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Spectral patterns are investigated in a model of an isomerizing coupled stretch-and-bend system that is intended
to have some of the features of a realistic model of the acetylgnglidene isomerization. There are patterns

of a dip or minimum in the spacing of neighboring energy levels, which is characteristic of the barrier, the
multiple minima, and above-barrier motion. The patterns are obtained by classifying sequences in terms of
approximate effective quantum numbers, which are determined using a diabatic correlation diagram technique.
The patterns have anomalies that carry dynamical information that is associated with nonlinear resonance-
type couplings, similar to anharmonic Fermi resonances, between the stretch and the bend. There is conventional
Fermi resonance below the barrier, and a new type of “cross-barrier” resonance is observed.

1. Introduction about the chaotic motion and energy-transfer dynamics, includ-
) ) ) ~ing movement between isomeric species?

There is growing use of frequency-domain spectral analysis  Thjs paper focuses on the question of spectral patterns of

to unravel dynamical information about vibrating molecles. the acetylene, vinylidene, and above-barrier species. The full

This interest has progressed from motion near the bottom of agpectral interpretation of the isomerization kinetics is more subtle
potential well to systems that approach barriers to molecular gnq s left for future investigation.

rearrangement. The observation in frequency-domain spectra  jacobson and Chit®Sinvestigated a model of spectroscopic
of species with multiple potential minima, undergoing isomer- sjgnatures of bond-breaking internal rotation in a spherical
ization, is awaited with great interest. An example is the pendulum model for a system with a barrier. There are several
formation of the vinylidene isomer in the much-studied acetylene points of contact with the present work, which are described
spectral system. Ideally, one would like to use the spectra to pe|ow.

detect the presence of the barrier to isomerization, motion over Tpe paper is organized as follows. We introduce the bend
the barrier, trapped quantum states of the above-barrier andygtential, stretch potential, and stretdend Hamiltonian in
isomerized species, and dynamics of the isomerization processsegction 2. We consider classical dynamics for the stretemd

Despite impressive experimental and theoretical Work2 it Hamiltonian system in Section 3. We develop quantum me-
is fair to say that this area of study is mostly unexplored territory chanical calculations for this Hamiltonian in Section 4. In
that holds many mysteries. Section 5, we discuss spectral patterns of the zero-order system,

This paper investigates the existence and interpretation of and in Section 6, patterns of the coupled system are explored.
spectral patterns that are associated with isomerization phe-In Section 7, we discuss dynamical interpretation of the spectral
nomena. It is known that there are spectral patfeirs patterns.
associated withdynamical barrierg-2° in simple coupled
systems, e.g., stretches with local and normal modes, and FermR. Bend—Stretch Isomerization Hamiltonian
resonance. Furthermore, these patterns persist in molecular

. We want the model stretetbend Hamiltonian to include
systems that have multiple resonances, many degrees of . . -
: 33 three main elements. First, we want a realistic HCC bend
freedom, and classical cha¥s!

. T o . potential with a deep acetylene well and shallow vinylidene well,
Itis natural to wonder if similar patterns exist in isomerizing \with motion in both wells and above the barrier. Second. we
systems with real potential barriers. In this paper, we investigate \yant a stretch mode that has some of the features ofH C
a simple two-mode stretetbend model for an isomerizing  gyretch, in particular, a frequency ratio between the stretch and
system. This model is intended to have some features of ane pend that is similar to that in acetylene. Finally, we want a
realistic model for the acetyleneinylidene isomerization, semirealistic coupling between the stretch and the bend.
including the critical features of a barrier between the acetylene 5 1 Bend Potential. For the bending motion, we seek a
and vinylidene wells, and motion above the barrier. The moqe| of a local HCC bend that is similar to what can be
simplification to a two-mode model makes tractable a compre- gxpected in acetylerevinylidene along the reaction coordinate.
hensive investigation of key questions of principle. Are there fq¢ this model, we use a realistic, full-degree-of-freedom
spectral patterns that are characteristic of the barrier, the mU|tip|eaceterne potential energy surface (PES) and determine the
minima, and above-barrier motion? Do they give information potential along the reaction pathWe use the resulting one-
dimensional potential, which is suitably parametrized, as our
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Figure 1. Bend potential obtained from fitting the reaction path
abstracted from a full-dimensional ab initio surface for the acetylene
system. Regions are denoted A (acetylene), V (vinylidene), and AB
(above barrier).
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wherer is the equilibrium C-H bond lengthr the displacement
from equilibrium for the G-H bond; m the reduced mass of
the H and C atomsiny the mass of the H atom; and an
adjustable coupling constant.

This model is a deliberate oversimplification in certain
respects, besides being restricted to two dimensions. The double-
well potential (eq 1) for the bend has only a single form for
each species, unlike the real acetylemsylidene system.
Furthermore, in acetylerevinylidene, the properties of the
C—H stretch mode, e.qg., its zero-order frequencies, are different
for the two species. To reflect this in a potential model, the
stretch potential would need to be a function of both the stretch
and bend coordinates, unlike the potential that is dependent only
on the stretch coordinate (eq 2), with all the dependence on the

points (acetylene, vinylidene, and the transition state) have beenPend coordinate folded into the stretebend potential (eq 3),

computed by Bentley et &f.

To obtain the reaction path, we start from the transition state

with a tiny displacement toward either acetylene or vinylidene

and then follow the path of steepest descent on the analytical

which is, itself, a simple functional form.

3. Classical Dynamics

In this section, we compute classical dynamics of the

PES. The result is a numerical representation of potential energyHamiltonian system (eq 4). For convenience in numerical

(given in terms of electron volts) versus a mass-weighted
reaction coordinate (given in angstrom$).

For our purposes, it will be more suitable to switch to an
angle parametep along the reaction path with a period of.2

calculation, we rescale the variables in eq 4 to dimensionless
form. To do this, we introduce the length coordinatéor the
bend, which relates to the bending anglédy the equation

= ro. The momentunp,, conjugate taw relates to the angular

To define this parameter, we rescaled the aforementioned massmomentump, by p, = ropw. The Hamiltonian shown in eq 4

weighted reaction coordinate linearly to a new variaplg =
[—m,7]); for this variable, acetylene correspondste= 0 and
vinylidene corresponds t¢ = m, —z. The potential was then
fit using a least-squares routine (from MATHEMATICA) to a
polynomial function of cosdg] with the desired periodicity and
symmetry. The final result is the following one-dimensional
double-minimum bend potential:

V(cos¢) = 2.106983— 0.441741 cos — 2.76936 oS¢
— 2.28737 cod¢ + 2.30354 cod¢ + 3.11721 code
— 0.769832 cod¢ — 1.25943 co5¢ (1)

where the result is given in electron volts. The potentétos
¢), is shown in Figure 1. Periodic in regard ¢oit has a well
at ¢ = 0 for acetylene and a shallow well ét= 7, —x for
vinylidene.

2.2. Stretch Potential. We assume the potential model for
the C—H stretch to be a Morse oscillator:

e—ﬁr)z

whereD is the dissociation energy for the-& bond, § the
Morse parameter, andthe displacement from equilibrium of
the C—H bond.

2.3. Stretch—Bend Interaction. For the coupling between

Vs=D(1- @)

the stretch and the bend, we take a potential coupling of the

form

V,, = kT Sirt ¢ ©)
which, to first order, would give a 2:1 Fermi resonance
interaction. In the stretchbend system, the kinetic-energy
coupling to first order is known to give a coupling of this foffh.
Our model Hamiltonian for bend, stretch, and coupling then is

then becomes

2

+ D1 —-e™?+ zi”h + VCOS( ) + kT sin (r )
O 0,
5)

P

H_z

Equation 5 can then be scaled to the form

1.

y
2pr—lr(l e ) + (mH)pW+ Vco{xo)—k

A—be sinz(xlo) (6)

by the transformations

X=fr
B = P
" JmD
y=pw
"
V)
7= Dyt (7
where
X = PBro
ﬂz
~ANmD
An=j (8)
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Figure 2. Phase space trajectories for motion in the bend potential of # (=0ip>0) [rackan]
eq 1. Classical motion is organized around the acetylene potential 5
minimum (A), the vinylidene potential minimum (V), and the above- by 2p000Em
barrier region (AB) outside the separatrix (bold trajectory), correspond-
ing to the top of the isomerization barrier.
andt is the time for Hamiltonian eq 5. The scaled variabtes %
Xo, Pr, ¥, Pw, @ndz are dimensionless quantities. E,,
Classical trajectories are computed by numerically solving 3
the equations of motion for Hamiltonian eq 6 with the following *
parameters being explicit or implicit: 2 WA N
S 02 .
1 2 ESED
D =47474.26 cm % o4 PR :
— 2Dﬂ2_ A1 -0.6 : ' -
Ws= ’V m 3459.59 cm 30 -20 -10 00 10 20 30

¢ (=0,p >0) [radians]
hz

5 =1.838x 10 °eV = 14.82481174 cnt )
2myrg (c) 35300 om

A,,= 10904.4 cm* 9)

The reasons for this particular choice of parameters are detailed
in the Appendix.

Figure 2 shows phasespace trajectories for the pure bend
at different energies. There are curves that surround fixed point
A at the bottom of the deep acetylene well, curves that surround
fixed pointV at the bottom of the shallow vinylidene well, and
curves that extend over the full range= [—, 7] in the above-
barrier regionAB.

Figure 3a shows a surface of a section for the coupled system
obtained at an energy of 18 800 chwhich is the approximate RR A A U0 ‘1 4w Al
energy of the barrier when the system has- 0 stretch quanta, mirnetedivel
including zero-point energy. A region of mild chaos surrounds Figure 3. (a) Surface of a section at= 0, p, > 0 for the coupled
the separatrix. There is a pronounced four-island chain in the stretch-bend Hamiltonian eq 4 at a total energy (including zero-point
aceyene el I coresponds (0 thei1 equency ratoof - Sher9) o (OF 18500 o, D) dodioc et OF
the zero-order SFretCh .and bend Of. the model system, aSat the barrier for the sequences= 0, 3, and 5, respectively. Note
discussed be_IOW in Section 4.1, a_nd It ther(_eby Cor_reSpondS Othat the sequences depicted in Figure9&do not include the zero-
the 4:1 Fermi resonance that is discussed in Section 7.1. Thepoint energy.
surfaces of sections at 29 000 thin Figure 3b and 35 300

cm ! in Figure 3c correspond approximately to the barrier double-well bend potential (eq 1) in a large free-rotor basis.
energy for states withs = 3 and 5 stretch quanta and show a The second is to calculate the states of the coupled stretch
progressively higher degree of chaos that surrounds the sepabend system. For this step, the states of the preceding bend
ratrix. The 2:1 Fermi resonance that corresponds to the form of calculation give a prediagonalized zero-order bend basis.

the coupling presented in eq 3 eventually turns on, as seen inTogether with a basis of Morse functions for the zero-order

p, [8.0285 x 10 kg m" s

Figure 3c. stretch, these form a product zero-order strefolnd basis,
) which is used finally to calculate the states of the coupled system
4. Quantum Calculations (eq 4).

In this section, we calculate the quantum states of the 4.1. States of the Double-Well Bend PotentialThe states
Hamiltonian eq 4. The quantum calculations have two steps. of the bend potential are obtained by solving the Sdimger
The first is to calculate eigenvalues and eigenfunctions for the equation:
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forn,=1, 2, 3, ..., 80. The, terms label the eigenenergies in
ascending order; thereforg, is not a physically meaningful
guantum number, but rather is simply an index.

Physical quantum numbers can be discerned by examining
the bend eigenfunctions. A sampling of wave functions is shown
in Figure 4, with relevant quantum number assignments. Below
¢ [radians] ¢ [radians] the vinylidene well, the states are strongly localized in the
acetylene well and characterized by the number of quanta
in the acetylene bend. As the energy reaches the vinylidene well,
states that are localized in the vinylidene well start to appear,
which are characterized by the number of vinylidene bend
quantany. Significant mixing of states with A and V character
begins, which can be thought of as being due to tunneling
between the two isomeric forms. This can be observed in the
middle panels of Figure 4, which show unusually large tunneling
mixing. Nonetheless, all the states are predominantly of either
3 2 1 0 1 2 3 A or V character almost up to the top of the barrier and can be
¢ [radians] ¢ [radians] characterized by the bend quantum numieor ny.

The wave functions of the above-barrier states are complex,
which befits a system with rotation about the full angular range
[=m, 7]. In Figure 4, we plot the real portion of the wave
functions for the above-barrier states. (The wave functions are
5 0 predominantly real, up to a point far above the barrier; the same
will be true of the wave functions of the coupled system at the
energies that we will consider.)

Above the barrier, states are characterized by a new bend
guantum numbemag, which is determined by the number of
3 2 140 1 2 3 3 2 4 0 1 2 3 nodes in the real portion of the wave function. These states come
in pairs, corresponding to the twofold direction of hindered
rotation above the barrier. (There is one state just below the
Figure 4. Selected eigenfunctions of the double-well bend potential barrier that is difficult to characterize; however, this state is
of Figure 1. Each state is labeled with the appropriate quantum numberbest thought of as a member of the first above-barrier pair.)
Na, Nv, OF Nag, depending on its acetylene, vinylidene, or above-barrier These pairs coalesce into near-degenerate doublets as the energy
character, respectively. The above-barrier sté®gs[T is also labeled increases above the barrier.

with the pseudo-gquantum number®, n’®. The bend quantum : ; :
numbers are described in Section 4.1. The vertical dashed lines indicate There is another, approximate way to characterize the real

the top of the barrier to isomerization, and the above-barrier function por.tion of the above-barrier states that is very useful. For.qUi,te
shown for|42xs(T is the real portion of the eigenfunction. a distance above the barrier, the states have strongly oscillating

amplitude above both the acetylene and vinylidene wells. It is
N possible to ascribe to the states approximate numbers of
Hoyo = Eg¥y (10) acetylene and vinylidene quanta. Consider sid@g[T in
Figure 4. The dashed lines indicate the location of the barrier.
where, using the bend portion of the classical Hamiltonian Counting the number of nodes within the acetylene “box”, one

83 -2 1 0 1 2 3 83 -2 -1 0 1 2 3

14> [22,>

15> 142>

N

n AAB=27
n,®=13

|
2
|
|

¢ [radians] ¢ [radians]

eq 4, we get can ascribe an approximate or pseudo-quantum number of
“acetylene” bend quantanﬁB = 27. Similarly, by counting the
N R P number of nodes within the vinylidene “box”, one can ascribe
Hp=— 2er02dT>2 + V(cosg) (1) an approximate number of “vinylidene” bend quam@B =

13. These above-barrier quantum numbers will be useful later

. o ) in interpreting anomalies in spectral patterns of the coupled
Becausev(cos¢) is a periodic function ofp, we choose, asa  gystem.

basis set, the function We assign the states of the uncoupled stretmmd
system with these quantum numbers. For example, the state with

Leilcﬁ (12) ns = 2, nn = 15 is denoted asn{, na)o = (2s, 151)0. The
NG subscript “0” denotes the fact that these states of the uncoupled

system will be the zero-order basis states of the coupled
for | = 0, +£1, +£2, £3, ... Using the parameters of eq 9, we System. Vinylidene states are denoted Bs fiv)o. Above-

find 24 acetylene states below the barrier of the poteMiebs barrier states are denoted in two ways: BSr{y)y; OF in

#) and 8 vinylidene states within the shallow second well. We terms of the very approximate quantum numb&l andn(®,
diagonalizef, in the first 201 basis states, i.e., up|tb= 100, as 0, m®, n{®);.

and retain, for later use, the converged eigenenekHjigs) and Using the model bend potential expressed in eq 1, the ratio

eigenfunctions: of the stretch and bend frequencies-i4:1, rather than the-5:1
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ratio that is observed experimentally in acetylene. The reason 900 - 900 )
for this difference is that the model bend potential comes from 759 750
fitting a reaction path on an ab initio potential surface. T 600 e 600
4.2. Coupled Stretch-Bend StatesWe now compute states = =
of the stretch-bend system by diagonalizing the Setirmer g 450 i 450
equation for the Hamiltonian eq 4 in a product basis of zero- & 300 * 300
order stretch-bend statesrg, ny)o that is given by —— ’ ’ Y 50 “
. MLl . | |
(Ng, Np)o = t/zns(x)t/)nb(¢) (14) ° 0 5533 11066 16599 22132 ° 0 5533 11066 16599 22132
E() [em] E(i) [em™]
withx=fgrforns=1, 2,3, ...Nsandn, =1, 2, 3, ... Np, with 000 000
n, being the label that has been described previously, following (c) (d)
eq 13. Here, the stretch basis stajgegx) are eigenfunctions . 750 . 750
for the Morse oscillator and the bend basis stagtg&p) are the £ 600 £ 600
eigenfunctions that have been computed previously for the § 450 5450
double-well bend potential; it is understood that the bend states &= =
1n, Ccan be classified by the physical quantum numibgrsy, T 300 :? 300
nag, etc. that have been described previously. Using the 150 150 ||
parameter values of eq 9, the number of bound states in the 0 0 I
Morse potential isNs = 27; the number of bend eigenstates 0 5533 11066 16509 22132 0 5533 11066 16599 22132
taken from the set computed previously for the bentljs= E(i) [em™] E(i) [em™]
80, with 32 below barrier (24 acetylene and 8 vinylidene) and Figure 5. (a) Pattern of energy-level spacings for the uncoupled bend
the remainder above barrier. stretch system; (b) energy-level pattern excluding states localized in

In constructing and diagonalizing the Hamiltonian eq 4, the vinylidene well; (c) spacing pattern of the vinylidene states alone;
known properties of the eigenvalues and eigenfunctions of the (4) Patterns of panels b and ¢ superimposed.
one-dimensional Morse oscillator are udéd** Of course, the ) , , .
n(¢) bend basis functions are available only numerically, from and Child for their zero-order spherical pendulum model in

the calculation described in Section 4.1. The diagonal matrix Fig‘%fe 5 of ref 34. )
elements@n x/ynOfor ns = 1, 2, 3, ...,Ns for the Morse Figure 5c¢ shows the pattern of energy-level spacings for the

oscillator are obtained using the numerical integration method Vinylidene states alone. Figure 5d shows the pattern when the
for reducing the round-off error described in ref 42; analytical SPacings of "the vinylidene states are superimposed on the
results are available but are difficult to implement numerically, Previous “dip” pattern of acetylene and above-barrier states. The

as discussed in ref 42. The off-diagonal matrix elements are '¢ason for doing this is that, in some cases (see Figure 6 of ref
computed analytically, as given in ref 43. 7 and Figure 9a of ref 11), instead of a dip in the level spacings,

there is an interleaving “fan” or “zigzag”. In the Fermi resonance
5. Spectral Patterns: Uncoupled System system, the fan is similar to (but simpler than) the pattern shown
i i here in Figure 5a. In the Fermi system, the fan can be
We first consider spectral patterns of the uncoupled stretch “straightened” by a proper assignment procedure (see Figure 8
bend system. We will use these as the template for patterns of ;¢ o 7). This is analogous to plotting the spacings of the
the coupled system. . (na, nag) levels in one group and those of timg group in
Energy levels of the uncoupled system can be classified into 4nother. as we did in Figure 5d of the current work. In the Fermi
bend sequencesi( ny) = (N5, 0), (0, 1), ..., according to the  rasonance system, a strikingly simpler pattern results from the
number of stretch quanta in the sequence. Analogous to refs 7straightening procedure (see Figure 8 of ref 7, Figure 9b of ref
and 11, for each sequence, we examine the pattern of energy 1y |, comparison, Figure 5d is not simplified as much. The
differences between adjacent energy levels, B, np + 1) reason involves the special form of the Fermi resonance
— E(ns, no) versusE(ns, np) for mp = 1, 2, 3, ..., 50 for each  jyieraction: in particular, in the Fermi system, the coupling
sequence. The pattern for the sequemse=(0, np) is shownin ¢, resnonds to a single trigonometric term, in contrast to the

Figure 5a. Of course, the patterns for sequencesmwithl, ... double-well potential used here, which has several terms in the
are identical for theuncoupled system, except for being trigonometric function expansion of eq 1.

displaced to higher energies.

A more revealing pattern is obtained_when the vinylidene 6. Spectral Patterns: Coupled System
states are removed. This leaves the spacings for acetylene levels
with quantum numbaen,, and above-barrier levels with quantum Panels b and c of Figure 5 show the uncoupled strebemd
numbemag. These are plotted in Figure 5b. It is clear now that system, which form the basic template of spectral patterns that
there is a minimum or dip that corresponds classically to the we will use to organize the spectrum of the coupled system.
zero frequency of the bend at the barrier. It is known (see Figure We will attempt to classify sequences of levels that are
5 of ref 7) that, at a classical separatrix, there is a pattern of a characterized by approximate effective quantum numbers analo-
dip in the spacings between levels of a vibratiopalyad gous tons, na, Ny, andnag and compare the energy patterns of
similar to the pattern that is shown here in Figure 5b. the resulting sequences to those of the uncoupled system in
Furthermore, it is known that there is a formal connection Figure 5.
between the phase space separatrix structure and “dynamical 6.1. Diabatic Correlation Diagram Assignment of Se-
barriers”26-29 |In the present case, the barrier that gives the quences.The first thing we need to do is assign approximate
separatrix is the actual barrier to isomerization in the double- quantum numbers to the energy levels, so that we can classify
well potential. In a system with a potential barrier, the minimum the spectrum into sequences. For this step,we use the diabatic
was studied by DixoA® The “Dixon dip” is noted by Jacobson  correlation diagram assignment method of Rose and Kelfihan.
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Figure 6. Energy-level spacing patterns for the coupled system with Figure 7. Energy-level spacing patterns for the coupled system with
ns = O stretch quanta. Panels a and b parallel panels b and ¢ of thens = 1 stretch quanta. Panels a and b parallel panels b and c of the
uncoupled system in Figure 5. The spacing marked with an asterisk uncoupled system in Figure 5. The spacing marked with an asterisk

(*) is involved in a cross-barrier, resonance-type coupling, as described (*) is involved in a cross-barrier, resonance-type coupling, as described
in Section 7.2. in Section 7.2.

We start with the precisely defined quantum numbers of the Figure 6 showss = 0, with panels a and b analogous to
uncoupled system. We then gradually turn on the coupling, panels b and c in Figure 5. Evidently, the patterns of the
carrying the zero-order quantum numbers along the diabatic uncoupled and coupled systems are essentially similar, which
curves of the correlation diagram. The intuitive expectation is confirms the basic hypothesis with which we started this
that the character of the states does not change too rapidly agnvestigation. However, there is apparently some “bumpiness”
the coupling is turned up, so that the zero-order quantum in the pattern above the barrier. This phenomenon is visible
numbers retain some physical meaning as the coupling isrepeatedly in Figures 79. The irregularities persist and
increased. This expectation rests partly on prior favorable generally grow in magnitude with increasing the figures show

experience in both direct applications of the mef§o# and bumps both above and below the barrier. It will become clear
in related work where correlation diagrams are usEd3The that these irregularities signal important dynamical information.
test of utility here is whether the procedure uncovers meaningful

patterns in the fully coupled system. 7. Decoding the Spectral Patterns

6.2. Energy-Level Patterns.After approximate effective i ) o _—
quantum numbers have been assigned to the states of the coupled We will start with familiar ideas from molecular vibrational
system, we arrange the levels into sequencesi), analogous spect}roscopy and, motivated by concepts from kinetic theory,
to those of the uncoupled system with quantum numbers We will attempt to extend these to encompass the fact that an

(ns, Nb)o in Section 5, and also making use, where appropriate, ISOmerizing system is involved in our study. The main idea from
of the various quantum numbems na, Ny, Nas, nﬁB, andnCB, molecular spectroscopy is the notion of Fermi or anharmonic
analogous to the zero-order counterparts that were described®Sonance. We will classify the anomalies in Figure®@nd
previously. We examine the patterns of energy-level spacings, |nj[erpret several exemplar'y cases, highlighting .the.assouatlon
with resonances. The basic concept from the kinetic theory of

analogous to Figure 5; the results are shown in Figure8 6 " . ; : - R
for sequences with various values of the effective stretch Unimolecular reactiod8 is to treat the isomerization process
as the formation of an activated forf" of the energized

quantum numbemg = 0—3). We were readily able to assign - - e
these sequences using the correlation diagram technique. Eve@Cetylene specie&*, followed by the transition to vinylidene:
up tons = 5, we were able to assign all the acetylene and

vinylidene levels below the barrier, except possibly one. A* =Al=V (15)
However, the assignments became unmanageable above the

barrier, showing the limits of the diabatic correlation diagram where the above-barrier form AB is considered to be the
technique when the degree of chaos is too high. (See discussioractivated speciea’, andA* is an energized acetylene molecule
in Section 3 and the classical surfaces of the section shown inwith energy sufficient to fornA™ but not properly localized in
Figure 3.) the reaction coordinate.
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Figure 8. Energy-level spacing patterns for the coupled system with Figure 9. Energy-level spacing patterns for the coupled system with

ns = 2 stretch quanta. Panels a and b parallel panels b and c of theMs = 3 strétch quanta. Panels a and b parallel panels b and ¢ of the
uncoupled system in Figure 5. uncoupled system in Figure 5.

7.1. Fermi Resonance of AcetyleneFirst, we consider a 900 :
spectral anomaly that has been interpreted in terms of ordinary p-26
Fermi resonance coupling among zero-order below-barrier 750
acetylene states. In comparing Figure 5 for the zero-order system = 600
with Figure 9 for the coupled system witl = 3, a “wave” of 5
slightly displaced states{ na) is visible below the barrier. S 450
In examining the eigenvectors of these states, we find that =
there is strong mixing of zero-order states that are connected :oJ 300
by couplings of the form 4:1 and 2:1, i.e., exchanging 4 or 2
guanta of acetylene bend, respectively, for 1 quantum of stretch. 150
This coupling is consistent with what we know of the classical T TT
dynamics of the system. To the lowest order, the coupling eq 3 0 ‘ ' , ‘
has the form of a 2:1 coupling. Furthermore, the two lowest- 18500 16850 19160 19440 19720 20000
energy surfaces of the section in Figure 3 have prominent 4:1 E(i) fom ]

resonance zones, which is expected because the system tungSgure 10. Pattern of five energy-level spacings of the poly2a-

into a frequency ratio of-4:1 between the stretch and the bend 4ns+ na = 26 of six states of the strong 4:1 resonance. The dip in the
in the upper half of the bend potential, as noted in Section 4.1. SPacings corresponds to the separatrix of the 4:1 resonance.

The 2:1 and 4:1 resonances, and their interplay, were also

investigated extensively by Child and Jacobson in their study Polyads of levels with a common polyad numbeiFof= 4ns +
of the spherical pendulum model of isomerizatfié@s na. Figure 10 shows the energy-level spacings of a 4:1 polyad

However, the strong 4:1 mixing of the zero-order states is Of States with effective quantum numbers of @2),(2, 18),
not yet analogous to what is generally meant by Fermi - (& 2a), all of which have a polyad numbér= 26. Figure

resonance. In molecular spectroscopy, the “zero-order” stateslO displays a dip in the energy-level spacings, which is
of the diagonal portion of an effective fitting Hamiltonian are characteristitof a separatrix. Now, the separatrix is associated

strongly mixed states in terms of any simple basis, such as ournot with the potential barrier that we have been considering in
zero-order basis. Instead, the spectroscopic zero-order states aféis paper, but rather with the dynamical barrier of a 4:1
akin to our diabatic states outside regions of a strong avoided nonlinear resonance.

crossing. The effective quantum numbers, (1a) from the It is also instructive to examine wave functions. Figure 11a
diabatic assignments are then similar to the zero-order quantumshows the wave function of the state with nominal quantum
numbers of a spectroscopic Hamiltonian. numbers ifs, na) = (4s, 10a) from the diabatic assignment. The

To establish that the displaced states are associated with 4:Inodal patterns are characteristic not of a state with quantum
Fermi resonance in the spectroscopic sense, we place sets ofiumbers (4 104)o, but rather of the stable periodic orbit of the
states from sequences with differeginumbers into 4:1 Fermi  classical 4:1 Fermi resonance, superimposed on the figure.
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(@)
(4,,10,)
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(b)
(3,14,

(0, 42:8)~ =~ (0,4 27,°),, exchanging 6 pseudo quanta of
acetylene bend for 1 quantum of stretch, which resembles a
resonance of order 6:1. The other anomalous “bumps” that are
apparent on both sides of the barrier in Figures9Q6can be
interpreted in this way, with a resonance-type picture of the
coupling between the specidg and AT,

© | 7.3. Isomerization and the Coupling to Vinylidene A most

n interesting question is whether the spectral patterns in Figures
404 O i 6—9 and the quantum mechanical calculations from which they
¢ resulted provide information about the isomerization process,
o including the right-hand portioA" ==V of the kinetic scheme

30 A ] of eq 15. Unfortunately, this is not as easily determined as the
information that we have obtained of the Fermi resonance
between acetylene states and the cross-barrier resonance-type
interaction between acetylene and above-barrier states. The
reason is obvious in Figures®. The vinylidene states in panels

b of the figures simply do not show the types of anomalies that
allowed us to reach our earlier conclusions. This is a reflection
of the weakness of the coupling of the vinylidene V species to
the A* and A forms of the system. Relating the present work
on the A*= AT portion of the kinetic scheme of eq 15 to the
process A==V will require more-subtle analysis of the quantum
states and classical dynamics of the coupled system and is
reserved for future investigation.

6.0

5.0 |

¢ [radians]
0

2.0

1.0 1

0.0 -
-1.0 0.0 1.0

r[5.368 x 10"'m]

Figure 11. Real portion of the eigenfunctions of two Fermi resonant
states: (@) state with nominal quantum numbeksra) = (4s, 101)
tracks the stable periodic orbit of the 4:1 resonance, superimposed
and (b) state with nominal quantum numbeis () = (3, 14a) tracks

the unstable periodic orbit of the 4:1 resonance.

'8. Summary and Conclusions

This paper has investigated the energy-level patterns in a
model of an isomerizing coupled stretch-and-bend system that
is intended to have some of the key features of a realistic model
of the acetylenevinylidene isomerization. We have seen that
ahere are spectral patterns characteristic of the barrier, the
multiple minima, and above-barrier motion. The patterns are
obtained by classifying sequences in terms of approximate
effective quantum numbers, which are obtained by a diabatic
correlation diagram technique. The patterns are similar to those
obtained earlier for nonisomerizing systems with Fermi reso-
nance, which have phase space structure that is characterized
by a classical separatrix, or dynamical barrier. As the dynamical

arrier is approached from above or below, there is a charac-
teristic pattern of a minimum, or dip, in the spacing between
neighboring energy levels. In this study, we have found these
types of patterns in the stretebend sequences of the model

Figure 11b shows the wave function of statg {3,). The nodal
patterns track the unstable orbit of the 4:1 resonance.

Figures 6-9 show that, even with Fermi coupling, it is
meaningful to classify states into sequences that are assigne
with nominal effective stretch and bend quantum numbers
(ns, Na). We saw that these states could be further classified
into Fermi polyads, as in Figure 10, with the help of the
assignments. The presence of Fermi resonance is not surprisin
What is significant is that the diabatic assignment still gives a
sensible sequence classification and, in fact, helps to uncover
resonance through the detection of anomalies in the spectral
pattern. This demonstrated usefulness of the diabatic assignment:
gives us confidence to apply it to novel situations that involve
coupling to above-barrier and isomeric species.

B. Cross-Barrier Coupling, A* < AT. Next, we considera . -
spectral anomaly that has a much more interesting explana—IsomerIZIng system.
tion: as coupling of the excited acetylene spedisto the The patterns have anomalies or “bumps” in the energy-level
generalization of Fermi resonance. Consider the energy spacingsomerizing system. Some of the anomalies are associated with
labeled by an asterisk (*) in Figure 7. This is the energy standard Fermi resonance couplings between below-barrier
difference between the states, (na) = (1s, 21a) and (%, 224), states. Other anomalies are associated with a new type of cross-
and this value clearly is “bumped” up from the general pattern. barrier resonance-type coupling, similar to Fermi resonance, that

This observation means that the,(214) level is anomalously
low, the (L, 22) level is anomalously high, or both. As we
noted previously, the ¢122,) level, in fact, is disturbed by

bridges below-barrier and above-barrier states, and takes the
system from an energetically excited state to an activated form.

These results suggest several directions for future work, two

4:1 Fermi resonance with other below-barrier states. How- of which we have mentioned. Most obviously, how to use the

ever, in addition, examination of the eigenvectqy 21,) shows

interpretation of the energy-level patterns to obtain information

a strong admixture of the zero-order above-barrier basis stateabout the classical and quantum kinetics of the isomerization
(0, 42,g), - This zero-order state, by the method of counting reaction remains to be seen.

approximate above-barrier acetylene quanta of Section 4.1, is  Second, it would be extremely interesting if one could build
also assignable with the very approximate quantum numbers a spectroscopic Hamiltonian, including resonances couplings

(ng M®)o = (0, 27,%),. Furthermore, if we look at the spacing
“*" between the statesng, nag)* = (0, 423)~ and (0, 43s)™
in Figure 6, we find that it also is anomalously low. All this

for an isomerizing system, similar to the Hamiltonians com-
monly used to fit lower-energy spectra. This is difficult because
of the need to incorporate the structures of both potential wells,

information suggests a Fermi resonance-type coupling betweenthe above-barrier form of the molecule, and resonance couplings,

the acetylene state {121,) and the above-barrier state

including the cross-barrier couplings that have been considered
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here. Some real progress has been rfaddor two-mode
models which, however, are much less similar to the acetylene
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AE =1, 0 «rsin¢ |0, L~ «

mes(%p)\/é (A3)

vinylidene system than the model studied here. The usefulness
of the quantum numbers used in the present work in interpreting
the dynamical meaning of the spectral patterns suggests tha
qguantum numbers such as these will be an essential component
of building a spectroscopic Hamiltonian for isomerizing systems.

tFrom this relation, we get

Mo, 2Iw¢)
iz
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Appendix: Parameters of the Hamiltonian

In this Appendix, we indicate how we chose the values of
the parameters used in the strettiend Hamiltonian (eq 4; also
see eq 9).

We chose the mass parametefor the stretch in eq 4 as the
reduced mass of the-€H system, having in mind a local-€H
stretch mode.

We obtained the Morse paramel2as the value of the €H

bond dissociation energy in acetylene that was determined by Sibert et ak°

Habibollahzadeh et 4l.by density functional methods. We used
their value,D = 135.5 kcal/mol= 47474.26 cm?.

For the frequency of a local stretch mods, at the bottom
of the Morse potential, we use the average of the symmetric

the experimental bend frequency). From the work of van Ede
van der Pals and Gaspéaftlp, = (w4 + ws)/2 = 684.23 cm™.

To get a value fok, we must now get a reasonable value for
AE. For guidance, we make use of the analysis of Sibert et
al A% of the kinetic energy coupling between a stretch and a bend;
we believe that this is the predominant contribution to the
stretch-bend coupling in linear molecules such as acetylene.
To lowest order, this coupling gives matrix elements of 2:1 form
between the stretch and the bend, in a manner that is very similar
to the aforementioned approximations regarding the coupling
(eq 3).
analyzed triatomic molecules, and, of course,
acetylene is a four-atom molecule. To estimate the coupling,
we treat it as if it were a linear ABA molecule with A
representing the H atom and B representing the C atom pair as
if they were a single atom. We then follow the procedure used

and antisymmetric stretch frequencies for acetylene. The valuesin ref 40 for CQ.

of wy = 3501.537 cm* andws = 3417.644 cm! were obtained
from the work of van der Pals et & so we havess = 3459.59
cm L,

The Morse paramete? relates to the mass, dissociation
energyD, and harmonic frequencys through the equation

ws = v 2DB%m, from which we get the valug = 1.86288x
109 m2,

We define the moment of inertia in eq 4 bs= er(Z), by
considering the bend in terms of an H atom rotating rigidly
about the rest of molecule, which is treated as a fixed object.
We considerg to be the length of the €H bond at equilibrium.
From the ab initio calculation of Chang et“difor acetylene,
we getro = 1.063 A.

Determination of a value for the stretechend coupling
parametek in eq 4 is rather complicated and occupies the rest
of this Appendix. For small-amplitude motion, we haaresir?
¢ ~ kr¢?, the form that would give a 2:1 Fermi resonance
coupling. Quantum mechanically, the stretch coordimeaed
bend coordinatep are related to their raising and lowering
operators by

~
~

~ [ h ot
"% o e @ 3

~ [t
o~ 2Iw¢(a¢ +ay) (A1)
The coupling term can then be approximated as
T S h [(h\ + T 2
Kr Sin® ¢ ~ kr¢p” =« _mes(_Zl %)(aT +a)(a; t+a)
(A2)

Now, consider the matrix element between stdtesn,[1=
|1, 00) |0, 200

The vibrational Hamiltonian for the triatomic molecule is

3

1
H = Ezg“ plpj + V(Xla X21 X3) (A5)
)

wherex; andx; are the displacement coordinates of the H atoms,
and x3 is a bend coordinate that is defined asminus the
H(CC)H angle %3 = ¢), where (CC) indicates that we treat the
carbon atom pair “CC” as a single atom. Thg terms for

i,j =1, 2, 3 are elements of tlematrix 5° which is related to
the inverse effective masses. Tlgg terms are coordinate-
dependent. By expandirgy around the equilibrium coordinates
xi = 0 and keeping the lowest order, the kinetic energy
Hamiltonian can be written as

T=T+T (A6)
with
1= Zupl + 505 (A7)
0
T = (fricc)asmps - (fzz—rg”)srﬁ (A8)
0 0

wheres = (x; + xz)/«/ﬁ is the symmetric stretch coordinate,
is the bend coordinatep(= x3), ps andpy are their conjugate
momentagy; = 933(0) = 2un/ry + 4ucdra, un is the inverse
mass of the H atomycc is the inverse mass of the (CC) carbon
pair, and finallyrg is the length of the HC bond at equilibrium.
We treatT? as the coupling of stretch and bend harmonic
oscillators with frequenciesvs and w,. To calculate the
contribution of T* analytically, we write the coordinates and
momenta in eq A8 in terms of the raising and lowering operators
as
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Taking into account the double degeneracy of the bend (in the Dynamics and Chemical Kineticsviley: New York, 1997.

real acetylene molecule, not our two-mode model), the total

contribution of the kinetic coupling is (see eq 3.6 of ref 40)
V21,0710, 2~ 4511 cm*

SubstitutingAE = +/2 [1, 0TY0, 20~ 45.11 cntt into eq A4,
we get the value for the coupling parametén the Hamiltonian
eq 5:
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with m~1 denoting a true reciprocal length and cha unit of
energy. The value dhspin the classical Hamiltonian eq 6, using
B, which was previously determined in this Appendix, is then

A= }—; = 10904.4 cm*
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