrams

original Albrecht diagrams and (2) time always runs from left \hareas the energystel diagram is comenient for understand-
to right in our representation whereas the directions for the bra ing the physical process.

and ket states are the opposite in the original version. Our
representation is somewhat simpler in that a single diagram in|V. Feynman Rules for the Diagrams
ours sometimes corresponds to several diagrams in the original
version.

B. IR and IR —Raman SpectroscopyIR processes appear-
ing in the IR response functionf](ts), u(t2)], u(t2)]0) corre-

We have introduced several ways to represent optical
processes as in Figures-4. It is emphasized here that the
interpretation in terms of the Liouville-space stawe1(n| is

sponding to Figure 1(iv) is described in Figure 2; each quantum unique except for Whatk.lmphes. Accordmgly, we can .develop
a universal rule to write down analytical expressions from

transition is represented not by a pair of arrows but one arrow. diagrams via the interpretations (such as eqs14) in the
Note that Raman and IR processes can be equivalent theoreti_Liogville space; the defivation is a strai htforevard exercise in
cally at this level of description, although even orders of IR pace, 9

; . . elementary quantum mechanics and will be discussed elsewhere.
processes, such as second-order IR signals, vanish except in

. - } . It can be summarized in the following way. We associate with
anisotopic media, such as adsorbed molecules on metallic sur- g way

faces? This situation can be overcome by mixing the IR and each interaction ((?]nglnatlng fron; the mte@ct@ff/l:j!) at af h
Raman processé3By using narrow-band lasers (two IR exci- ;:ertaln t|hme or.ea_lc_: bﬁ)rolpagz;tgn or ?.cFr.tam ||3|er:coh o?e ofthe
tation pulses followed by one probe pulse that creates a Raman actors shown in Table 1 or 2: By multiplying all of the factors
signal), Zhao and Wright demonstrated such an experifiéft.  TABLE 1: Factors for Interaction

As in IR—Raman spectroscopy, we consider the response
function O ou(ts), u(t2)], u(t1)]C] for example. A diagram corre- _
sponding to Figure 1(iv) is shown in Figure 3; Raman and IR ImZ=|m+ nCJ (iA)x{mn + n| Q miZk!

interaction (i = 0) factor

i — K
transitions are represented by a pair of arrows and by one arrow, |mC |m — nC] ('if.?;:"mnmn nle ITmﬁk'
respectively. Diagrams corresponding to the other R&man [ — [+ n| é—:/h;kaﬂ: 8k:nrnn _r.]qul
response function such gBu(ts), u(t2)], o(ty)] Ccan be described (] — [n = n| i L .
in a similar manner. remark omit =+ i/A for the last interaction
lll. Energy-Level Diagram and Double-Sided Diagram TABLE 2: Factors for Propagation
We can represent processes in the Liouville space in a differ- propagationt(= 0) factor

ent way by the double-sided Feynman diagrams. The diagrams |mCIm| for t € mrd = Tindd
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and inserting another factor of 1/2 to avoid double counting
(see Theorem 2 below), we obtain an analytical expression of
the corresponding diagranFéynman rulg Here, we have
introduced {mn and I'my (=0) to describe relaxation; the
difference in frequency, which was modified due to the
relaxation, is defined b§m, = (m — n)¢ whereas the relaxation
constantl'm, for the state|m | possesses the symmetric
property I'nm = I'mn, Which is a necessary condition for a
consistent theory (see the comment just below eq 21). Without
dissipation,mn — Qmn = (M — N)Q and I'my — 0. In the
Brownian oscillator model with the damping constantthe

corrected frequency is given by = y/Q?—(y/2)%.4647 The
expression fol'mpy in this model shall be discussed below.

By definition, the propagation periodimplies the time
between two interactiong his excludes the periods frotnto
t; and fromts to tr in the diagrams in Figures-14 (or, say, in
egs 11-14) because there is no interaction tator tr; we
associate the unity for these special periods.

Let us apply our rule without relaxatiol gn = 0, {mn =
Qny to a diagram or a Liouville-space path. As the first
example, we consider diagram (i) (of Figure 1 or 4). We have
only two separate propagation periods by definition. In the first
period fromt; to t,, the system is in statRO0|, and thus we
have the factor €%d ~ W whereas for the last period froty
to t3 the system is in statd (10| and we have the factor &t
- B in total, we have the propagation factor®o’-e @'z,
where we have used relation 10. In addition, as the result of
the three interactions, we have other factors:

i Q00 |

e 2R

i A
L [IQ) 20 X, DIQ|10= ('—

(Note here the relations eq 2 as wella&s= x/ﬁ|n — 10and
a'ln0= v/n+1jn + 10. In summary, the process in eq 11 or
diagram (i) is given (with the extra factor of 1/2 associated with
the double counting) by

o iam

0=t o

A \2 e,
A 2 lavio) °

2MQ (15)

The process in eq 12 or diagram (ii) (of Figure 1 or 4) is
different from (i) only afterts. Although the last interaction at
tz is that for the bra state (expressed by the thin arrows and
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(@

Figure 5. General process corresponding to Figure 1(i)

n+2
n+l
n

state of (i),| L[10|. Accordingly, (iii) given above is the complex
conjugate of (i) (i.e., (ii)= (i)*). Diagrammatically, in (iii) of
Figure 1, all of the thick arrows in (i) are replaced by thin
arrows. In generathe complex-conjugate diagram is obtained
by interchanging all of the thick and thin arrovWf¥heorem 3).
In the double-sided Feynman diagrams, instehd,complex-
conjugate diagram is obtained by interchanging the circles on
the upper and lower line§Theorem 3.

Diagram (iv) is the complex-conjugate diagram of (ii) because
the thin and thick arrows are interchanged (i.e., @vYii)*).
We can also verify the relation (iii= (iv) from the above
Feynman rule by reconfirming Theorem 2.

V. Temperature Effect and Initial State

In the above discussion, we have assumed that the system is
initially in the ground state]000|, which is usually justified
for high-frequency vibrational modes at room temperature. For
high temperatures or low-frequency modes, however, excited
stategn(Im| are initially populated according to the Boltzmann
factor. In general, we have to estimate all of the possible
processes assuming that the system is initially in the population
state|nm| using the above-mentioned rule and then summing
with respect tay with the Boltzmann factor @&/ e & (where
E, is the eigenvalue dflp in the case without dissipation); this
completes our Feynman rule.

Even if we take into account the contribution from the general
initial state |nOm|, however, in the (fully corrected) Ohmic
Brownian oscillator model, we still obtain the same result as
above as shown in the literature. This is the reflection of the
relation

m| X|nC= [0 X|00 (18)
whereX is some special combination of operators. (This could
be directly checked by laborious calculations using our Feynman
rule.) The fact thatR@(T;, T,) treated in this paper is

different form (i)), the factors for this last interaction is the same independent of the temperature, and thus we can obtain a finite
as that of (i) by the above Feynman rule; there is no sign temperature result even if we assume that the system is initially
differences between the bra and ket states especially for thein the ground state, is by no means trivial but is established by
last interaction. In summary we have other calculation methodsThis implies, for example, that the
. . dependence on of the analytical expression corresponding to
(i) = () (16)

Figure 5 cancels out with some other diagram. For damping
In general, we have the following theorem, which is related to mO‘?e'S other than the (fully corrected) Ohmlp Bro‘”?"”‘“
the double counting:The diagrams that are different only by oscillator moo_lel, our results prese_nted_ belqw might be inter-
the side of the last interaction (bra or ket side)seahe same  Preted as a high-frequency approximation (ife2 > kT.)
contribution (Theorem 2).

The process in eq 13 or in diagram (iii) can be estimated in
a similar manner by the above Feynman rule:

VI. Liouville-Space Quartet

The four diagrams (i} (iv) in Figures 1 and 4 are a special
set in the sense that we can obtain the other three starting from
one of the quartets.

In the energy-level diagram, we obtain the second by
changing the last interaction by using one of the following rules
(depending on the last interaction of the starting diagram): (1)
interactions on the bra state (thin arrows). Fronto t,, the the (last) ket excitation to a bra de-excitation, (2) the ket de-
system is in state®12| and|200| in (iii) and (i), respectively; excitation to a bra excitation, (3) the bra excitation to a ket
these two states are the complex conjugates of each other. Fronde-excitation, or (4) the bra de-excitation to a ket excitation.
t, to t3, the state of (iii) /O], is again in the complex-conjugate  The remaining two diagrams are the complex-conjugate dia-

A2 o a

i\2 Xixz
") 2MQ

(i) =( (L)Zeizml-

Note here the minus sign in front ofhi/because of the
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grams of the previous two diagrams. (The conjugates are and their analytical expressions are given as follows:
obtained by interchanging the thin and thick arrows.)

In the double-sided diagram, the second diagram is obtained XX 1 orot
by lowering or raising the last circle. The remaining two are | =———e ® "9%cos(LT, + ET,)  (24)
obtained by interchanging the lower and upper lines with circles. 2(M)
As seen before, the corresponding analytical expressions of Xixz
(i)—(iv) have the relations (i}= (ii), (i) = (iv), and (i) = Il = ——e "™~ Talcos(ZT, + £T) (25)
(iii)* . The sum of the quartet is always real: 2(MQ)
N e . X
@) + (i) + (i) + (iv) = 4Re[()] = 4Re[()] (19) A=— 1_22 e—FmTl—I“mTZCOS@Tl +CT))
wheren =i, ii, iii, or iv. Taking the real part of eq 15, we have 2(MZ) (26)
an expression for the quartet, )
XX
X%, =—— 2 Tl TelcosET, — ¢T,) 27)
V,=— 5 COS(RT, + QT) (20) 2(MQ)
2(MQ) )
. . . . . . — X%o —T'10T1 — 202
In terms of the interpretation in the Liouville space in eqs C=——r"7 cosCT,; + 2CT,)
11-14, all of the processes possess a common property: the 2(M&) (28)
two-quantum coherencé2(J[0| or |00[2]) is realized forT;
whereas the one-quantum coherentel(| or |OT1|) is realized 1 xfx2 T T
for T,; we denote this as Dl1=-— Z(M—Z)Z e 0 "7cosCTy) (29)
|2000| — | 10| and |02 — |01 (21) 2
D2 =322 e "t~ Nl cogeT)) (30)
This is reflected by the factor cosX; + QT>) in eq 20. 4 M C)Z

We notice that in the case with dampingIif,, (and &mp)
were not symmetric thel; could not be real; the symmetric  As for the derivation of this, we remark: (1) Quartetamd I
property ofl'mnis required for the response function to be real. cancel out because

A. Quartet Representations: All Possible Quartets for

R@(T,, T2). We show six quartets R(HR(6) in Figure 6 in 1 %%, Tt
the double-sided representation. The square brackets imply the I'=—7-——5€8 " *’CosCT,)
quartet; only one of the quartets is explicitly written in the (M2)

brackets. For example, R(1) of Figure 6 collectively stands for

(i)—(iv) of Figure 4. and

In Figure 6, on the right side, 10 quartets in the energy-level 2
: 9 : ; 1 X% o
representation are given; some quartets in double-sided repre- == g TooT1 —ToiTz cosCT,)
sentation correspond to not one but two quartets in the energy- 4 (Mg)?
level representation. For example, R(1) contains contributions
| and I whereas R(3) contains only A2. (The numerical factor 1/4 can be understood from the first two-

Six quartets R(1}R(6) in Figure 6 exhaust all possible —quantum transition associated wii|Q? 000 [Djaa'|00= 1.)
contributions to the right-hand side of eq 6; there are 3 ways to (2) The sum A2+ Al reduces to A. (The numerical factor for
put in the double-quantum transition (double circle), and there A2 (or A1) can be estimated by noting the second two-quantum
23 ways to position the three (including one double circle) circles transition[1|Q?/100 [jaa" + a'a|10= 3 (or [0]Q?000 (O]
on the upper or lower line, which leads te23 double-sided ~ aa'|00= 1)).

Feynman diagrams in total. Thes83liagrams can be divided It is worthwhile to observe the relationships between analyti-
into 6 quartets that have been shown. We understand here thagal expressions and the symbolic interpretations of the remaining
the double-sided diagram is coenient for enumerating all quartets:

possible diagrams. _

B. Estimation of Quartets. The analytical expression of A: 1000 — |10 and |00 — |OCL]  (31)
quartet Il is given via our Feynman rule: B: |10 — |102] and |00 —|2001] (32)
- i A 2.@. ot Ty, T T, C: |100| — j200, and |0OC01] — |02 (33)

Al \2m¢ 2 D1: |100| — |0000] and |O01| — |O0O0| (34)
(22) D2: [1000] — |1T1| and |01 — |01 (35)

where the analytical expression in the square brackets has bee
derived from the diagram explicitly drawn in the brackets in
Figure 6 (in the presence of dissipation). For example, the
propagators €271 ~ Iy and €itT ~ a2 come from the
propagation of 2000 and |2001|, respectively.

In this way, we obtain the expression

Yhat is, we can associate the statelin| with {nm and '

We note that, in principle, if we fully included the temperature
effect by our Feynman rule with tracking all of the possible
processes, then we could obtain the result given in Appendix B
of ref 37.

ROT,T)=1+Il +A+B+C+D1+D2 (23 /I Damping Models

We can confirm that the well-known result for the Ohmic
where these labels (1, II, A, ...) correspond to those in Figure 6 Brownian oscillator (BO) model (Ohmic implies that the system-
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R(1) I T

| i i = P 2
g 1 ¢ 1
LI I
[2><0l [1><0| [0><0] [1><0]
R(2) 11 118
L S —————
- : 1 ! 1
0 0
— — — 2><0| 2><1] — lo><0| |0><1]
R(3) A2 .
—0—— 00—
| | i = 2
1
0
— — — [1><0| |1><0] —
R(4) B Al
00—
R \ % aE i ,
© : 3 1
¥
0 0
— — — 1><0| |1><2| —_ 1><0| |1><0|
R(5) C DI
——O0——0—
1 ] 1 2 2
< S
i i,
— — — [1><0| [2><0] — [1><0| |0><0]
R(6) _ D2 .
é
i | i = 5
! 1
0
— — L <0l 1>< —

Figure 6. All possible quartets foR®(Ty, T,). The square brackets imply that four diagrams are collectively represented. For example, the first
diagram in the energy-level diagram for R(1) corresponds not only to (i) of Figure 1 (which is explicitly written in the brackets) but also to the other
three diagrams (it} (iv) of Figure 1.

bath coupling is in the bilinear form) is reproduced from eq 23  The relaxation constant for the same Ohmic model within

by setting the lower-level approximation (i.e., at the level of Fermi’s golden

rule with a somewhat ad hoc approximation (see below)) is
— {V for |nCIn| (36) given by refs 37 and 48
nm [n — m|y/2 for |nCm| (n = m)

where|m| represents the absolute valuemfActually, in the I'n= n —; my (37)

Brownian result, H- 1l should be zero, which is true ify; =

T'10, while D1 + D2 should be—2D1, which is true ifl’'1; = which is also simple but incompatible with the above two

Too; T'mnin eq 36 satisfies these requirements. requirementsI(z; = I'p andT'11 = Too). With this relaxation

The cancellation of | and Il is one of the features of the constant, | and Il survive, for example. (In addition, there is no
Brownian result. Another feature is that the st@te[0| decays frequency shift {mn— Qmp) in this finite-order approximation.)
with the relaxation constarm, which is the same as that f{i{] The frequency shift and appearance of the absolute vatue (
[1]. These characteristics have provoked some controversy, as— m|), which is nonanalyticin the off-diagonal relaxation
mentioned below. constant, in eq 36, may correspond to the summation of an
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infinite number of diagrams. In the well-known result of the {ng Odn'}| = (In Oy [), == (IngIB' )+ (39)

Ohmic BO modelthe bilinear coupling between the system-

bath is fully taken into accounthis is the exact prediction from  \here {ng = (n, ny-++) is the quantum number of the

a simple reasonable model, and we are concerned with thecorresponding mode. Hereafter, we use the notation in which

relaxation offully dressed state the exact result of the BO |, n,Ong, mg| stands for the state where the modends

model. On the contrary, the relaxation constant in eq 37 is the gre in the statesn{J0n and |nd0Ens|, respectively. For

strength) approximation. Nonetheless, in some contexts, theare in the ground and first excited ket states while they are in

second-order result has been favored whereas the full-orderthe second and third excited bra states, respectively.

result has been question&d® The factor (in the Feynman rule) for the transition is well
As we show below, we can distinguish the above two models explained by example. The transition

(36 or 37) by a 2D experiment by checking for the existence or

absence of certain peaks. In other words, whether the coherence |0, 0O, 0 — |2, 110, O (40)
(off-diagonal) relaxation constant that depends only on the
quantum number difference (WheFg.inm = I'no) and the level- caused by the operato{®)2Q@ is associated with the factor
independent population relaxation are appropriate (as the first- )
order picture) or not might be checked experimentally. 1. W112) | (121) | @210 11 M\20@)0 o=

Note that if the system has some sort of anharmonicity such 3! h( s s £ 2, 1Q%Q%p,

as the anharmonicity of potentilor the nonlinear system- 1 i A A
bath couplin§® then the relaxation constants do not folldias o1 7S V2 M.O. A/ M.O
= I';p and so forth, even when we take into account higher- ' e 272
order systemrbath interactions. Then the number of Liouville \yhareas the transition (again caused Q§H2Q®)
paths involved in the optical processes increase dramatically,
especially when the systenath interaction is very strong. |0, 0CT0, 0| — |0, 012, 1 (41)
Also, if the laser-molecular interaction is much shorter than
the time duration of the systenbath interactions, then one has is associated with the same factor with the minus sign. If the
to regard the relaxation rate as a function of time (Lgu(t)). above transition occurs at the last time, however, we have to
In such case, the equation-of-motion approach is more appropri-omit the factori/h as in the single-mode case.
ate than the diagrammatic approaches, although it requires Note here that a transition of the type
computationally expensive calculatiots>°

We comment on the confusion in the literature with regard |0, 0CJ0, O — |1, 011, Q) (42)
to the Redfield theory, one example of which is eq 37. The
Redfield theory without the rotational wave approximation cannot occur at once, but
(RWA) is equivalent to the FokkeiPlanck equatiofi*=>° The
time-evolution operator in the Liouville space from state 0, 010, 0 — |1, 1010, O (43)
k, M= kKOO to W, j| = --+]j0is then expressed as
[, j|e~ i*=Dyk, Im) whereA* is the quantum Liouvillian and
I' is the damping operator (Redfield operator). In an energy-
level representationk, IMis the eigpnfunction of the Hamil-
tonian but not the eigenfunction df, which makes it diffi-
cult to evaluate this propagator. However, one sometimes
reads the damping constant directly from the Redfield tensor
elementsIy and incorporates them in the propagator as
i, jle7'=-TwYk, IO) which cannot be justified from the
coordinate representation modéf® Accordingly, this ad hoc
methodology possesses a flaw in the sense that the theory thus { |1000] — 10011 (modes)

can occur; bra and ket excitation can never occur simultaneously,
that is, the simultaneous multitransition can occur exclusively
for the ket state or for the bra state.

The time propagation factor of each mode in the statgl (
[fn|)s during a (positive) time durationis given by ei(® — m<d
for the harmonic system without dissipation.

In the multimode case, the diagram explicitly written in the
square brackets labeled D2 in Figure 6 represents either a single-
mode process

obtained does not converge to analytical perturbative results such (44)

as those obtained by the Brownian oscillator model. It is possible

: ff . . . . .
to evaluate effective tensor elemefif;’ by solving the  where— implies no time propagation, or a two-mode process

equation of motion such as the Fokkétlanck equation with

—  — — (modes)

linear and nonlinear systeabath interaction8%-5% but the 1100 — |1000| (modes)
calculated results are quite different from the Redfield tensor —  — |01 (modes) (45)
elements?
which is explicitly shown in the square brackets labeled D2 in

VIIl. Multimode System Figure 7. In other words, in the multimode case, quartet D2 in

Extension to the multimode system, whose characteristic Figure 6 represents the quartets displayed in Figure 8.
modes are represented p@s, {Mg, and{y4, is straightfor- By using the above rules in the multimode case, we see that
ward?233.3956\e expand the dipole or polarizability operator the propagator of the process in eq 45 is given HYd - 71
as ~ QI)T; pecausel, 000, O propagates folf; and|1, 0000, 1

propagates forT,. The remaining interaction factors are

1
x=%+ $xPQV+=5x9Q9Q® + ... (38 1 i i
Xo Z 1 Q 2!525’ 2 Q Q ( ) E . EXgS)EL’ OlQ(S)|0, o (_ E)X(lg)m)’ OIQ($,)|01 10

SN s
and we denote the Liouville state by (&Y + x50, 1Q9Q%)|1, 00
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=

o=

Mode s'
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Figure 7. Two-mode processes. There are no counterparts td,IA1, and D1.

(and the factor 1/2 is included to avoid double counting). Taking
into account the other elements of the quartets, we obtain the
total contribution D2 of Figure 6 in the multimode case in the

form
1 H? (S)3(S)3((59)
D2=4Z’R — —Coa || XOXT%5
£ 2 *n

_h R iom i@ 9T
Mo, om0, ¢ © (46)

wherecss is 1 and 3/2 fors = § ands = s, respectively.
Comparing this with diagrams, we learn that we should associate
Ins, ngOJ s, M| with Qﬁf)ms + Qﬂg. These four quartets
correspond to four diagrams in Fi(jure 8 (in the dissipationless
case).

In this way (now taking into account the effect of dissipation),
we have

ROT,T,) = Z (Is+ g+ B+ C,+ D1, + D2)
s=1,2

+ ZAZSS + Z,(Bss + Css + Dss) (47)
S, S,

where the prime in the expressioR, implies that the terms

SY . .
with s = s are excluded in the sum. Here, each term is given
by

with

| = —f. e T8I0 cog(Z T, + £.T,)
Il = f e 8T cog(Z. T, + £.T))

A2 = —f e BT T8T2 cose T, + £,T)

S.
B,=f.e " 87, - T cosg.T, — &T,)

Bee = fes g TR FE’sl)Tzcos@Jl — & T,)
C,= —f e ™~ T8T2cose T, + 26.T,)

C el BT - R+ T,

ss = _fss

x €0SC.T, + (E,+ C)Ty)

D1,= —% f e T8 T8 cose T))

=3
D2,=>f

2 <« e {1, - THT COS@ST]_)

D2, = fg e T8N - TR+ T

x COSC T, + (8 — Co)Ty)

(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)

(56)
(67)

(58)
(59)
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37 Quartet A 3 Quartet B
2t 2
2 2 1 1
Mode s 1 Mode s 1 ¢ ¢’
0 — 0 w; 0} ®; 0
b 1 +
2t 2
| ; 3 2 2 3 5 2 4 1 2 3
ode s’ s 3 1,0 1 - - - 0
™ of e a ‘o o
Figure 8. Quartets represented by quartet D of Figure 6. 31 Quartet C 31 QuartetD
2
| ) : ¢
= 1 1
s$
A4
We observe the following: (1)ds and Il s¢ always cancel out ar -1
whereas J and lls cancel out only if 2t % -2
3 -3
rgsc)) — 1—\(25])- (61) 3 2 4 &] 1 2 3 3 2 4 (?)1 1 2 3
(2) The sum (Al+ A2)sis given by lettings — sin A2ss. (3) 3

When we use

742

é
for [ngOIm ! S o
Fm’ _{ e /2 for T (= my (62 4 1
4
4
1

the above expression reduces to the result of the fully corrected
Brownian oscillator model. If we employ the model with the L
relaxation constant 3 2 -

0 2 3
()
re® =" + my (63) Figure 9. Contour plot of the signal from the system with a single
mn 2 s mode with weak damping. The upper four plots correspond to the

separate contributions from each Liouville-space quartet. The bottom
then this leads to a different result; one of the feature is the plot is the sum of them (i.e., the total signal).
survival of the single-mode terms dnd Ik,

'O | implies that the system is in stape(l(in| for T; and

IX. Feynman Rule in Frequency Domain |n'0 | for To. Thep, we assigf,m a}ndl“nm fqr T and Quy
In the frequency domain, we study the quantity and Iy for T,. This can be symbolically written as
© o i01T1 + iwaTop(2) R N (Qnml Qn’m’)
[ do, [7 do, €2 OTRAT, T (64) InCIin) — | I | {(rnm, r (66)

The frequency domain expression is obtained by using the abov
propagators in the frequency domain (or, instead, directly by
the Fourier transformation of eq 47). The general propagating
factor in the multimode case;dT: ~ QT . g I'T2=iQT2 g jn

the frequency domain, replaced by

eActually, the procesmm| — |n'Ii | corresponds to the peak
at (w1, w2) = (Qnm, Qnm) With the widths in thew; and w;
axes given by nmandyyy, respectively. This results from the
expression in eq 65 and can be confirmed numerically as we

see below.
i i We note here that we need not consider the contributions
w,— Q+il ’ w,— Q +il’ (65) from quartets | and Il because they cancel each other in the

fully corrected Brownian oscillator model.

The expression of eq 47 in the frequency domain is given in  Quartets A = Al + A2. This is symbolized by100] —
the Appendix. |1000| and its complex conjugat®@1| — |00|. The former

process can be symbolically written as

(210 219 - { (Q, Q)
(I'0 10 (y12,v12)

X. Two-Dimensional Signal from Each Liouville-Space
Quartet

In this section, we present 2D signals from each Liouville-

space quartet separately in the fully corrected Brownian oscil- _ . . _ .
lator model. In the frequency domain, since the signal is a This suggests a diagonal peak(w2) = (€2, €2) whose widths

complex number, we show the absolute value of the signal. In N théw: andw, directions are//2; this peak shows a symmetric

the time domain, the signal is real, which is directly shown. Pattern with respect to the two axes, which can be seen in the
A. Frequency Domain. AL. Single Mode (Weak Damping). contour plot in Figure 9. Wlth the complex conjugate process

Figure 9 shows signals from the system with a single mezle (|00 — [0, we associate

= 1,y = 0.1, in arbitrary units). Signals from each Liouville Q. O

space quartet are shown separately. We can interpret each peak - - (€02, €2) - —(2,Q)

: . |1000] — |1000| (68)

in the following way. The process represented [bylin| — (Top Ty (v12,v12)

|1000] — |1010] — { (67)
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Namely, quartet pair A corresponds to two symmetric diagonal 31 Quartet A 31 QuartetB
peaks atdi, wp) = +(Q, Q.) (See the top left plot of Figure 2 5
9) 1 $o 1 * &
Quartet B. Symbolically, the association is as follows: S o 0 > ¥
©0 920 (@ -9 @0 4 ’ <o
' ,— - ?¢ 1 9e
10| — 102 =1 024 =>{ 69
(A0T0) — (2012) {(rlo, ry w2z 2 2
-3 3
Its complex conjugate is 3 02 1 o 12 3 3 -2 4 S 23
(Qo1, 259) {(—9 Q)
100| — |21 = = ' 70 3[ QuartetC 31 QuartetD
ET0r = 20 {(rm, r) ey 70 ) 0 )
Namely, we have two symmetric diagonal peaksuafdy) = ! ' 3 A@
+(Q, —Q). (See the top right plot of Figure 9.) ®: 0 ® 0 3? &
Quartet C. In a similar way, from the association -1 é# -1 V
-2 9 2
(QlO’ QZO) (Q1 _29)
0] = [2L10) {(rloi Iy y12,7) (71) S5 2 4 & 12 3 35 2 4 & 1 2 3
and its conjugate, we should have two significant overtone peaks 37 Full
at (w1, wz) = £(RQ, 2Q) whose width in thew; direction is 5 .
one-half of that in thev, direction; the peak is elongated in the . e ;;
second axis, as can be seen in the contour plot in Figure 9. - 1
(See the middle left plot of Figure 9.) @20 lm.
Quartet D = D1 + D2. From the associations - f% Qo
(QlO’ QOO) (Q! 0) '
. _ N - Py - . L
D1: [1000| |OLLO| {(Fl@ FOO) (V/Z! V) (72) 3 2 A ((’))1 12 3
(R0 219 (22,0 Figure 10. Contour plot of the signal from the system with two weakly
D2:1000] — |10 =>{(F110? Fnl) - /2,7) (73) damped modes.

Top-Left Plot of Figure 10. Two-mode quartet A2 in Figure

and their complex conjugates, we should have two significant 7 is associated with

elongated axial peaks ab{, wy) = (£, 0). (See the middle

right plot of Figure 9.) . © o)
The total signal displayed at the bottom of Figure 9 shows {lle)| (modes) - (€215, leo (74)
eight significant peaks; now that we know from which Liouville- — — |00 (modes) (F(lsc))' F(10))
space path each peak originate®, can assign each peak with ) ] ]
distinct Liowille-space pathsy the data in Table 3. and its complex conjugate; this quartet produces the four cross
peaks atd1, wy) = +£(R1, 22), £(RL2, Q1). The remaining four
TABLE 3: Peak Positions for Quartets diagonal peaks atu;, w») = +(R1, Q1) and+(L22, 2,) originate
peak positions in from single-mode quartets A2 and Al in Figure 6, which
quartet (w1, w) plane corresponds to the process
. A {|1DE(])| — |100] (modes) 75)
C Q, 29Q), (—Q, —29Q) — — — (modes)
D (2,0), (—2,0)

and its conjugate. The widths in the and w, directions for
In Figure 9, we notice that peaks from quartets C and D are the peak at @1, wz) = £(RQs, Qg) are F‘f()) and F(fo), respec-
elongated in the second axis. This point is also understood intively. In the fully corrected BO model, they apg/2 andys/2,

the above argument, from which we have Table 4. respectively. Although there exists the effect of interference,
] the relative width is consistent with this indication. For example,
TABLE 4: Peak Widths for Quartets this is the reason that the peaks at (1, 0.5) and (0.5, 1) are
width of peaks elongated in thev; andw; axes, respectively. In summary, in
quartet for (w1, w2) the fully corrected BO model, the positions of peaks and two
A, B (7, 7) component of width are given by

C,D ' 2
0.2 , +(Q, Q) with (7,/2, 7,/2)

A2. Double Modes (Weak Damping).Figure 10 shows A2/Al(single mode) +(Q,, Q,) With (7,12, 7,/2) (76)
signals from the system with two weak damping modes € z e "
1, y1 = 0.1Q4, Q, = 0.5,y, = 0.1Q,, in arbitrary units, with
the assumption that®, X&) and, M are all independent of
mode indices g and s)). Signals from each Liouville-space
quartet are shown separately. We can interpret each signal in Top-Right Plot of Figure 10. Single-mode quartet B in
the following way. Figure 6 and two-mode quartet B in Figure 7 are associated

£(Q,, Q) with (7,12, 7,/2)

+(Q, Q) with (752,72 7

A2 (two mode):{
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with
|1000] — |1002| (modes) _, (Q, Q) 28
— — — (modes) (o1 (¥
100 + 12
|100] — — (modes) _, (Q%), Q8 (79)
— — |01 (modes) T, rs)

Okumura and Tanimura

+(Q,, 0) with (7,/2,7,)
+(Q,, 0) with (7,/2,7,)

£(Qy, Q) — Q) With (1412, (7, + 7)12)
£(Qp Q, — Q) With (752, (ry + 7,)/2)
(90)

D1/D2 (single mode){ (89)

D2 (two mode){

Note here that in the fully corrected BO model we ha’\g%=
'Y so that the widths from single-mode quartets D1 and D2

The single-mode quartet produces the four diagonal peaks inare the same as in the above.

the top-right plot whereas the two-mode quartet produces the
four cross peaks. The widths in the two directions for the

diagonal peaks are given by, I'tY)) whereas those for the
cross peaks are given by(lﬁ)) F(fz)). In summary, we have

+(Q,, —Q ith (y,/2,y,/2

B (single mode){ iEQi _93 x::h gilz 3;;/2; (80)
[H(Q,, —Q,) with (7,/2, 7,/2)

B (two mode).{ j:(Q; —0,) with (yilz, V12) (81)

Middle-Left Plot of Figure 10. Single-mode quartet C in
Figure 6 and two-mode quartet C in 7 are associated with

1000 — |2010] (modes) __ | (QF, @) -

— — — (modes) T ) (82)
100 ~ 20

1100] — [1000| (modes) __ | (R, @f+ Q) @3)
— — 1D (modes) |, TH+TE)

The single-mode quartet produces the four overtone peaks in

the middle-left plot whereas the two-mode quartet produces the
four cross peaks. In summary, we have

£(Q, 2Q,) with (v,/2, ;)

+£(Q,, 2Q,) with (7,2, ) (84)

C (single mode){

+(Q,, Q; + Q) with (y,/2, (y, + y,)/2)

+(Qy Q, + Q) With (7,12, (1, + 7,)/2)
(85)

C (two mode){

Middle-Right Plot of Figure 10. Single-mode quartets D1
and D2 in Figure 6 are associated with

100 — [0I0] (modes) __ [ (R, &) 86
— — — (modes) T re) (86)
10° * 0O.
{|1IZ|[(D|D—> 101| (modes) _ (QY, Q) @)
— — — (modes) (rﬁ%, L8

whereas two-mode quartet D2 in 7 is associated with

The single-mode quartet produces the four axial peaks in the

middle-right plot whereas the two-mode quartet the four cross-
peaks. In summary, we have

Q. Q

s
(8 1+ 1)

(S) Qe ))

|100] — |100] (modes)

— |01| (modes) (88)

The total signal is displayed at the bottom of the Figuve;
can assign each peak with distinct Liglle-space paths or
energy-leel diagrams(as in Figure 8).

B. Time Domain. Figure 11 shows the contour plots of peaks
from each quartet for a single over-damped mode sys@m (
= 2x, v = 6m). Each quartet contributes to the total signal in
a rather different way. This suggests the possibility of Liouville-
space-path selective spectroscopy.

XI. Signals from the Brownian Oscillator Model and the
Redfield-Type Model

In Figure 12, we compare results from two models: (1) the
Brownian oscillator (BO) model (the systerbath interaction
is fully taken into account), where we use eq 36 and (2) the
Redfield-type model (RT), where we use eq 37 with the
replacements — Qs (no frequency shift).

Top. The right plot from the RT model has extra peaks on
the left (BO) at {1, w2) = (2, 1). They originate from the
survival of quartets | and Il in Figure 6.

Middle. On the left plot (BO), there exist extra peaks at
(w1, w2) = £(1, — 1). These correspond to single-mode quartet
B in Figure 6. For this process, the relaxation constants
associated with the, axis,I'12, in BO and RT are given by
and 3, respectively; the relaxation in RT is much faster, which
explains the disappearance of the peaks. The peaksiat (
w2) = £(0.5, — 0.5) survive because these peaks come not
only from the single-mode process B but in this case the peaks
from quartets | and Il also overlap with those from other
quartets.

Bottom. On the right plot (RT), there exist extra peaks at
(w1, w2) = £(0.3, 0.6). They corresponds to the survival of |
and Il in Figure 6.

In summary, the detailed situation depends on the parameters.
However, they have one thing in common: the difference
between the models is manifested in the existence or absence
of certain peaks. The numerical results given above are all in
the weak damping regimey(~ 0.1Q). The weak effect
nonetheless affects the existence and absence of certain peaks.
This is because the damping constants have a direct bearing on
the cancellation mechanism of certain processes. Note that the
situation is completely different foweak potential anharmo-
nicity or nonlinear polarizability. Such weak effects, on the
contrary, do not involve delicate cancellation mechanisms.
(Although the difference between the left and right plots in
Figure 12 seems to be small on a whole, if we concentrate on
peaks that appear in one model but disappear in another model,
we notice that the peak intensity can be fairly strong compared
with that of other dominant (stable) peaks even though the
damping constant used there is weak. The difference between
models thus can be fairly strong, although they might be
obscured by other effects.)

If the system exhibits a nonweak anharmonicity of potential
or nonlinear systembath coupling, as mentioned before, then
there may be peaks at similar positions, as predicted by the
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°e °e
0.1 01 \\ 2 ’ 2 °
. *As b
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00 01 02T 03 04 05 Figure 12. 2D signal from the two models. Top: single mod&, =

! 1. Middle: two modes{2; = 1, Q, = 0.5. Bottom: two mode$Q; =
Figure 11. Contour plot of the signal from the system with a single 1.2, Q, = 0.3. Depending on the parameters, the difference between
over-damped mode. the models is manifested in the existence or nonexistence of diagonal
peaks.

Redfield-type model. Such a mechanism, however, affects not
only the existence of these peaks but also the entire profile of assume that the initial state of the diagram is the ground state
the signals, which involves different Liouville paths. The careful because we know that other initial states result in the same
study of the signal in the frequency domain shall be the critical contribution from a separate calculation. Another example is
test of the Redfield-type model. the cancellation of | by Il in Figure 6.

In this respect, the diagram in the field-theoretical context,
for example, which was introduced in ref 6, has some

We stated an interpretation of the energy-level diagrams in advantages. The number of diagrams to be considered is
the Liouville space and summarized the relationships betweenconsiderably smaller, and an analytical expression is obtained
several diagrammatic representations. We emphasized that almuch more simply; in the case &?(T, T,), we have to
of the diagrammatic representations reduce to unique interpreta-consider only two diagrams, each being given by the product
tions in Liouville space, by which we can write down analytical ©f two certain propagators, because the cancellation is always
expression by a Feynman rule. automatically taken into account in this method and, in addition,

We have given examples in which each Liouville process dquartets are summed from the beginning in a simpler form.
makes a distinctly unique contribution to a 2D signal; the However, this conceals physical processes in the Liouville space.
selective detection of quantum processes by ultrafast spectros- If the initial temperature of the system is higher than the
copy might be possible. (For example, if we use multicolor 2D  excitation energy of the vibrational levels (as in the case of low-
spectroscopy to study high-frequency vibrational modes, then frequency modes) or if the nonlinearity of the dipole or Raman
we might utilize the phase-matching conditi)iBy a suitably ~  transitions is importarft}3*5then we have to include a number
prepared spectroscopic configuration, we might be able to of Liouville paths, especially in higher-order spectroscopy; the
concentrate on a certain quantum process that allows a simplerassignment of the peaks to some Liouville paths becomes
analysis and a more quantitative understanding. Such Liouville- nontrivial.
space-path selective spectroscopy might be promising. This As for models of relaxation, we have considered only the
situation reminds us of an analogy (although the principles system that is bilinearly coupled to the bath. We constructed
might be quite different) in which the photon echo can be the Feynman rule by starting from the rule in the case without
distinguished from the pumpprobe via a phase-matching damping, and then we replaced the propagator so that it causes
condition; we could differentiate spectroscopic methods by the damping with an appropriate choice of the relaxation parameters
peaks they produce. I'mn One may think that the s¢fi'n} is an arbitrary set of

An Energy-leel diagram is useful in interpreting the physical parameters to fit experimental data; in the case of vibrational
process but only after confirming that the diagram makes a spectroscopy, howevel,,,s have to satisfy certain universal
nonzero contribution possibly by another methedr example, relationships; for example, they have to satisfy the detailed
in the (fully corrected) Brownian oscillator model, we can balance condition. In addition, the validity of the rotating wave

XIl. Concluding Remarks
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approximation (RWA) and the Markovian approximation as-

Okumura and Tanimura

sociated with the second-order perturbation of the systeath
interaction might become questionable in vibrational spectros-
copy; the characterization of the relaxation processes by simple
rate constants such ds and T, might not work. Note here
that, although there are some restrictions, one can calculate the ¢ —

Bss -
(04

signals without using such approximations for the Brownian
model, even in the anharmonic c&s8:3552To verify the con-

sistency of the theory, it is important to compare the results
from energy-level models and the Brownian motion model,

ss
where the latter is based upon a microscopic picture for Css= +
(01— Z)(w,— @3+ 2D

damping.

To demonstrate how approximations for relaxation processes
can change the results, we presented the 2D signals from the
Redfield-type model and (full-order) Brownian oscillator model,
and we observed that two models give peaks at different posi-
tions, even for weak damping. This, in turn, suggests a high (D2) = —
sensitivity of 2D spectroscopy to damping models. This situation
is in good contrast with cross peaks associated with mode
coupling of an anharmonic or nonlinear origin, where they have
to be fairly strong to be observable when diagonal peaks due
to other effects are present. On the contrary, the cancellation
mechanism is subtle, and thus, a weak damping effect can cause

fss _ fss
— £, 7)) (0, + [ZPN (0, + [Z919)
(A.5)
fSS + fSS
T (0= BN, — ) (0, + 2 (w,+ (29
(A.6)
f
fss (A7)

(y + [ZT)(w, + [+ 2319

fss

— B~ @A)

a drastic difference. 2DL=
One of the purposes of our paper is to bridge the two
complementary approaches of the coordinate-based and energy-

level-based models. The results give us a useful interpretation 5

of the coordinate-based model in the energy-level language. WeZ D2,=—
should note, however, that this interpretation becomes precise
only in the weak damping limit. Nonetheless, we believe that
it is useful to have a common interpretation for the two
approaches in certain situations.
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fss
(A.8)
(01 + [Z) (0, + [23 + 2719
fSS + fSS
(0= ZN(@w,— Z9) (01 + [ZT)(w, + [Z5]%)
(A.9)
2f B
(0, — ZP(w,— 2
2f

(A.10)

(@, + [Z9) (0, + [271%)

4= -,

Note Added after ASAP Posting.This article was posted
SAP on 5/20/2003. Changes were made to eqs 47, 55, and
58. The correct version was posted on 6/26/2003.
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