
Transition Metal Dimer Internuclear Distances from Measured Force Constants

Joseph L. Jules and John R. Lombardi*
Department of Chemistry, and Center for Analysis of Structures and Interfaces (CASI), The City College of
New York (CCNY), New York, NY 10031

ReceiVed: NoVember 19, 2002; In Final Form: December 13, 2002

Several empirical rules, which correlate force constants and equilibrium internuclear distances, have been
extended to the transition metal dimers to test which one gives the most accurate fit. It is also of interest to
determine to what extent their use can accurately predict internuclear distances for dimers for which there are
no available experimental values. Pauling showed by using crystallographic data that internuclear distance
can be correlated with the logarithm of the bond order, which itself is closely related to the force constant.
Another empirical rule, due to Badger, indicates an inverse correlation between the force constant and the
third power of the internuclear distance. Badger’s relationship is the most widely used; therefore, it has found
considerable application in various branches of chemistry. Guggenheimer proposed a correlation between
force constant and the inverse of the internuclear distance raised to the power 2.46. We find that Pauling’s
rule provides a considerably better fit to existing data than Badger’s and Guggenheimer’s for the transition
metal dimers. Although Pauling’s rule gives the best results, the remarkable accuracy of Guggenheimer’s
relation is of considerable theoretical interest.

I. Introduction

Recently, accurate experimental values for force constants
for almost all of the homonuclear transition metal dimers, and
many of the internuclear distances, have become available.1 This
compilation leads to the question as to whether various existing
correlations between force constants and equilibrium internuclear
distances can be extended to transition metal dimers, and to
what extent they can be used to predict accurate internuclear
distances for those dimers for which no experimental data has
yet been obtained. The most well-known of such correlations
is that of Badger, for which the force constant is shown to be
inversely proportional to the cube of the internuclear distance.
A complete discussion of the application of Badger’s rule2 has
been given by Herschbach and Laurie.3 Other correlations
include one between the internuclear distance and logarithm of
the bond order, due to Pauling,4 as well as a relationship due to
Guggenheimer5 between force constant and the inverse of the
internuclear distance raised to the power 2.46. All of these
relationships are empirical, and have found varying degrees of
applicability, but all are remarkable in their accuracy.

Previously, there were not enough available force constant
data and accurate measurements of the internuclear distances
in transition metal clusters to test these theories. Transition
metals are special in regard to the availability of d electrons
for bonding. This leads to an enormous range of bond orders
(from near zero to over five) as well as the possibility of high
spin ground states, numerous low lying states, possible ferro-
electric coupling, and, especially in the heavier metals, severe
relativistic effects. It is therefore of considerable interest to
determine the extent to which the above empirical correlations
can be extended to transition metal dimers and to examine
whether they are of any predictive value for internuclear
distances which cannot be measured experimentally.

We have found that there is reasonably good agreement in
almost all cases between the calculated internuclear distances
and the experimental results. Overall, Pauling’s relationship is
more closely in agreement with the experimental values than
Badger’s. The calculated values obtained by using Guggen-
heimer’s formula are remarkably good as well, but this
relationship requires some reformulation for application to
transition metals.

II. Existing Experimental Data on Transition Metals

In this section, we examine the existing experimental data
on transition metal dimers. In Table 1, we present the measured
vibrational frequencies (ω in cm-1). In most cases, these have
been obtained in Raman or fluorescence spectroscopy either in
the gas phase or in matrix isolation. Below each vibrational
frequency is given the force constant (ke in mdyne/Å) calculated
from the observed harmonic frequency using the expressionke

) 1/2mω2, with the conversion factor 1 amu cm-2 ) 5.8919×
10-7 mdyne/Å. The masses used were the natural abundance-
weighted average of the isotopic masses unless isotopic resolu-
tion was reported in the spectra, in which case the individual
isotopic mass was used. Only the vibrational frequencies for
Tc2, Os2, and Ir2 have not been measured. The force constants
listed in Table 1 for these three dimers were obtained through
a correlation between force constant and diabatic dissociation
energy1 and, thus, may be considered only indirectly measured
experimentally. However, the values determined in this manner
fit well the periodic trends observed and are therefore reasonable.

Also of interest in application of the empirical correlations
is the bond ordern. The bond order, like the force constant, is
a measure of the bond strength, and it is usually defined formally
as1/2 the difference between the number of bonding electrons
and antibonding electrons. However, a more realistic definition
involves calculation of the electron occupation number for a
given bond from the wave function. This enables the determi-
nation of noninteger values for bond order. For transition metals,
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there exist relatively few good calculations because of the same
problems associated with the existence of d electrons discussed
above. It is therefore of use to obtain an experimental value for
the bond order, and it would be valuable to be able to compare
bond strengths across the periodic table. We are assisted in this
regard by a derivation due to Johnston.6 He showed that the
bond order, as defined by Pauling4 is proportional to the force
constant by the formula

whereke is the experimental force constant in mdyne/Å,ke
(1) is

the force constant for a single bond, andn is the bond order.
The only problem is the determination ofke

(1). For transition
metal dimers, we consider that for the coinage metals (Cu, Ag,
and Au) the ground-state atomic configuration is d10s1. The filled
d shell precludes the participation of d electrons in bonding,
and because there is only one s electron per atom available for
bonding, we may take the force constant for the coinage metal
dimers to beke

(1) for each row of the periodic table. In the third
row under each metal in Table 1, we present the bond order
calculated for each dimer using this procedure. Note these
experimental values range in magnitude from as low as 0.01
(for Zn2, Cd2, and Hg2), which are essentially van der Waals
complexes, to 5.38 (for Mo2), which implies considerable
participation of d-electrons to provide an extremely strong
chemical bond.

Accurate experimental data for equilibrium internuclear
distances exist for 16 transition metal dimers as exhibited in
Table 2. Most of these have been measured either by high-
resolution absorption or fluorescence spectroscopy in the gas
phase. Such studies are hampered by the fact that, especially
for the heavier elements, the moments of inertia are large,
leading to rather small rotational constants. Thus, the rotational
spacings obtained in spectra may often be comparable to or less
than the laser or Doppler line width. This causes spectral
congestion resulting in inability to resolve rotational structure.

We should also point out at this stage that in previous work1

we have focused exclusively on transition metals, referring to
the first, second, and thirdrow of the transition metal series.
However, for comparison with work on other parts of the
periodic table, it is best to revert to the nomenclature of the
table as a whole, and that involves reference to thethird, fourth,
and fifth row (for the first, second, and third transition metal
rows). Also, because of the paucity of experimental internuclear
distances in row five, we do not consider the fits presented below
for this row to be very reliable.

III. Empirical Correlations

Among the several empirical rules relating the force constant
with other properties of chemical bonds, those proposed by
Pauling, Badger, and Guggenheimer are used in this study to
predict the internuclear distances for the transition metal dimers.

A. Pauling’s Rule. By using crystallographic data, Pauling
empirically developed a relationship between bond order (n)
and the equilibrium internuclear distances. This is expressed
by

where rn is the internuclear distance when the bond order isn
(r1 is for a single bond) andbij is a constant that depends on
the rows of the periodic table in which the two atoms reside. In
this article, all of the dimers are homonuclear, so that in
principle, we need onlybii, but we retain the more general
notation for consistency. Originally, Pauling4 estimatedbij to
be about 0.6 for many species with fractional bonds and 0.71
for bond orders of 1 and higher. Using best-fit procedures, with
the experimentally derived bond orders from Table 1 and the
known internuclear distances from Table 2, for dimers of the
third row of the periodic table, we obtainb33 ) 1.02; for the
fourth and fifth row, we obtainb44 ) 0.78 (this is in agreement
with the value of 0.75 for the second row obtained by Pettifor,46

who also provided a theoretical justification for Pauling’s
relationship derived from a pairwise potential function) andb55

) 0.67, respectively. The fits obtained are illustrated for rows
3 and 4 in Figure 1. Note that these values differ slightly from
those previously reported,1 because in these fits we have
included the van der Waals bonded dimers of Zn, Cd, and Hg.
With these parameters, we may then calculate internuclear
distances for all of the transition metal dimers. The results are
displayed in Table 6 in the rows just below the experimental
results. For the third row of the periodic table, the standard
deviation is 0.07. Out of eight elements for which internuclear

TABLE 1: Experimental Vibrational Frequencies (in cm-1), Force Constants (Å), and Bond Orders (n) for the Transition
Metal Dimersa

Sc2
7 Ti28 V2

9 Cr210 Mn2
11 Fe2

12 Co2
13 Ni214 Cu2

15 Zn2
16

ω 239.9 407.9 536.9 480.6 76.4 299.6 296.8 259.2 266.5 25.9
ke 0.76 2.35 4.33 3.54 0.09 1.48 1.53 1.16 1.33 0.01
n 0.57 1.77 3.26 2.66 0.07 1.11 1.15 0.87 1.00 0.01

Y2
17 Zr2

18 Nb2
19 Mo2

20 Tc2
1 Ru2

21 Rh2
22 Pd2

23 Ag2
24 Cd2

16

ω 184.4 305.7 420.5 473.3 (389) 347.1 283.9 210.0 192.4 23.0
ke 0.89 2.51 4.84 6.33 (4.37) 3.59 2.44 1.38 1.18 0.02
n 0.76 2.13 4.12 5.38 (3.72) 3.05 2.07 1.17 1.00 0.02

Lu2
25 Hf2

26 Ta2
27 W2

28 Re2
29 Os2

1 Ir2
1 Pt230 Au2

31 Hg2
32

ω 121.6 176.2 300.2 336.8 337.9 (334) (280) 222.5 190.9 18.5
ke 0.76 1.63 4.80 6.14 6.26 (6.26) (4.44) 2.84 2.12 0.02
n 0.36 0.77 2.27 2.90 2.96 (2.96) (2.10) 1.34 1.00 0.02

a Values in parentheses were obtained indirectly from a fit of force constants with dissociation energies (see ref 1).

TABLE 2: Experimental Ground State Dimer Internuclear
Distances (Å)

Sc2 Ti233 V2
34 Cr235 Mn2

36 Fe2
37 Co2 Ni238 Cu2

39 Zn2
15

1.94 1.77 1.679 3.4 2.02 2.154 2.22 4.19

Y2 Zr2
40 Nb2

41 Mo2
42 Tc2 Ru2 Rh2 Pd2 Ag2

43 Cd2
16

2.24 2.078 1.929 2.53 4.07

Lu2 Hf2 Ta2 W2 Re2 Os2 Ir2 Pt244 Au2
45 Hg2

32

2.33 2.47 3.63

n) ke/ke
(1)

rn ) r1 - bij log (n)
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distance experimental data are available, six agree very closely
with the calculated values. For V2 and Fe2, the deviation is a
little larger. For Cr2, we might have expected difficulties because
of the unusual potential function for this dimer. Requiring a
function with terms up to the sixth power of the internuclear
distance, Casey and Leopold10 found a harmonic force constant
of 3.54 mdyne/Å, a value that is higher than that of any third
row dimer, except for V2. Furthermore, in Ni2, there is evidence
for unusually low d-electron contribution to the bonding.14,47

Despite these potential problems, our fits for Cr2 and Ni2 are
not bad. The results obtained for the fourth and fifth rows are
also in very close agreement with experimental values, although,
with so little internuclear distance data available, the fifth row
fit must be regarded as tentative, at best. The standard deviations
for rows 4 and 5 are 0.02 and 0.02, respectively. It is especially
gratifying that the van der Waals dimers of Mn, Zn, Cd, and
Hg are fit so well (all within 0.06 Å). Note also the excellent
fit for Zr, Nb, and Mo dimers. The quality of these fits

encourages us to extend the calculations to dimers of each row
for which internuclear distances have not yet been measured,
and we include these predictions in the table.

B. Badger’s Rule. The second empirical relationship used
in this study is the one proposed by Badger in 1934. In the
case of diatomic molecules, Badger2 observed that the inter-
nuclear distance may be expressed with fair accuracy as a
function only of the “bond force constant” at the equilibrium
separation and of the positions of the periodic table from which
the molecules reside. This rule states that there exists an inverse
correlation between the force constant and the third power of
the internuclear distance as expressed by the formula

whereke is the force constant in mdyne/Å,re is the internuclear
distance in Å,dij is a constant that depends on the rows of the
periodic table to which the nuclei of atomsi and j reside, and
C is a universal constant equal to 1.86× 105 dyn/cm. Badger
also suggested that to obtain a more accurate fitC should be
allowed to take different values from group to group. This
relationship may then be expressed more generally asre ) dij

+ (Cij/ke )1/3. However, because of the lack of available data
about vibrational spectra of the molecules, this relationship was
not at the time applied to polyatomic molecules. With few
exceptions, it is believed that the above relationship holds for
both ground and excited states of molecules.2 A valuable
contribution to such studies has been presented by Herschbach
and Laurie.3 They showed how Badger’s rule could be extended
to anharmonic constants, including cubic and quartic constants,
and assembled considerable data for numerous diatomic species.
They also proposed an alternative form of Badger’s rule with
the formula

whereaij may be considered to be a standard bond length (ke )
1 at re ) aij) and dij as a distance of closest approach of the
two nuclei (ke f ∞ at re ) dij). Herschbach and Laurie then
compiled extensive tables of the parametersaij anddij, which
have been quite useful for predicting equilibrium internuclear

Figure 1. Correlation of force constant and internuclear distance for
rows 3 (square) and 4 (triangle) of the transition metal dimers using
Pauling’s empirical relationship. The straight line represents to best fit
of the data for each row.

TABLE 3: Parameters for Pauling’s Rule Fits of Transition
Metal Dimers

row bij

3 1.02
4 0.78
5 0.67

TABLE 4. Parameters for Badger’s Rule Fits of Transition
Metal Dimersa

row m b aij dij

3 0.62 1.52 2.14 1.52
4 0.64 1.74 2.38 1.74
5 0.42 2.09 2.51 2.09

a Defined by re ) m(ke
-1/3) + b using a linear fit ofre vs ke

-1/3;
m ) aij - dij; b ) dij.

TABLE 5: Parameters for Guggenheimer’s Rule Fits for
Transition Metal Dimersa

row m b s

3 0.15 0.34 6.7
4 0.13 0.40 7.7
5 0.09 0.41 11.

a Defined by log(re) ) m log(1/n) + b using a linear fit of log(re) vs
log(1/n).

TABLE 6. Comparison between Experimental and
Calculated Internuclear Distances (in Å) for the Transition
Metal Dimersa

a Exp: experimental values; P: Pauling’s rule; B: Badger’s rule;
G: Guggenheimer’s rule;σ: standard deviation for each fit of the
observed internuclear distances.

ke(re - dij)
3 ) C

re ) dij + (aij - dij) ke
-1/3
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distances.17 We shall use this form of Badger’s rule in our fits
of transition metal dimers. Weisshaar48 has applied Badger’s
rule to the third row metal diatomics, including transition metals,
but since then, much more data has been obtained, and we utilize
it here.

Using the available data for transition metal dimers, we show
in Figure 2 the best fit of the above relationship for the third
and fourth row of the periodic table. The best-fit parameters
are displayed in Table 4. The resulting values of internuclear
distances are displayed in the third row below the metal of Table
6. They can be seen to be reasonable in the light of the results
of Herschbach and Laurie, who, with considerably less data
available, obtained values of 2.58 (a33) and 2.85 (a44) for the
third and fourth row values ofaij and 1.41(d33) and 1.62 (d44)
for dij. In a fit of diatomic molecules containing one or two
metal atoms across the entire periodic table, Weisshaar48

obtaineda33 ) 2.12 andd33 ) 0.906. Fang et al.17 obtaineda44

) 2.60 andd44 ) 1.09 for the fourth row, once again with
considerably less data than currently available. The standard
deviations for the fits (0.22 for row three, 0.06 for row four,
and 0.05 for row five) are adequate but can be seen to be
nowhere near as good as for Pauling’s rule fits for the rows
(3 and 4) for which the best data is available. This is consistent
with a more recent examination of Badger’s rule.49 Especially
problematic are the values for the van der Waals dimers Zn2

and Mn2, although the value for Ni2 is somewhat better than
that of Pauling. Poor fits are also obtained for Cr2, Cu2, and
Ag2. Once again, the fifth row results should not be taken too
seriously. Predicted values for dimers for which there are no
measured values are also presented.

C. Guggenheimer’s Rule.Guggenheimer5 showed that the
force constant and the bond length may be related by the formula

whereke is the force constant mdyne/Å,C is a constant, andz1

and z2 are the total number of s and p valence electrons
contributed from each of the two atoms. The exponent (s) of re

as well asC was obtained by a least-squares fit of the series
H2, Li2, Na2, and K2, and the best fit was found to be for a
value ofs ) 2.46 andC ) 273.8. It was then shown that this
formula could accurately predict the vibrational frequencies of

over 70 diatomic species with an average deviation of 1.6%.
The above formula was used only for molecules with single
bonds, but he also showed that a double bond contributes a
factor of 2 to the force constant5 and that the same values ofs
andC are obtained. For hydrides, an optimal value ofs ) 1.84
was found.

It is worthwhile to examine the possibility of extending
Guggenheimer’s relationship to transition metals. One difficulty
is to choose the factorz1z2. The contribution of s and p electrons,
plus the added factor of 2 added for formal double bonds,
indicates that this is related in some way to the bond order.
However, we must search for an extension of this relationship,
which in some way accounts for the contribution of d electrons.
For transition metal dimers, it is well-known that the best
bonding occurs when the atoms are in an s1 configuration.
However, many transition metals have a dNs2 ground-state
configuration. To explain the rather strong bonds observed for
many dimers, it is therefore necessary to consider promotion
energies to a dN+1s1 configuration, and where this promotion
energy is low enough, we may presume that the latter config-
uration may be used. Indeed it was shown that a better
correlation between observed force constants and dissociation
energies is obtained when considering the diabatic dissociation
energies1, i.e., those for which promotion energies are included.
Thus, we assume that all of the transition metal dimers dissociate
diabatically to two dN+1s1 atoms. Exceptions to this doubly
promoted diabatic limit would exist for the dimers of Sc, Y,
Lu, and Re, which are known to dissociate to dNs2 + dN+1s1

configurations, and Pd, which is thought to dissociate to a d10

+ d9s1 separated atom limit. Also of concern are the van der
Waals dimers (Mn2, Zn2, Cd2, and Hg2) which may be regarded
as consisting of two s2 atoms. The experimental bond ordern,
introduced in section II, provides us with a way to include all
of the contributions to bonding. As was shown by application
of Pauling’s rule (A), this holds over a wide range of values of
n. Remembering that the bond ordern ) ke/ke

(1), it is perhaps
convenient to rewrite Guggenheimer’s relation as

We see that in this interpretation, Guggenheimer’s parameter
C(z1z2)1/2 is replaced byke

(1)(re
(1))s and, despite the suggestive

notation (re ) re
(1) for n ) 1), we may regardre

(1) as an
adjustable parameter, along withs. Taking logarithms

where it may be seen thatm ) 1/s andb ) log(re
(1)). We now

use the experimental data to obtain best values ofm andb. The
fits obtained are illustrated in Figure 3 for rows 3 and 4, and
the values obtained formij and bij are listed in Table 5. The
standard deviations for the three rows are 0.13, 0.06, and 0. 04,
respectively.

As above, the values for row 5 should not be taken too
seriously because of such few data points. Note, however, how
close the values are to those of row 4. In fact, the values for all
three rows are seen to be quite similar. The values fors ()1/
m), however, differ considerably from those obtained by
Guggenheimer for nontransition metals, perhaps reflecting the
effect of d-electron contributions to bonding. The fits are not
as good as those obtained with Pauling’s relationship but still
are rather remarkable. The internuclear distances obtained for
Ti2, V2, Fe2, Ni2, Zr2, Nb2, and even Cd2 are quite close, whereas
for Cu2 and Ag2, they are relatively poor. Considering those
dimers for which we have no measurements, the Guggenheimer

Figure 2. Correlation of force constant and internuclear distance for
rows 3 (square) and 4 (triangle) of the transition metal dimers using
Badger’s empirical relationship. The straight line represents to best fit
of the data for each row.

ke ) C(z1z2)
1/2re

-s

ke/ke
(1) ) (re

(1)/re)
s

log(re) ) m log(ke
(1)/ke) + b ) m log(1/n) + b
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predictions are often close to the Pauling predictions, but both
tend to differ considerably from those of Badger’s rule.

IV. Discussion

Examining the results of all of the correlations collected in
Table 6, we can make several observations. First, it is clear
that Pauling’s rule provides the best fit overall, both in terms
of standard deviation, as well as range of applicability. Even
the van der Waals molecules are accurately fit. We thus expect
that most of the predicted dimer internuclear distances that have
not been measured will also be accurate. In Figure 4, we display
the calculated internuclear distances for all of the transition metal
dimers using Pauling’s relationship. Note that with the exception
of the van der Waals dimers (Mn2, Zn2, Cd2, and Hg2) the
internuclear distances track quite closely from row to row. The
values drop toward the center of the series (somewhat skewed
in row 3) from highs on either side, reflecting the increased
availability of d electrons for bonding near the center of the
periodic table, at least for rows 4 and 5.

Also of interest is the relatively good fits obtained using the
Guggenheimer relationship. Although not as good as found with
Pauling’s, the consistency of parameters among the rows of the
periodic table and the apparent wide applicability observed by
Guggenheimer justify more detailed investigation into possible
theoretical justifications for this relationship. The reformulation
presented here is suggestive of a possible route for interpretation
of this relationship, but this will require further study.
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