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Spectral patterns are investigated in a model of an isomerizing coupled stretch-and-bend system that is intended
to have some of the features of a realistic model of the acetylene-vinylidene isomerization. There are patterns
of a dip or minimum in the spacing of neighboring energy levels, which is characteristic of the barrier, the
multiple minima, and above-barrier motion. The patterns are obtained by classifying sequences in terms of
approximate effective quantum numbers, which are determined using a diabatic correlation diagram technique.
The patterns have anomalies that carry dynamical information that is associated with nonlinear resonance-
type couplings, similar to anharmonic Fermi resonances, between the stretch and the bend. There is conventional
Fermi resonance below the barrier, and a new type of “cross-barrier” resonance is observed.

1. Introduction

There is growing use of frequency-domain spectral analysis
to unravel dynamical information about vibrating molecules.1-15

This interest has progressed from motion near the bottom of a
potential well to systems that approach barriers to molecular
rearrangement. The observation in frequency-domain spectra
of species with multiple potential minima, undergoing isomer-
ization, is awaited with great interest. An example is the
formation of the vinylidene isomer in the much-studied acetylene
spectral system. Ideally, one would like to use the spectra to
detect the presence of the barrier to isomerization, motion over
the barrier, trapped quantum states of the above-barrier and
isomerized species, and dynamics of the isomerization process.
Despite impressive experimental and theoretical work,16-25 it
is fair to say that this area of study is mostly unexplored territory
that holds many mysteries.

This paper investigates the existence and interpretation of
spectral patterns that are associated with isomerization phe-
nomena. It is known that there are spectral patterns7,11,14

associated withdynamical barriers26-29 in simple coupled
systems, e.g., stretches with local and normal modes, and Fermi
resonance. Furthermore, these patterns persist in molecular
systems that have multiple resonances, many degrees of
freedom, and classical chaos.30-33

It is natural to wonder if similar patterns exist in isomerizing
systems with real potential barriers. In this paper, we investigate
a simple two-mode stretch-bend model for an isomerizing
system. This model is intended to have some features of a
realistic model for the acetylene-vinylidene isomerization,
including the critical features of a barrier between the acetylene
and vinylidene wells, and motion above the barrier. The
simplification to a two-mode model makes tractable a compre-
hensive investigation of key questions of principle. Are there
spectral patterns that are characteristic of the barrier, the multiple
minima, and above-barrier motion? Do they give information

about the chaotic motion and energy-transfer dynamics, includ-
ing movement between isomeric species?

This paper focuses on the question of spectral patterns of
the acetylene, vinylidene, and above-barrier species. The full
spectral interpretation of the isomerization kinetics is more subtle
and is left for future investigation.

Jacobson and Child34,35investigated a model of spectroscopic
signatures of bond-breaking internal rotation in a spherical
pendulum model for a system with a barrier. There are several
points of contact with the present work, which are described
below.

The paper is organized as follows. We introduce the bend
potential, stretch potential, and stretch-bend Hamiltonian in
Section 2. We consider classical dynamics for the stretch-bend
Hamiltonian system in Section 3. We develop quantum me-
chanical calculations for this Hamiltonian in Section 4. In
Section 5, we discuss spectral patterns of the zero-order system,
and in Section 6, patterns of the coupled system are explored.
In Section 7, we discuss dynamical interpretation of the spectral
patterns.

2. Bend-Stretch Isomerization Hamiltonian

We want the model stretch-bend Hamiltonian to include
three main elements. First, we want a realistic HCC bend
potential with a deep acetylene well and shallow vinylidene well,
with motion in both wells and above the barrier. Second, we
want a stretch mode that has some of the features of a C-H
stretch, in particular, a frequency ratio between the stretch and
the bend that is similar to that in acetylene. Finally, we want a
semirealistic coupling between the stretch and the bend.

2.1. Bend Potential.For the bending motion, we seek a
model of a local HCC bend that is similar to what can be
expected in acetylene-vinylidene along the reaction coordinate.
For this model, we use a realistic, full-degree-of-freedom
acetylene potential energy surface (PES) and determine the
potential along the reaction path.36 We use the resulting one-
dimensional potential, which is suitably parametrized, as our
bend potential.

As a comprehensive ab initio PES of the acetylene-
vinylidene system, with all vibrational degrees of freedom, we
use the potential of Halonen, Child, and Carter.37,38Its stationary
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points (acetylene, vinylidene, and the transition state) have been
computed by Bentley et al.39

To obtain the reaction path, we start from the transition state
with a tiny displacement toward either acetylene or vinylidene
and then follow the path of steepest descent on the analytical
PES. The result is a numerical representation of potential energy
(given in terms of electron volts) versus a mass-weighted
reaction coordinate (given in angstroms).36

For our purposes, it will be more suitable to switch to an
angle parameterφ along the reaction path with a period of 2π.
To define this parameter, we rescaled the aforementioned mass-
weighted reaction coordinate linearly to a new variableφ (φ )
[-π,π]); for this variable, acetylene corresponds toφ ) 0 and
vinylidene corresponds toφ ) π, -π. The potential was then
fit using a least-squares routine (from MATHEMATICA) to a
polynomial function of cos [φ] with the desired periodicity and
symmetry. The final result is the following one-dimensional
double-minimum bend potential:

where the result is given in electron volts. The potential,V(cos
φ), is shown in Figure 1. Periodic in regard toφ, it has a well
at φ ) 0 for acetylene and a shallow well atφ ) π, -π for
vinylidene.

2.2. Stretch Potential.We assume the potential model for
the C-H stretch to be a Morse oscillator:

whereD is the dissociation energy for the C-H bond,â the
Morse parameter, andr the displacement from equilibrium of
the C-H bond.

2.3. Stretch-Bend Interaction. For the coupling between
the stretch and the bend, we take a potential coupling of the
form

which, to first order, would give a 2:1 Fermi resonance
interaction. In the stretch-bend system, the kinetic-energy
coupling to first order is known to give a coupling of this form.40

Our model Hamiltonian for bend, stretch, and coupling then is

wherer0 is the equilibrium C-H bond length,r the displacement
from equilibrium for the C-H bond; m the reduced mass of
the H and C atoms;mH the mass of the H atom; andκ an
adjustable coupling constant.

This model is a deliberate oversimplification in certain
respects, besides being restricted to two dimensions. The double-
well potential (eq 1) for the bend has only a single form for
each species, unlike the real acetylene-vinylidene system.
Furthermore, in acetylene-vinylidene, the properties of the
C-H stretch mode, e.g., its zero-order frequencies, are different
for the two species. To reflect this in a potential model, the
stretch potential would need to be a function of both the stretch
and bend coordinates, unlike the potential that is dependent only
on the stretch coordinate (eq 2), with all the dependence on the
bend coordinate folded into the stretch-bend potential (eq 3),
which is, itself, a simple functional form.

3. Classical Dynamics

In this section, we compute classical dynamics of the
Hamiltonian system (eq 4). For convenience in numerical
calculation, we rescale the variables in eq 4 to dimensionless
form. To do this, we introduce the length coordinatew for the
bend, which relates to the bending angleφ by the equation
w ) r0φ. The momentumpw conjugate tow relates to the angular
momentumpφ by pφ ) r0pw. The Hamiltonian shown in eq 4
then becomes

Equation 5 can then be scaled to the form

by the transformations

where

Figure 1. Bend potential obtained from fitting the reaction path
abstracted from a full-dimensional ab initio surface for the acetylene
system. Regions are denoted A (acetylene), V (vinylidene), and AB
(above barrier).
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andt is the time for Hamiltonian eq 5. The scaled variablesx,
x0, p̃r, y, p̃w, andτ are dimensionless quantities.

Classical trajectories are computed by numerically solving
the equations of motion for Hamiltonian eq 6 with the following
parameters being explicit or implicit:

The reasons for this particular choice of parameters are detailed
in the Appendix.

Figure 2 shows phase-space trajectories for the pure bend
at different energies. There are curves that surround fixed point
A at the bottom of the deep acetylene well, curves that surround
fixed pointV at the bottom of the shallow vinylidene well, and
curves that extend over the full rangeφ ) [-π, π] in the above-
barrier regionAB.

Figure 3a shows a surface of a section for the coupled system
obtained at an energy of 18 800 cm-1, which is the approximate
energy of the barrier when the system hasns ) 0 stretch quanta,
including zero-point energy. A region of mild chaos surrounds
the separatrix. There is a pronounced four-island chain in the
acetylene well. It corresponds to the∼4:1 frequency ratio of
the zero-order stretch and bend of the model system, as
discussed below in Section 4.1, and it thereby corresponds to
the 4:1 Fermi resonance that is discussed in Section 7.1. The
surfaces of sections at 29 000 cm-1 in Figure 3b and 35 300
cm-1 in Figure 3c correspond approximately to the barrier
energy for states withns ) 3 and 5 stretch quanta and show a
progressively higher degree of chaos that surrounds the sepa-
ratrix. The 2:1 Fermi resonance that corresponds to the form of
the coupling presented in eq 3 eventually turns on, as seen in
Figure 3c.

4. Quantum Calculations

In this section, we calculate the quantum states of the
Hamiltonian eq 4. The quantum calculations have two steps.
The first is to calculate eigenvalues and eigenfunctions for the

double-well bend potential (eq 1) in a large free-rotor basis.
The second is to calculate the states of the coupled stretch-
bend system. For this step, the states of the preceding bend
calculation give a prediagonalized zero-order bend basis.
Together with a basis of Morse functions for the zero-order
stretch, these form a product zero-order stretch-bend basis,
which is used finally to calculate the states of the coupled system
(eq 4).

4.1. States of the Double-Well Bend Potential.The states
of the bend potential are obtained by solving the Schro¨dinger
equation:

Figure 2. Phase space trajectories for motion in the bend potential of
eq 1. Classical motion is organized around the acetylene potential
minimum (A), the vinylidene potential minimum (V), and the above-
barrier region (AB) outside the separatrix (bold trajectory), correspond-
ing to the top of the isomerization barrier.

D ) 47474.26 cm-1

ωs ) x2Dâ2

m
) 3459.59 cm-1

p2

2mHr0
2

) 1.838× 10-3 eV ) 14.82481174 cm-1

Asb ) 10904.4 cm-1 (9)

Figure 3. (a) Surface of a section atr ) 0, pr > 0 for the coupled
stretch-bend Hamiltonian eq 4 at a total energy (including zero-point
energy) of (a)E ) 18 800 cm-1, (b) E ) 29 000 cm-1, and (c)E )
35 300 cm-1. These energies correspond to the approximate energies
at the barrier for the sequencesns ) 0, 3, and 5, respectively. Note
that the sequences depicted in Figures 6-9 do not include the zero-
point energy.
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where, using the bend portion of the classical Hamiltonian
eq 4, we get

BecauseV(cosφ) is a periodic function ofφ, we choose, as a
basis set, the function

for l ) 0, (1, (2, (3, ... Using the parameters of eq 9, we
find 24 acetylene states below the barrier of the potentialV(cos
φ) and 8 vinylidene states within the shallow second well. We
diagonalizeĤb in the first 201 basis states, i.e., up to|l| ) 100,
and retain, for later use, the converged eigenenergiesEb(nb) and
eigenfunctions:

for nb ) 1, 2, 3, ..., 80. Thenb terms label the eigenenergies in
ascending order; therefore,nb is not a physically meaningful
quantum number, but rather is simply an index.

Physical quantum numbers can be discerned by examining
the bend eigenfunctions. A sampling of wave functions is shown
in Figure 4, with relevant quantum number assignments. Below
the vinylidene well, the states are strongly localized in the
acetylene well and characterized by the number of quantanA

in the acetylene bend. As the energy reaches the vinylidene well,
states that are localized in the vinylidene well start to appear,
which are characterized by the number of vinylidene bend
quanta,nV. Significant mixing of states with A and V character
begins, which can be thought of as being due to tunneling
between the two isomeric forms. This can be observed in the
middle panels of Figure 4, which show unusually large tunneling
mixing. Nonetheless, all the states are predominantly of either
A or V character almost up to the top of the barrier and can be
characterized by the bend quantum numbernA or nV.

The wave functions of the above-barrier states are complex,
which befits a system with rotation about the full angular range
[-π, π]. In Figure 4, we plot the real portion of the wave
functions for the above-barrier states. (The wave functions are
predominantly real, up to a point far above the barrier; the same
will be true of the wave functions of the coupled system at the
energies that we will consider.)

Above the barrier, states are characterized by a new bend
quantum number,nAB, which is determined by the number of
nodes in the real portion of the wave function. These states come
in pairs, corresponding to the twofold direction of hindered
rotation above the barrier. (There is one state just below the
barrier that is difficult to characterize; however, this state is
best thought of as a member of the first above-barrier pair.)
These pairs coalesce into near-degenerate doublets as the energy
increases above the barrier.

There is another, approximate way to characterize the real
portion of the above-barrier states that is very useful. For quite
a distance above the barrier, the states have strongly oscillating
amplitude above both the acetylene and vinylidene wells. It is
possible to ascribe to the states approximate numbers of
acetylene and vinylidene quanta. Consider state|42AB〉- in
Figure 4. The dashed lines indicate the location of the barrier.
Counting the number of nodes within the acetylene “box”, one
can ascribe an approximate or pseudo-quantum number of
“acetylene“ bend quanta:nA

AB ) 27. Similarly, by counting the
number of nodes within the vinylidene “box”, one can ascribe
an approximate number of “vinylidene” bend quanta:nV

AB )
13. These above-barrier quantum numbers will be useful later
in interpreting anomalies in spectral patterns of the coupled
system.

We assign the states of the uncoupled stretch-bend
system with these quantum numbers. For example, the state with
ns ) 2, nA ) 15 is denoted as (ns, nA)0 ) (2s, 15A)0. The
subscript “0” denotes the fact that these states of the uncoupled
system will be the zero-order basis states of the coupled
system. Vinylidene states are denoted as (ns, nV)0. Above-
barrier states are denoted in two ways: as (ns, nAB)0

(; or in
terms of the very approximate quantum numbersnA

AB andnV
AB,

as (ns, nA
AB, nV

AB)0
(.

Using the model bend potential expressed in eq 1, the ratio
of the stretch and bend frequencies is∼4:1, rather than the∼5:1

Figure 4. Selected eigenfunctions of the double-well bend potential
of Figure 1. Each state is labeled with the appropriate quantum number
nA, nV, or nAB, depending on its acetylene, vinylidene, or above-barrier
character, respectively. The above-barrier state|42AB〉- is also labeled
with the pseudo-quantum numbersnA

AB, nV
AB. The bend quantum

numbers are described in Section 4.1. The vertical dashed lines indicate
the top of the barrier to isomerization, and the above-barrier function
shown for|42AB〉- is the real portion of the eigenfunction.
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ratio that is observed experimentally in acetylene. The reason
for this difference is that the model bend potential comes from
fitting a reaction path on an ab initio potential surface.

4.2. Coupled Stretch-Bend States.We now compute states
of the stretch-bend system by diagonalizing the Schro¨dinger
equation for the Hamiltonian eq 4 in a product basis of zero-
order stretch-bend states (ns, nb)0 that is given by

with x ) âr for ns ) 1, 2, 3, ...,Ns andnb ) 1, 2, 3, ...,Nb, with
nb being the label that has been described previously, following
eq 13. Here, the stretch basis statesψns(x) are eigenfunctions
for the Morse oscillator and the bend basis statesψnb(φ) are the
eigenfunctions that have been computed previously for the
double-well bend potential; it is understood that the bend states
ψnb can be classified by the physical quantum numbersnA, nV,
nAB, etc. that have been described previously. Using the
parameter values of eq 9, the number of bound states in the
Morse potential isNs ) 27; the number of bend eigenstates
taken from the set computed previously for the bend isNb )
80, with 32 below barrier (24 acetylene and 8 vinylidene) and
the remainder above barrier.

In constructing and diagonalizing the Hamiltonian eq 4,
known properties of the eigenvalues and eigenfunctions of the
one-dimensional Morse oscillator are used.41-44 Of course, the
ψnb(φ) bend basis functions are available only numerically, from
the calculation described in Section 4.1. The diagonal matrix
elements〈ψns|x|ψns〉 for ns ) 1, 2, 3, ...,Ns for the Morse
oscillator are obtained using the numerical integration method
for reducing the round-off error described in ref 42; analytical
results are available but are difficult to implement numerically,
as discussed in ref 42. The off-diagonal matrix elements are
computed analytically, as given in ref 43.

5. Spectral Patterns: Uncoupled System

We first consider spectral patterns of the uncoupled stretch-
bend system. We will use these as the template for patterns of
the coupled system.

Energy levels of the uncoupled system can be classified into
bend sequences (ns, nb) ) (ns, 0), (ns, 1), ..., according to the
number of stretch quanta in the sequence. Analogous to refs 7
and 11, for each sequence, we examine the pattern of energy
differences between adjacent energy levels, i.e.,E(ns, nb + 1)
- E(ns, nb) versusE(ns, nb) for nb ) 1, 2, 3, ..., 50 for each
sequence. The pattern for the sequence (ns ) 0, nb) is shown in
Figure 5a. Of course, the patterns for sequences withns ) 1, ...
are identical for theuncoupled system, except for being
displaced to higher energies.

A more revealing pattern is obtained when the vinylidene
states are removed. This leaves the spacings for acetylene levels
with quantum numbernA, and above-barrier levels with quantum
numbernAB. These are plotted in Figure 5b. It is clear now that
there is a minimum or dip that corresponds classically to the
zero frequency of the bend at the barrier. It is known (see Figure
5 of ref 7) that, at a classical separatrix, there is a pattern of a
dip in the spacings between levels of a vibrationalpolyad,
similar to the pattern that is shown here in Figure 5b.
Furthermore, it is known that there is a formal connection
between the phase space separatrix structure and “dynamical
barriers”.26-29 In the present case, the barrier that gives the
separatrix is the actual barrier to isomerization in the double-
well potential. In a system with a potential barrier, the minimum
was studied by Dixon.45 The “Dixon dip” is noted by Jacobson

and Child for their zero-order spherical pendulum model in
Figure 5 of ref 34.

Figure 5c shows the pattern of energy-level spacings for the
vinylidene states alone. Figure 5d shows the pattern when the
spacings of the vinylidene states are superimposed on the
previous “dip” pattern of acetylene and above-barrier states. The
reason for doing this is that, in some cases (see Figure 6 of ref
7 and Figure 9a of ref 11), instead of a dip in the level spacings,
there is an interleaving “fan” or “zigzag”. In the Fermi resonance
system, the fan is similar to (but simpler than) the pattern shown
here in Figure 5a. In the Fermi system, the fan can be
“straightened” by a proper assignment procedure (see Figure 8
of ref 7). This is analogous to plotting the spacings of the
(nA, nAB) levels in one group and those of thenV group in
another, as we did in Figure 5d of the current work. In the Fermi
resonance system, a strikingly simpler pattern results from the
straightening procedure (see Figure 8 of ref 7, Figure 9b of ref
11). In comparison, Figure 5d is not simplified as much. The
reason involves the special form of the Fermi resonance
interaction: in particular, in the Fermi system, the coupling
corresponds to a single trigonometric term, in contrast to the
double-well potential used here, which has several terms in the
trigonometric function expansion of eq 1.

6. Spectral Patterns: Coupled System

Panels b and c of Figure 5 show the uncoupled stretch-bend
system, which form the basic template of spectral patterns that
we will use to organize the spectrum of the coupled system.
We will attempt to classify sequences of levels that are
characterized by approximate effective quantum numbers analo-
gous tons, nA, nV, andnAB and compare the energy patterns of
the resulting sequences to those of the uncoupled system in
Figure 5.

6.1. Diabatic Correlation Diagram Assignment of Se-
quences.The first thing we need to do is assign approximate
quantum numbers to the energy levels, so that we can classify
the spectrum into sequences. For this step,we use the diabatic
correlation diagram assignment method of Rose and Kellman.30

Figure 5. (a) Pattern of energy-level spacings for the uncoupled bend-
stretch system; (b) energy-level pattern excluding states localized in
the vinylidene well; (c) spacing pattern of the vinylidene states alone;
(d) patterns of panels b and c superimposed.

(ns, nb)0 ) ψns
(x)ψnb

(φ) (14)
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We start with the precisely defined quantum numbers of the
uncoupled system. We then gradually turn on the coupling,
carrying the zero-order quantum numbers along the diabatic
curves of the correlation diagram. The intuitive expectation is
that the character of the states does not change too rapidly as
the coupling is turned up, so that the zero-order quantum
numbers retain some physical meaning as the coupling is
increased. This expectation rests partly on prior favorable
experience in both direct applications of the method30-33 and
in related work where correlation diagrams are used.9,12,13The
test of utility here is whether the procedure uncovers meaningful
patterns in the fully coupled system.

6.2. Energy-Level Patterns.After approximate effective
quantum numbers have been assigned to the states of the coupled
system, we arrange the levels into sequences (ns, nb), analogous
to those of the uncoupled system with quantum numbers
(ns, nb)0 in Section 5, and also making use, where appropriate,
of the various quantum numbersns, nA, nV, nAB, nA

AB, andnV
AB,

analogous to the zero-order counterparts that were described
previously. We examine the patterns of energy-level spacings,
analogous to Figure 5; the results are shown in Figures 6-9
for sequences with various values of the effective stretch
quantum number (ns ) 0-3). We were readily able to assign
these sequences using the correlation diagram technique. Even
up to ns ) 5, we were able to assign all the acetylene and
vinylidene levels below the barrier, except possibly one.
However, the assignments became unmanageable above the
barrier, showing the limits of the diabatic correlation diagram
technique when the degree of chaos is too high. (See discussion
in Section 3 and the classical surfaces of the section shown in
Figure 3.)

Figure 6 showsns ) 0, with panels a and b analogous to
panels b and c in Figure 5. Evidently, the patterns of the
uncoupled and coupled systems are essentially similar, which
confirms the basic hypothesis with which we started this
investigation. However, there is apparently some “bumpiness”
in the pattern above the barrier. This phenomenon is visible
repeatedly in Figures 7-9. The irregularities persist and
generally grow in magnitude with increasingns; the figures show
bumps both above and below the barrier. It will become clear
that these irregularities signal important dynamical information.

7. Decoding the Spectral Patterns

We will start with familiar ideas from molecular vibrational
spectroscopy and, motivated by concepts from kinetic theory,
we will attempt to extend these to encompass the fact that an
isomerizing system is involved in our study. The main idea from
molecular spectroscopy is the notion of Fermi or anharmonic
resonance. We will classify the anomalies in Figures 6-9 and
interpret several exemplary cases, highlighting the association
with resonances. The basic concept from the kinetic theory of
unimolecular reactions46 is to treat the isomerization process
as the formation of an activated formA† of the energized
acetylene speciesA*, followed by the transition to vinylidene:

where the above-barrier form AB is considered to be the
activated speciesA†, andA* is an energized acetylene molecule
with energy sufficient to formA† but not properly localized in
the reaction coordinate.

Figure 6. Energy-level spacing patterns for the coupled system with
ns ) 0 stretch quanta. Panels a and b parallel panels b and c of the
uncoupled system in Figure 5. The spacing marked with an asterisk
(*) is involved in a cross-barrier, resonance-type coupling, as described
in Section 7.2.

Figure 7. Energy-level spacing patterns for the coupled system with
ns ) 1 stretch quanta. Panels a and b parallel panels b and c of the
uncoupled system in Figure 5. The spacing marked with an asterisk
(*) is involved in a cross-barrier, resonance-type coupling, as described
in Section 7.2.

A* h A† h V (15)
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7.1. Fermi Resonance of Acetylene.First, we consider a
spectral anomaly that has been interpreted in terms of ordinary
Fermi resonance coupling among zero-order below-barrier
acetylene states. In comparing Figure 5 for the zero-order system
with Figure 9 for the coupled system withns ) 3, a “wave” of
slightly displaced states (ns, nA) is visible below the barrier.

In examining the eigenvectors of these states, we find that
there is strong mixing of zero-order states that are connected
by couplings of the form 4:1 and 2:1, i.e., exchanging 4 or 2
quanta of acetylene bend, respectively, for 1 quantum of stretch.
This coupling is consistent with what we know of the classical
dynamics of the system. To the lowest order, the coupling eq 3
has the form of a 2:1 coupling. Furthermore, the two lowest-
energy surfaces of the section in Figure 3 have prominent 4:1
resonance zones, which is expected because the system tunes
into a frequency ratio of∼4:1 between the stretch and the bend
in the upper half of the bend potential, as noted in Section 4.1.
The 2:1 and 4:1 resonances, and their interplay, were also
investigated extensively by Child and Jacobson in their study
of the spherical pendulum model of isomerization.34,35

However, the strong 4:1 mixing of the zero-order states is
not yet analogous to what is generally meant by Fermi
resonance. In molecular spectroscopy, the “zero-order” states
of the diagonal portion of an effective fitting Hamiltonian are
strongly mixed states in terms of any simple basis, such as our
zero-order basis. Instead, the spectroscopic zero-order states are
akin to our diabatic states outside regions of a strong avoided
crossing. The effective quantum numbers (ns, nA) from the
diabatic assignments are then similar to the zero-order quantum
numbers of a spectroscopic Hamiltonian.

To establish that the displaced states are associated with 4:1
Fermi resonance in the spectroscopic sense, we place sets of
states from sequences with differentns numbers into 4:1 Fermi

polyads of levels with a common polyad number ofP ) 4ns +
nA. Figure 10 shows the energy-level spacings of a 4:1 polyad
of states with effective quantum numbers of (1s, 22A),(2s, 18A),
..., (6s, 2A), all of which have a polyad numberP ) 26. Figure
10 displays a dip in the energy-level spacings, which is
characteristic7 of a separatrix. Now, the separatrix is associated
not with the potential barrier that we have been considering in
this paper, but rather with the dynamical barrier of a 4:1
nonlinear resonance.

It is also instructive to examine wave functions. Figure 11a
shows the wave function of the state with nominal quantum
numbers (ns, nA) ) (4s, 10A) from the diabatic assignment. The
nodal patterns are characteristic not of a state with quantum
numbers (4s, 10A)0, but rather of the stable periodic orbit of the
classical 4:1 Fermi resonance, superimposed on the figure.

Figure 8. Energy-level spacing patterns for the coupled system with
ns ) 2 stretch quanta. Panels a and b parallel panels b and c of the
uncoupled system in Figure 5.

Figure 9. Energy-level spacing patterns for the coupled system with
ns ) 3 stretch quanta. Panels a and b parallel panels b and c of the
uncoupled system in Figure 5.

Figure 10. Pattern of five energy-level spacings of the polyadP )
4ns + nA ) 26 of six states of the strong 4:1 resonance. The dip in the
spacings corresponds to the separatrix of the 4:1 resonance.
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Figure 11b shows the wave function of state (3s, 14A). The nodal
patterns track the unstable orbit of the 4:1 resonance.

Figures 6-9 show that, even with Fermi coupling, it is
meaningful to classify states into sequences that are assigned
with nominal effective stretch and bend quantum numbers
(ns, nA). We saw that these states could be further classified
into Fermi polyads, as in Figure 10, with the help of the
assignments. The presence of Fermi resonance is not surprising.
What is significant is that the diabatic assignment still gives a
sensible sequence classification and, in fact, helps to uncover
resonance through the detection of anomalies in the spectral
pattern. This demonstrated usefulness of the diabatic assignments
gives us confidence to apply it to novel situations that involve
coupling to above-barrier and isomeric species.

B. Cross-Barrier Coupling, A* T A†. Next, we consider a
spectral anomaly that has a much more interesting explana-
tion: as coupling of the excited acetylene speciesA* to the
activated complexA†. This can be interpreted as a type of
generalization of Fermi resonance. Consider the energy spacing
labeled by an asterisk (*) in Figure 7. This is the energy
difference between the states (ns, nA) ) (1s, 21A) and (1s, 22A),
and this value clearly is “bumped” up from the general pattern.
This observation means that the (1s, 21A) level is anomalously
low, the (1s, 22A) level is anomalously high, or both. As we
noted previously, the (1s, 22A) level, in fact, is disturbed by
4:1 Fermi resonance with other below-barrier states. How-
ever, in addition, examination of the eigenvector (1s, 21A) shows
a strong admixture of the zero-order above-barrier basis state
(0, 42AB)0

-. This zero-order state, by the method of counting
approximate above-barrier acetylene quanta of Section 4.1, is
also assignable with the very approximate quantum numbers
(ns, nA

AB)0 ) (0s, 27A
AB)0. Furthermore, if we look at the spacing

“*” between the states (ns, nAB)( ) (0, 42AB)- and (0, 43AB)+

in Figure 6, we find that it also is anomalously low. All this
information suggests a Fermi resonance-type coupling between
the acetylene state (1s, 21A) and the above-barrier state

(0, 42AB)- ≈ (0s, 27A
AB)0, exchanging 6 pseudo quanta of

acetylene bend for 1 quantum of stretch, which resembles a
resonance of order 6:1. The other anomalous “bumps” that are
apparent on both sides of the barrier in Figures 6-9 can be
interpreted in this way, with a resonance-type picture of the
coupling between the speciesA* and A†.

7.3. Isomerization and the Coupling to Vinylidene.A most
interesting question is whether the spectral patterns in Figures
6-9 and the quantum mechanical calculations from which they
resulted provide information about the isomerization process,
including the right-hand portionA† h V of the kinetic scheme
of eq 15. Unfortunately, this is not as easily determined as the
information that we have obtained of the Fermi resonance
between acetylene states and the cross-barrier resonance-type
interaction between acetylene and above-barrier states. The
reason is obvious in Figures 6-9. The vinylidene states in panels
b of the figures simply do not show the types of anomalies that
allowed us to reach our earlier conclusions. This is a reflection
of the weakness of the coupling of the vinylidene V species to
the A* and A† forms of the system. Relating the present work
on the A* h A† portion of the kinetic scheme of eq 15 to the
process A† h V will require more-subtle analysis of the quantum
states and classical dynamics of the coupled system and is
reserved for future investigation.

8. Summary and Conclusions

This paper has investigated the energy-level patterns in a
model of an isomerizing coupled stretch-and-bend system that
is intended to have some of the key features of a realistic model
of the acetylene-vinylidene isomerization. We have seen that
there are spectral patterns characteristic of the barrier, the
multiple minima, and above-barrier motion. The patterns are
obtained by classifying sequences in terms of approximate
effective quantum numbers, which are obtained by a diabatic
correlation diagram technique. The patterns are similar to those
obtained earlier for nonisomerizing systems with Fermi reso-
nance, which have phase space structure that is characterized
by a classical separatrix, or dynamical barrier. As the dynamical
barrier is approached from above or below, there is a charac-
teristic pattern of a minimum, or dip, in the spacing between
neighboring energy levels. In this study, we have found these
types of patterns in the stretch-bend sequences of the model
isomerizing system.

The patterns have anomalies or “bumps” in the energy-level
spacing that carry significant dynamical information about the
isomerizing system. Some of the anomalies are associated with
standard Fermi resonance couplings between below-barrier
states. Other anomalies are associated with a new type of cross-
barrier resonance-type coupling, similar to Fermi resonance, that
bridges below-barrier and above-barrier states, and takes the
system from an energetically excited state to an activated form.

These results suggest several directions for future work, two
of which we have mentioned. Most obviously, how to use the
interpretation of the energy-level patterns to obtain information
about the classical and quantum kinetics of the isomerization
reaction remains to be seen.

Second, it would be extremely interesting if one could build
a spectroscopic Hamiltonian, including resonances couplings
for an isomerizing system, similar to the Hamiltonians com-
monly used to fit lower-energy spectra. This is difficult because
of the need to incorporate the structures of both potential wells,
the above-barrier form of the molecule, and resonance couplings,
including the cross-barrier couplings that have been considered

Figure 11. Real portion of the eigenfunctions of two Fermi resonant
states: (a) state with nominal quantum numbers (ns, nA) ) (4s, 10A)
tracks the stable periodic orbit of the 4:1 resonance, superimposed,
and (b) state with nominal quantum numbers (ns, nA) ) (3s, 14A) tracks
the unstable periodic orbit of the 4:1 resonance.
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here. Some real progress has been made34,35 for two-mode
models which, however, are much less similar to the acetylene-
vinylidene system than the model studied here. The usefulness
of the quantum numbers used in the present work in interpreting
the dynamical meaning of the spectral patterns suggests that
quantum numbers such as these will be an essential component
of building a spectroscopic Hamiltonian for isomerizing systems.
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Appendix: Parameters of the Hamiltonian

In this Appendix, we indicate how we chose the values of
the parameters used in the stretch-bend Hamiltonian (eq 4; also
see eq 9).

We chose the mass parameterm for the stretch in eq 4 as the
reduced mass of the C-H system, having in mind a local C-H
stretch mode.

We obtained the Morse parameterD as the value of the C-H
bond dissociation energy in acetylene that was determined by
Habibollahzadeh et al.47 by density functional methods. We used
their value,D ) 135.5 kcal/mol) 47474.26 cm-1.

For the frequency of a local stretch mode,ωs, at the bottom
of the Morse potential, we use the average of the symmetric
and antisymmetric stretch frequencies for acetylene. The values
of ω1 ) 3501.537 cm-1 andω3 ) 3417.644 cm-1 were obtained
from the work of van der Pals et al.,48 so we haveωs ) 3459.59
cm-1.

The Morse parameterâ relates to the massm, dissociation
energyD, and harmonic frequencyωs through the equation

ωs ) x2Dâ2/m, from which we get the valueâ ) 1.86288×
1010 m-1.

We define the moment of inertia in eq 4 asI ) mHr0
2, by

considering the bend in terms of an H atom rotating rigidly
about the rest of molecule, which is treated as a fixed object.
We considerr0 to be the length of the C-H bond at equilibrium.
From the ab initio calculation of Chang et al.49 for acetylene,
we getr0 ) 1.063 Å.

Determination of a value for the stretch-bend coupling
parameterκ in eq 4 is rather complicated and occupies the rest
of this Appendix. For small-amplitude motion, we haveκr sin2

φ ≈ κrφ 2, the form that would give a 2:1 Fermi resonance
coupling. Quantum mechanically, the stretch coordinater and
bend coordinateφ are related to their raising and lowering
operators by

The coupling term can then be approximated as

Now, consider the matrix element between states|ns, nb〉 )
|1, 0〉, |0, 2〉:

From this relation, we get

We chooseωφ to represent the average of the actual cis- and
trans- bend frequencies for acetylene (not the frequency of the
model bend potential (eq 1), which only roughly approximates
the experimental bend frequency). From the work of van Ede
van der Pals and Gaspard,48 ωφ ) (ω4 + ω5)/2 ) 684.23 cm-1.

To get a value forκ, we must now get a reasonable value for
∆E. For guidance, we make use of the analysis of Sibert et
al.40 of the kinetic energy coupling between a stretch and a bend;
we believe that this is the predominant contribution to the
stretch-bend coupling in linear molecules such as acetylene.
To lowest order, this coupling gives matrix elements of 2:1 form
between the stretch and the bend, in a manner that is very similar
to the aforementioned approximations regarding the coupling
(eq 3).

Sibert et al.40 analyzed triatomic molecules, and, of course,
acetylene is a four-atom molecule. To estimate the coupling,
we treat it as if it were a linear ABA molecule with A
representing the H atom and B representing the C atom pair as
if they were a single atom. We then follow the procedure used
in ref 40 for CO2.

The vibrational Hamiltonian for the triatomic molecule is

wherex1 andx2 are the displacement coordinates of the H atoms,
and x3 is a bend coordinate that is defined asπ minus the
H(CC)H angle (x3 ) φ), where (CC) indicates that we treat the
carbon atom pair “CC” as a single atom. Thegij terms for
i, j ) 1, 2, 3 are elements of theg-matrix,50 which is related to
the inverse effective masses. Thegij terms are coordinate-
dependent. By expandinggij around the equilibrium coordinates
xi ) 0 and keeping the lowest order, the kinetic energy
Hamiltonian can be written as

with

wheres ) (x1 + x2)/x2 is the symmetric stretch coordinate,φ

is the bend coordinate (φ ) x3), ps andpφ are their conjugate
momenta,g33

0 ) g33(0) ) 2µH/r0
2 + 4µCC/r0

2, µH is the inverse
mass of the H atom,µCC is the inverse mass of the (CC) carbon
pair, and finallyr0 is the length of the H-C bond at equilibrium.

We treatT1 as the coupling of stretch and bend harmonic
oscillators with frequenciesωs and ωφ. To calculate the
contribution ofT1 analytically, we write the coordinates and
momenta in eq A8 in terms of the raising and lowering operators
as

∆E ≡ 〈1, 0| κr sin2
φ |0, 2〉 ≈ κ x p

2mωs
( p
2Iωφ

)x2 (A3)

κ ≈ xmωs

p (2Iωφ

p )∆E (A4)

H )
1

2
∑
i,j

3

gijpipj + V(x1, x2, x3) (A5)

T ) T0 + T1 (A6)

T0 ) 1
2

µHps
2 + 1

2
g33

0 pφ
2 (A7)

T1 ) (x2µCC

r0
)φpφps - (x2g33

0

2r0
)spφ

2 (A8)

r ≈ x p
2mωs

(ar
† + ar)

φ ≈ x p
2Iωφ

(aφ
† + aφ) (A1)

κr sin2
φ ≈ κrφ2 ) κx p

2mωs
( p
2Iωφ

)(ar
† + ar)(aφ

† + aφ)
2

(A2)
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where matrix elements of the raising and lowering operators
are assumed to have the standard quantum number dependence
of harmonic oscillator eigenstates, but are obtained between
eigenstates of the anharmonic stretch and bend, hence the
approximate equalities. The terms inT1 then become

For ωs ) 3459.59 cm-1 ) 6.505× 1014 Hz, ωφ ) 684.23
cm-1 ) 1.2865× 1014 Hz, andr0 ) 1.063 × 10-10 m, the
matrix elements between states|1, 0〉 and |0, 2〉 for the two
terms are given by

Therefore,

Taking into account the double degeneracy of the bend (in the
real acetylene molecule, not our two-mode model), the total
contribution of the kinetic coupling is (see eq 3.6 of ref 40)

Substituting∆E ) x2 〈1, 0|T1|0, 2〉 = 45.11 cm-1 into eq A4,
we get the value for the coupling parameterκ in the Hamiltonian
eq 5:

with m-1 denoting a true reciprocal length and cm-1 a unit of
energy. The value ofAsb in the classical Hamiltonian eq 6, using
â, which was previously determined in this Appendix, is then
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s≈ xpµH

2ωs
(as

† + as)

ps ≈ ixpωs

2µH
(as

† - as)

φ ≈ xpg33
0

2ωφ

(aφ
† + aφ)

pφ ≈ ixpωφ

2g33
0

(aφ
† - aφ) (A9)

(x2µCC

r0
)φpφps )

-
pµCC

2r0 xpωs

µH
(aφ

† + aφ)(aφ
† - aφ)(as

† - as) (A10)

- (x2g33
0

2r0
)spφ

2 )
pωφ

4r0 xpµH

ωs
(as

† + as)(aφ
† - aφ)

2

(A11)

〈1, 0|(x2µCC

r0
)φpφps|0, 2〉 = 9.50 cm-1

〈1, 0| -(x2g33
0

2r0
)spφ

2|0, 2〉 = 22.40 cm-1

〈1, 0| T1| 0, 2〉 = 31.90 cm-1

x2 〈1, 0| T1| 0, 2〉 ≈ 45.11 cm-1

κ ≈ 2.031375× 1014 m-1 cm-1

Asb ) κ

â
) 10904.4 cm-1
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