
Nonadiabatic Dynamics of Excited Hg(3P1) in Ar Matrixes †

Germán Rojas-Lorenzo and Jesu´s Rubayo-Soneira
Departamento de Fı´sica General y Matema´ ticas, Instituto Superior de Ciencias y Tecnologı´a Nucleares,
La Habana, Cuba

Sebastián Fernández Alberti*
Centro de Estudios e InVestigaciones, UniVersidad Nacional de Quilmes, Roque Sa´enz Pen˜a 180,
Bernal (B1876BXD), Argentina

Majed Chergui
Institut de Physique de la Matie`re Condense´e, Facultédes Sciences, BSP, UniVersitéde Lausanne,
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The absorption and emission spectra of the3P1-1S0 transition of a Hg atom embedded in solid argon have
been simulated using the molecular dynamics with quantum transitions algorithm to consider the nonadiabatic
transitions between the three adiabatic states. The simulations also take into account the zero-point fluctuations
at the experimental temperature of 4 K using a temperature correction that mimics them. The simulated
spectra show fair agreement with the experimental data for the absolute energies and very good agreement
for the absorption-emission Stokes shift. The absorption band consists of the contribution due to absorption
of the three degenerate atomic states. The simulations of the emission spectrum, with inclusion of nonadiabatic
couplings, lead to a single emission band stemming from the lowest adiabatic surface. When running the
simulations without consideration of the nonadiabatic coupling, the simulated absorption and emission spectra
exhibit three bands separated by hundreds of cm-1, in total disagreement with the experiment. This shows
that photoexcitation of Hg(3P1) in Ar matrixes is characterized by the medium-induced nonadiabatic couplings
among its adiabatic states.

I. Introduction

The study of open-shell atoms in rare gas solids allows the
exploration of the effect of solvents on the dynamics of the
electron orbital. This issue is of importance in the case of the
P states of atoms, as electronic degeneracies or near degeneracies
arise, with the possibility of a breakdown of the Born-
Oppenheimer approximation. The nature of P states of atoms
in rare gas solids has been addressed mostly by electronic
spectroscopy (absorption and luminescence) in the case of pure
electronically excited rare gas solids1 and, mainly of metal
atoms, such as Mg,2 Zn,3 Hg,4-7 Cd,8 alkali atoms,9,10 Au,11

and Ag.12

Over the past few years, Hg-rare gas as van der Waals
complexes or as matrixes has emerged as a model system for
the study of state splittings and nonadiabatic couplings due to
the local environment around the Hg atom, thanks to detailed
electronic spectroscopic studies in both absorption and emission
studies. In the Hg-Rg complexes, the excitation region of the
Hg(3P1-1S0) transition shows two distinct bands, one red-shifted
(labeled A) and the other blue-shifted (labeled B), with respect
to the atomic line. The former has been assigned to the electronic
state associated with the projectionΩ ) 0 of the Hg electronic
angular momentumJ ) 1 onto the interatomic axis, whereas
the blue-shifted component has been assigned to the degenerate

Ω ) (1 states.13-16 From the analysis of these spectra, inter-
atomic potentials were determined for the ground and the A
and B excited states of the Hg-Rg (Rg) Ne, Ar, Kr, and Xe)
potentials. These empirically determined interactions were used
to model the potential surfaces of Hg-Rgn clusters.17,18 In this
case, the ground-state potential surface correlating asymptoti-
cally to Hg(1S0) is simply written as the sum of pairwise
interactions. For the excited-state Hg(3P1) involving an electronic
angular momentum different from zero, the quantization axis
cannot be defined simultaneously along each Hg-Rg bond
(except in the case of a collinear configuration). If one chooses
a particular quantization axisZ in the molecular frame to which
the electronic wave functions|J,Ω〉 are referred, the A- and
B-state wave functions for a particular Hg-Rg pair will be
mixed by the axis-switching rotation, which brings the Hg-Rg
bond onto the quantization axis. The result of this mixing is
that the excited-state potential energy surface is no longer the
sum of individual A (or B) interactions. In addition, off-diagonal
matrix element of the electronic Hamiltonian is generated. This
diabatic potential energy matrix can then be diagonalized for
each nuclear configuration to obtain the adiabatic potential
energy surfaces and the corresponding nonadiabatic couplings.
It is therefore possible to calculate the complete manifold of
electronically excited potential energy surfaces and the inter-
electronic couplings for clusters of any size. In doing so, one
neglects the three-body and higher-order interactions and
assumes that the properties of the electronic angular momentum
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Je are conserved within the complex. Zu´ñiga et al.18 applied
this procedure to the analysis of the fluorescence-excitation
spectrum of a Hg-Ar2 complex16,19,20 and obtained good
agreement with the experimental data.

The spectroscopy of Hg-doped-rare gas solids in the region
of the Hg(3P1-1S0) transition has been investigated in detail
by Crépin and Tramer4 and Helbing et al.7 Featureless bands
progressively blue-shifted with respect to the gas phase were
observed in Ar and Kr matrixes, while the absorption band in
solid Xe exhibited a triplet structure. The emission spectra
showed a weak Stokes shift and a near mirror image between
absorption and emission bands in Ar and Kr, whereas the Stokes
shift and the emission band were much larger in solid Xe.

Assuming additivity of pair potentials and a rigid lattice model
with 18 rare gas atoms, Cre´pin and Tramer4,6 qualitatively
interpreted the absorption and emission spectra of Hg-doped-
rare gas matrixes, suggesting that excited Hg atoms are little
displaced from their ground-state equilibrium position in Ar or
Kr matrixes, while they tend to form a 1:1 complex with a Xe
atom in solid Xe. In so doing, they considered only two possible
deformations of the matrix: either a totally symmetric breathing
of the cage or a displacement of the Hg atom from its central
position. McCaffrey and co-workers applied a similar approach
with more accuracy to the case of the absorption and emission
spectra of Cd and Zn atoms in rare gas matrixes.8,21To interpret
the emission, they introduced characteristic deformations of the
matrix atoms such as 4-atom or 6-atom “body” and “waist”
modes in a static fashion, i.e., by minimizing the total energy
along a specific deformation coordinate.

Although these approaches are useful in delivering insight
on the spectroscopy, they cannot provide the details of the
relaxation dynamics of the system under study. One of the
reasons is that they do not consider the nonadiabatic couplings
among the degenerate Hg states. The procedure used by Beswick
and co-workers18 for Hg-Rgn complexes, combined with
molecular dynamics simulations, contains all the ingredients that
are needed to treat the case of electronically excited Hg atoms
in rare gas matrixes (see below). Indeed, not only does it provide
the diagonal matrix elements (i.e., the energies), but it also
provides the nondiagonal ones that are essential for the interstate
couplings, which govern the energy relaxation pathways of the
system and are caused by nonadiabatic couplings. In particular,
a real-time picture of the energy relaxation process and the
accompanying structural changes in the matrix would provide
much insight into the way energy is funneled within the system
and from the impurity to the lattice.

The issue of nonadiabatic effects in the dynamics of atomic
impurity-doped rare gas solids as models for condensed-phase
nonadiabatic dynamics has been the center of much interest over
the past few years. Gerber and co-workers22 have treated
semiclassically the dynamics of nonadiabatic transitions between
degenerate electronic states originating from the ground-state
(P-type) F atoms in rare gas solids. They found that the p orbital
reorientation dynamics occurs at very short time scales (tens of
fs) and is dominated by nonadiabatic mechanisms. In addition,
lattice vibrations of particular symmetry are effective in inducing
the p orbital reorientation. Ideally, such calculations can be
effectively tested by comparison with the absorption and
emission spectra of the species of interest. This was not possible
in the case of F atoms because the simulations by Gerber and
co-workers concerned only the ground state; their main interest
was to address the issue of chemical reactions in the condensed
phase. Previously, Last et al.23 had generated the excited states
of the Cl impurity in solid Xe using the DIM (diatomics-in-

molecule) method and calculated its absorption spectrum.
Schwentner and co-workers12 investigated the steady-state
spectroscopy and ultrafast relaxation dynamics of silver atoms
in Xe matrixes. In this case, the s-p excitation of the Ag atom
leads to a dynamics Jahn-Teller effect, which in addition to
the spin-orbit coupling, removes the degeneracy of the p state.
Potential surfaces for the 5s and 5p states in the vibrationally
distortedOh symmetry of the Xe matrix were constructed by a
numerical diagonalization of the Hamiltonian, using parameters
derived from the absorption and emission spectra. Only two
deformation modes were considered for the calculation of the
Stokes shift, and good agreement with the experiment was
found.12 Although such calculations8,12,21 do provide a lot of
insight into the relaxation process, they impose restrictions to
the system in terms of deformation type and do not deliver time
scales for the process.

The purpose of the present paper is to simulate the absorption
and emission spectra of Hg atoms in Ar matrixes, using the
procedure used in refs 17 and 18 and the molecular dynamics
with quantum transitions (MDQT) method developed by
Tully24,25to treat the nonadiabatic transitions between the states.
In that sense, no restrictions are imposed on the system, and
the deformations and time scales inherent to the relaxation
process are found by the energy minimization of the system.

II. Methodology

II.A. The MDQT Method. Briefly, the MDQT method treats
the electronic degrees of freedom quantum mechanically,
whereas the motions of the nuclei are treated classically. The
nuclei evolve on a potential energy surface (PES) that is defined
by a single electronic state at a given time. Hops from one
electronic state to another are governed by the coefficients of
the electronic wave function.

In the present work, the electronic wave function is written
as:

where r and R are the electronic and nuclear coordinates,
respectively, andφi(r;R) is the eigenstate of the electronic
HamiltonianHHg-Ar with energyEi(R),

The coefficientsci(t) evolve in time according to

where

is the nonadiabatic coupling vector.
II.B. Potential Energy Surfaces and Couplings.The3P state

of mercury splits into two states in the Ar-Hg complex,3Π
and 3Σ, differing by the projection of the excited orbital onto
the interatomic axis and by their bonding energies. The further
mixing due to the spin-orbit coupling gives rise to theA(0+)
) |3Π〉 and theB(1) ) (|3Π〉 + |3Σ 〉)/2 stationary states. The
A state is allocated to the|J ) 1,Ω ) 0〉 electronic state
associated with the projectionΩ ) 0 of the mercury electronic
angular momentumJ ) 1 onto the interatomic axis. Cor-
respondingly, theB state is allocated to the|J ) 1,Ω ) (1〉
state of the complex. Their potential curves,VA(R) andVB(R),

ψ(r,R,t) ) ∑
i

ci(t)φi(r;R) (1)

HHg-Ar(r;R)φi(r;R) ) Ei(R)φi(r;R) (2)

ipc̆i(t) ) ci(t)Ei - ip∑
j

cj(t)Ṙdij (3)

dij ) 〈φi(r;R)|∇Rφj(r;R)〉 (4)
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have been deduced experimentally13-17 and are represented by
the Morse pair potentials along with ground-state potentialVx.
The potential parameters13-18,26 we used are given in Table 1,
and the resulting potential curves are shown in Figure 1. Using
the J,Ω basis seems more realistic because of the important
spin-orbit coupling in Hg-Ar.

The total interaction Hamiltonian,HHg-Ar, for the ground
electronic state correlating asymptotically to Hg(1S0) is written
simply as the sum of pairwise interactions. However, as already
mentioned, this cannot be applied to the excited states involving
an electronic angular momentum different from zero (e.g.,
Hg(3P1)) where the quantization axis cannot be defined simul-
taneously along each Hg-Ar bond. To this end, we follow the
model proposed by Beswick et al.:18,27 |J,Ω〉Z denotes the
electronic wave functions of the mercury atom with projection
Ω on axisZ and |J,Ω〉Zk is the corresponding wave function
with projectionΩ on the Hg‚‚‚Ark axis. Equation 5 shows the
transformation

whereDΩΩ′
J* (φk,θk,0) is the Wigner rotation matrix andθk and

φk are the polar angles that define the orientation of the particular
Hg‚‚‚Ar, with respect to axisZ. The matrix elements of the
Hg‚‚‚Ark diatomic HamiltonianHHg-Ark in the|J,Ω〉Z representa-
tion is written as

where

are the potentials denoted asVA andVB (Figure 1).

This procedure is repeated for each Hg‚‚‚Ar bond in the whole
system, leading to nondiagonal elements in the total electronic
Hamiltonian of the system. The total electrostatic interaction
Hamiltonian of Hg atom withnAr argon atoms in the solid is
written as:

We then diagonalize the resultingdiabaticmatrix of HHg-Ar to
obtain the adiabatic energies Ei of eq 2. The practical
implementation of this procedure is given in the Appendix and
is equivalent to the one proposed by Batista and Coker.28,29

Our treatment is limited to energies and does not consider
the transition dipoles for the differentΩ states. The aim of this
work is to stress the role of nonadiabatic couplings in the
description of the energetics of the system at the beginning
(absorption), during, and end (emission) of the structural
relaxation process. Although a full treatment should also include
a simulation of the intensities, it does not affect the emission,
which stems from only one state (see below), and its effect on
the absorption spectrum is not significant, as we will see below.

II.C. Molecular Dynamics Simulations. The calculations
described in this work were carried out with minimum image
convention for a system composed of 1 Hg atom and 499 Ar
atoms. The number of Ar atoms corresponds to a box large
enough to avoid size effects, at least at the short time scales of
the dynamical simulations. The Hg atom was initially placed
at a monosubstitutional site of the argon matrix.

As the first step in our calculations, the system was
equilibrated in the electronic ground state for 400 ps at an
effective temperatureT′. The last 200 ps were used to collect a
set of initial positions and momenta for the subsequent simula-
tions in the excited states. The stored configurations fulfill the
classical Franck principle for the electronic transition atλexc )
246 nm from the ground state to one of the three possible
adiabatic excited states defined by eq 2 and asymptotically
correlated to Hg(3P1). At this energy, each excitation event is
found to reach one of these states. In fact, the population
produced in the three states by all the excitation events remains
constant.

One hundred trajectories of 10 ps each were run from these
initial configurations by Franck-Condon switching to each of
the three excited states. The propagation time was sufficient to
achieve a convergence of the final electronic state populations
in time. To represent the vibrational amplitudes of the Ar atoms,
we adjusted their velocities to an effective temperatureT′. The
effective temperature is chosen in such a way that the classical
probability distribution for a harmonic oscillator matches the
quantum probability distribution in the limitp f 0 and is given
by the equation:

where the experimental temperature isT ) 4 K4,7 andpω ) 67
cm-1, yielding T′ ) 49 K. Indeed, at constant temperature and
for harmonic oscillators (our case), we simulated a canonical
ensemble whose classical distribution matches the quantum
distribution. This way of introducing quantum corrections (the
so-called thermal harmonic quantum correction) in the classical
treatment was first proposed by Bergsma et al.,30 and it is
commonly and successfully used in molecular dynamics simula-
tions of photoinduced processes of small molecules in the rare

Figure 1. Potential energy curves of Hg-Ar for the ground state and
the A andB excited states, denoted byVx, VA, andVB, respectively.18

TABLE 1: Hg -Ar and Ar -Ar Potential Parameters

Do (cm-1) â (Å-1) re (Å)

Ar-Hg(3P1) VB
18 51.57 1.116 4.66

Ar-Hg(3P1) VA
18 353.63 1.541 3.34

Ar-Hg(1S0) Vx
18 130.25 1.448 3.98

ε (cm-1) σ (Å)

Ar-Ar26 366.96 3.39

|J,Ω〉Z ) ∑
Ω′

DΩΩ′
J* (φk,θk,0)|J,Ω′〉Zk

(5)

〈J,Ω′|HHg-Ark|J,Ω′′〉Z ) ∑
Ω

DΩ′Ω
J (φk,θk,0)DΩ′Ω

J* (φk,θk,0)VΩ(Rk)

(6)

VΩ(Rk) ) 〈J,Ω|HHg-Ark|J,Ω〉Zk
(7)

HHg-Ar ) ∑
k ) 1

nAr

HHg-Ark (8)

T′ ) pω
2kB

(tanh( pω
2kBT))-1

(9)
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gas matrixes.31-33 Nevertheless, to estimate the role of this
correction in the simulated spectra, we will also present our
simulations at an effective temperature ofT′ ) 4 K.

The equilibration of the system at the desired temperatureT′
is performed using the velocity method34 in which velocities
are scaled at each time step by a factorλ defined as

where ∆t is the time step,T the current temperature of the
system, andT′ the target temperature. A relaxation constant,τ
of 0.4 ps, was used. This value was chosen to ensure that the
simulations were run at constant temperature.

III. Results and Discussion

We have performed simulations of the excitation process of
Hg atom in a cryogenic argon matrix at 246 nm, which is
associated with the Hg(3P1-1S0) transition. The MDQT method
was used in the adiabatic representation of the excited electronic
states, i.e., the nuclei move on potential energy surfaces obtained
from eq 2. However, the MDQT method is valid for both
adiabatic or diabatic representations.35 We could choose diabatic
potential energy surfaces given by the diagonal terms of the
HAr-Hg diabatic matrix (see section II.B., paragraph 2). The
advantage of using one representation or the other depends on
the relative strength and persistence through time of the diabatic
HAr-Hg nondiagonal terms and adiabatic couplings (eq 4). Both
representations have been used in this work.

Figure 2 shows the average overall trajectories of thedia-
baticcouplings among the|J ) 1,Ω ) 0〉, |J ) 1,Ω ) +1〉, and
|J ) 1,Ω ) -1〉 states as a function of time. The description
in terms ofdiabatic states, which are defined in the diatomic
frame, is however still valid in the matrix. Indeed, what is shown
in Figures 2 and 3 is the projection of the adiabatic states of
the matrix on the diabatic states of the diatom. In Figure 2, it
can be seen that the couplings among diabatic potential energy
surfaces persist at all times so that nonadiabatic transitions are
possible throughout the duration of the dynamics. As a matter
of fact, the population of the individual diabatic excited states
fluctuates close to∼33%, as can be seen from Figure 3. Tully
et al.36 pointed out that this situation leads to an unsatisfactory
performance of the MDQT algorithm. Whenever the couplings
among potential energy surfaces do not vanish for arbitrarily
long times, MDQT introduces nonphysical loss of coherence.
In principle, if the electronic population is plotted as a function

of time, one should observe oscillations of the population due
to its exchange caused by the nonadiabatic couplings. However,
MDQT fails in this case, as it shows damped oscillations, which
are attributed to the fact that the different trajectories exhibit a
different history of random hops, causing the ensemble to lose
coherence over time, in the sense that the phase of the electronic
coefficients is lost.

On the other hand, the nonadiabatic couplings decrease very
fast during these dynamics. This can be seen in Figure 4, where
we plotted the average overall trajectories of thenonadiabatic
couplings vectors (eq 4) as a function of time. The levels 1, 2,
and 3 are associated with the different adiabatic states in
ascending order of energy. Except for thed23 coupling vector,
the others are relatively insignificant beyond the first ps of the
dynamics. The spiking behavior is due to the fact that levels 2
and 3 are almost degenerate, or at least that the coupling
parameter is larger than their energy separation (see also Figure
7). Furthermore, thed23 coupling vector does not play a
significant role in the dynamics at longer times because the
entire population is located in adiabatic level 1 after∼1 ps of
the dynamics. This is shown in Figure 5, which displays the
populations of adiabatic excited states as a function of time.
The averages overall trajectories starting at the adiabatic states
1, 2, and 3 are shown in frames a, b, and c, respectively. All
the trajectories end up in state 1, which is the lowest-energy
state, in less than 1 ps. Starting on state 2 leads to a relaxation
of the population to state 1 on the time scale of 100 fs. Starting
on state 3 leads to a rapid relaxation to state 2 on a similar time

Figure 2. Average overall trajectories of the diabatic couplings vectors,
〈J ) 1,Ω|HHg-Ar|J ) 1,Ω′〉, as a function of time.

λ ) [1 + ∆t
2τ (T′

T
- 1)]1/2

(10)

Figure 3. Population of the excited diabatic states as a function of
time.

Figure 4. Average overall trajectories of the adiabatic couplings vectors
dij, as a function of time. The states 1, 2, and 3 are associated with the
different adiabatic states in ascending order of energy.
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scale, which then feeds the population to state 1. There seems
to be little or no relaxation from state 3 to state 1, in agreement
with the vanishingly small adiabatic coupling vectors (Figure
4). Thus, this situation can suitably be treated with the MDQT
method in the adiabatic representation.

Figure 6b shows the resulting absorption and emission spectra
resulting from our simulations. Both spectra were calculated as
the histograms of energy differences between the initial (ground
state for absorption, excited adiabatic states for emission) and
the final state or states (excited adiabatic states for absorption,
ground state for emission), which implicitly takes into account
the instantaneous gradient of the excited-state potential. The
equilibration of population in the ground state shows that the
matrix has a cage radius of∼3.8 Å, which means that the lattice

structure of solid Ar is not perturbed by the presence of the
impurity. Because the absorption spectrum consists of transitions
from the ground state to the three degenerate diabatic states (J
) 1, Ω ) 0, (1), we show the decomposition of the absorption
band in three subbands corresponding to the latter. In the case
of the emission spectrum, the final configurations resulting from
simulations in the excited states were considered. These
simulations obviously include the nonadiabatic coupling and
result in the lowest state 1 being populated (Figure 5). The
experimental spectra of Hg in solid Ar obtained by Cre´pin and
Tramer4 are shown in Figure 6c. We also show in Figure 6a
the spectra simulated at an effective temperature of 4 K. The
energies at band maxima, absorption-emission Stokes shifts, and
bandwidths from the experiment and the present work are
compared in Table 2. Although a fair agreement is achieved
for the absolute energies with the simulations showing a red-
shift of 200-300 cm-1 with respect to the experiment, good
agreement is obtained for the absorption-emission Stokes shift.
However, overall, the simulations atT′ ) 49 K give a better
agreement with the experiment. This is more so when we come
to the bandwidths, which are too narrow atT′ ) 4 K. However,
the bandwidths are larger by 20-30% than the experiment in
the simulations atT′ ) 49 K. As mentioned above, the emission
band consists of the contribution of the lowest excited adiabatic
level 1 alone, because all trajectories terminate in this state.
However, the expansion of this adiabatic state onto the diabatic
basis reveals it to be a mixture of the three different diabatic
states (consistent with Figure 3). Although the electronic
population of diabatic states remains significant for long times
in all the states, the electronic population of the adiabatic states
quickly flows into a single state. The trajectories get trapped in
the minimum of the level 1 within the first ps of dynamics
(Figure 5).

Figure 7 shows the adiabatic PES obtained from eq 2 using
〈JΩ|HHg-Ar |J′Ω′〉 matrix elements given by eq 6. They are
obviously very different from the PES of the isolated Hg-Ar
complex (Figure 1) and are also strongly coupled, underlining
the influence of the environment on the electronic states of the
Hg-Ar system.

To stress the importance of the couplings between the
different excited states correlating asymptotically to Hg(3P1),
we have also performed the simulations in the adiabatic
approximation, i.e., without considering any coupling among
states. This means we start off with the gas-phase potential
curves of Figure 1 and add the contribution of the Ar
environment by pairwise summation of Hg-Ar and Ar-Ar
interactions. Figure 8a shows the resulting simulated absorption
spectrum which, as expected, is the same as in Figure 6b,
because the ground state is projected onto the three excited
degenerate states regardless of whether they are coupled.
However, the emission spectrum (Figure 8b) is very different
and exhibits three bands, in complete disagreement with the

Figure 5. Populations of adiabatic excited states as a function of time.
The averages over trajectories starting at the different adiabatic states
1, 2, and 3 are shown separately in a, b, and c, respectively.

Figure 6. Simulated absorption and emission spectra at effective
temperatures of 4 K (a) and 49 K (b), compared to the experimental
absorption and emission bands (c) in the energy region associated to
the Hg(3P1-1S0) transition. The decomposition of the absorption band
in its three quasi-degenerate components (see text) is also shown.

TABLE 2: Comparison of the Experimental and Calculated
Absorption and Emission Energies (E) and of the
Corresponding Line Widths (Γ)a,b

experiment4
simulation
T′ ) 49 K

simulation
T′ ) 4 K

Eabs 40 650 40 372 40 299
Γabs 430 560 131
Eems 39 940 39 675 39 663
Γems 400 480 209
∆EStokes 710 697 636

a ∆EStokes is the absorption-emission Stokes shift.b All entries in
cm-1.
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experimental data (Figure 6c) because the population funnels
down the three states, excluding the possibility of nonradiative
transitions among them, which are mediated by the nonadiabatic
couplings. This demonstrates strikingly that the photoexcitation
process of Hg(3P1) in a cryogenic argon matrix is a nonadiabatic
process where medium-induced couplings among different
electronic states must be considered.

The lowest excited adiabatic level 1 has a minimum at shorter
Hg-Ar distances than the other levels, in particular of the
ground state, so that at the end of the dynamics the cage should
experience a contraction, according to Figure 7. We have
analyzed in detail the trajectories of the matrix atoms and of
the Hg impurity. The results are not shown here, but we could
not observe a significant deformation of the cage because of
the large error bars which characterize the simulated trajectories.

A weak deformation is, however, in line with the weak Stokes
shift and the near-mirror image between absorption and emission
line shapes, which are experimentally observed, pointing to little
lattice reorganization around the impurity.

IV. Conclusions

The absorption and emission line shapes of the Hg atom in
rare gas matrixes have been, for the first time, simulated using
molecular dynamics with quantum transitions to take into
account the nonadiabatic transitions among the states correlating
to the3P1 state of Hg. The excited-state potential surfaces were
generated from the empirically determined Hg*-Ar pair
interactions by a procedure applied by Beswick and co-workers
to the case of Hg-Arn complexes.18 The absorption band
appears to be a triplet transition to the degenerate levels of the
3P1 atomic state. The simulations using the adiabatic potential
surfaces show that emission stems from only one adiabatic
potential surface, which is populated by nonadiabatic transitions
from the other two in less than 1 ps. The calculated absorption-
emission Stokes shift is in very good agreement with the
experimentally determined Stokes shift, but the absolute absorp-
tion and emission energies are systematically red-shifted by
about 300 cm-1. The origin of this discrepancy may be due to
the assumption of pairwise additivity in the matrix. As the
interaction between Hg and the rare gas atom increases, this
discrepancy should also increase, and a test of this conjecture
would be to apply the case of Kr matrixes. Indeed, in this case,
the spectra and the analysis made by Cre´pin and Tramer4,6

suggest a situation quite similar to solid Ar, except for the
stronger Hg-Kr interaction. Extending the simulations to the
case of Hg in solid Xe is a fascinating prospect as the
experimental data suggests a dramatic rearrangement of the local
structure with the Hg atom forming a complex with a Xe atom.
Similar results have been obtained for Ag in Xe matrixes, and
it would be interesting to test the generality of the process of
lattice relaxation.12 Work is now in progress to treat the case
of Hg atoms in Kr and Xe matrixes.
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Appendix

The transformation (eq 5) that leads to theHHg-Ark expressed
as indicated in eq 6 is implemented as a combination of axis-
switching double rotations:

A rotation from the electronic states defined in a reference
frame (Xk,Yk,Zk) with its Zk axis parallel to the Hg‚‚‚Ark bond
vector to the fixed reference frame (X′,Y′,Z′) of the laboratory
according to the transformation

with D the Cartesian rotation matrix

whereR is the angle of the Hg‚‚‚Ark vector with respect to the
X′ axis andâ is the angle between its projection in theY′Z′
plane and theY′ axis.

Figure 7. Adiabatic potential energy surfaces for the Hg-Ar inter-
action of Hg in an argon matrix as a function of the Hg-Ar distance.

Figure 8. (a) Absorption and (b) emission bands in the energy region
associated with the Hg(3P1-1S0) transition resulting from molecular
dynamics simulations using the adiabatic approximation, i.e., without
consideration of the couplings between the electronic states.

D[HHg-Ark]D-1 (A1)

D ) [sin(R) 0 cos(R)

-cos(â)cos(R) sin(â) cos(â)sin(R)

-sin(â)cos(R) -cos(â) sin(â)cos(R) ] (A2)
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A rotation ofHHg-Ark expressed in the fixed reference frame
(X′,Y′,Z′) to an arbitrary body fixed reference frame (X,Y,Z) (we
chose a reference frame with itsZ axis parallel to an arbitrary
Hg‚‚‚Ark bond vector) according to:

with D defined as (A2) and whereR andâ angles are the angle
of the Hg‚‚‚Ark chosen to define the reference frame with respect
to theX′ axis and the angle of its projection in theY′,Z′ plane
with the Y′ axis, respectively.
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