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The numerous theories of contact energy quenching are compared between themselves and with the theories
of remote electron transfer. The Stefviolmer constant used as a criterion is studied in the full range of
quencher concentrations and diffusion. When any one of these parameters is increased, diffusion-controlled
quenching gives way to kinetic control, although differently in the theories of contact and remote transfer.

I. Introduction ko. Then the concentration increase causes the transition from

Fluorescence quenching in solutions is usually carried out SMallxo ~ ko(1 + «/U_fd) to largeko.
by electron or energy transfer from excited donors to acceptors ~ This transition is similar to the transition from diffusional to
moving around, or vice versa. The main characteristic of the Kinetic control of electron transfer, which the “ideal” Stern
phenomenon is the relative quantum yield of the fluorescence, Volmer constankq(D) experiences with an increase in diffusion.

which obeys the famous Sterivolmer law1—3 The latter is given by one and the same eq 1.3 in all contact
approximations. Here we will demonstrate that in the encounter

- wa(t) dt/r = 1 (1.1) theory of_rer_note transfer changes S|m|Iar_Iy with diffusion,
0 1+ ckt although it differs more from its contact estimate the larger the

tunneling length is. Moreover, the concentration dependence
HereN(t) is the survival probability of the excitation instanta- of « in theories of remote transfer is qualitatively the same as
neously created at= 0. It decays with a time and is quenched  in its contact analogue whoggis taken from eq 1.2. However,

by transfer partners given in concentration The “Stern- the true value ofc essentially exceeds its contact estimate,
Volmer constantk is not actually a constant but was shown to especially under diffusional control.
increase with quencher concentratmand encounter diffusion Sometimes the experimentalvalues also are found to be

coefficientD, varying with solvent viscosity. This dependence, higher than the maximal contact estimates. To explain them,
«(c, D), is deduced here from different theories of the same the contact formulas were often supplemented by an additional
phenomenon and used for their comparison. factor accounting for the static quenchih@he latter is remote
Roughly speaking, all the theories are divided in two groups. i, principle and precedes the diffusion-accelerated quenching
One group is based on the contact model, assuming that transfef,qeled as contact. As an alternative the “finite sink ap-
occurs only at the closest approach distamedgth kinetic rate proximation” was proposed by Stevens and co-workets.
const_anko. To another group belong all encounter theories using Unfortunately, this model is inconsistent and the phenomenon
the d|§tance-erendent rate of ranigr). We W'”. prove that obtained with it is just an artifact bearing no relationship to
there_|s practically no d|ffere_nce between the_m_ajorlty of contact static quenching and its parameters. However, the data obtained
wsr? r(lzisﬁcélritgtitgr?r?rodrﬁsigltl)c?v;ggt ?‘(i)dneoa:ﬁ)r“\(/:allt(;:a:siggj or used by Stevens indica_tes_ that only the theories of_ remote
D) to the largest one, which is ’ transfer can be syccess_ful in fitting them. From such a fit ma_de
' with the oldest (differential) encounter theory, we get here quite
5 realistic parameters of an exponential transfer rate.
ko= fW(r) ar (1.2) The outline of the article is as follows. In the next section
we will elucidate what are the basic encounter theories and
The contact value of the Stetivolmer constant at zero  compare with them a number of others, which are all contact

concentration is well-knowRr** and integral but will be discriminated by kernels (memory
functions) of corresponding integral equations. In Section IlI
= ko (1.3) the Stern-Volmer constant at a zero concentration limit will
0_ . . . . .
1+ ky[ko(1 + /_urd)] be considered as function of diffusion to demonstrate the

essential difference between contact and remote quenching.
Their difference will be examined in Section IV in the whole
concentration range at given diffusional coefficient and different
tunneling lengths. In Section V we will prove that only the
theory of remote transfer provides the nonmodel explanation
T Part of the special issue “A. C. Albrecht Memorial Issue”. of real experimental data. The results will be summarized in
* Corresponding author. the Conclusions.

wherekp = 470D is the diffusional rate constant,= 1/z, and
74 = 04/D is the encounter time. The difference between these
two constants is most pronounced at slow diffusion wkigr<
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Il. Kinetic Theories of Irreversible Energy Quenching
There are a number of multiparticle theories starting from

different axiomatic constructions but deducing one and the same

result: the average survival probability of the excitatior,
quenched by surrounding moleculés,The general scheme of
the reaction i©* + A— D + A, but for the electron or energy
transfer mechanism it may be presented in more detail:

[D*.A] — D+ A

prsa’ (2.1)

[D..A] — D+ A

In solid solutions the excitation jumps from one donor to
another due to the resonance energy transfer approaching on
of the immobile acceptors where energy is trapped and dis-
sipates. This is the so-called “trapping problem” that was solved
for small and large steps of the random walk leading to
diffusional and hopping quenching of excitation. A few ap-
proximate and exact solutions of the trapping problem were used
in ref 3 to calculatec at anyc and estimate the accuracy of
each from their comparison.

Similar work was partially done in ref 13 but for an excited
molecule quenched by electron transfer during diffusional
encounters with acceptors in liquid solutions. However, the
consideration there was restricted to encounter theories: dif-
ferential (DET), integral (IET), and modified (MET), while the
diversity of approaches to diffusion-assisted reactions in liquids

Popov et al.
k) =kn(o,t) n=DAnN 4nor%‘ =k Y
- (2.5)

Whenk, is calculated from eq 1.2 by using the exponenil),
then approximatelky, = W 27o4. If the tunneling lengtH is
turned to 0, keepingV¢l as well ask, constant, then the results
obtained for the remote transfer should approach those in the
contact approximation.
The integral encounter theory (IET) was deduced 14té¥
as the lowest-order approximation with respect to partner
concentration. Although approximate in this sense it was shown
to be ultimately better than DET when the excited reactants
and products of reversible reactions have different lifetifes.
IET is a kind of a memory function formalism using integral
Rinetic equations instead of differential equations:
. t
N=—c [ Z(t — t)N(t') dt' — uN (2.6)
3(t) = R(t) is the simplest kernel (memory function) of the
original IET, which takes the place of the rate constant. It is
defined throughW(r) and the pair correlation functiom
substituted fom:

R() = fW(N[o®) + » + w] d’
an

ar

7= —=W(r)v + DAv — uv =0 (2.7)

r=o

is much wider and makes uncertain the appropriate choice of where v(r, 0) = 1. As seen from these definition® is

the theory for fitting the experimental data. Here we are going concentration-independent. As a result the Laplace transforma-
to make the comparison more general and universal by tion of eq 2.7 used in eq 1.1 reproduces the original (linear in
identifying some of the theories and discriminating between c) Stern-Volmer law:
others, comparing them with the exact one.

The particular case of immobile excitation surrounded by
independently moving point acceptors is known as a “target
problem”. The well-known solution to this problem is recog- With the “ideal” (concentration-independent) Steiolmer
nized as exact at any concentration of acceptors,[A].12 An constant
important fact is that this solution coincides with that provided
by differential encounter theory (DET) created long a¢jd
Itis based on non-Markovian, but the differential (rate) equation
for the survival probability of the excitatioN(t) = [D*]:

1y =1+ ckr (2.8)

Ko =RO0)= [R() dt (2.9)

However, it was proved long ago that the Stexfolmer law
. is nonlinear and its real constant
N=—

k(t)cN — uN (2.2)

k=1xy+pc+ .. (2.10)

where the time-dependent “reaction constant” should be found ) . . . )

from the following equations: increases with concentratigr. 26 From this point of view the
IET is just the lowest-order approximation with respectto
To eliminate this demerit, modified encounter theory (MET)
was developed, which redefines the kernel of the integral
equation in the following way?28

k®t) = /W()n(r, t) or

_— @ =
n=—W(r)n(r, t) + DAn or |z, 0 (2.3) 3(t) = R(t) exp(—ck) (2.11)
. Here
wheren(r, 0) = 1. The input data are onlp, o, andW(r). The
most popular approximations of the latter are either exponential o
or contact’ k= k() = [R(t)e" dt (2.12)

is the stationary (asymptotic) value &t). In the contact
approximation it takes the well-known form:

ok
T 1+ kyky

In the contact approximation, eqs 2.3 reduce to the classicalUnlike R(t), the MET kernel (eq 2.11) is concentration-
Collins—Kimball model#8 dependent and the corresponding Steviolmer constant was

W(r) = We 2N (2.4a)

W(r) = %60 ~0) (2.4b) K (2.13)
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TABLE 1 tory, Naumann et & developed an extended superposition
theory ) aperEg:Ah fEdSA) thdat vxfas I_at(_alr Iir;_eariz_ed _and becaéme_ k_nown

— as . Independently, similar linearization over deviations

::Eép(\_ IET) ii E’;ggi ﬂ)+ cko) from equilibrium was also made in ref 41. Although the asymp-

CA, MPK1 (= DET)  [ckP(s+ U)J/[1 — (s+ W)P(s+ u)] totic description of the quenching kinetics is improved, it was

MPK2 1+ kog(s + U+ cko()) recognized that LESA is not valid at a large equilibrium constant
MPKS3 (= MET) 1+ kog(s+ u+ ck/[1 + kog(s + u)]) K = kykg,*! because the superposition approach becomes worse

SCRTA 1+ kog(s + u+ ck), ke = ko/[1 + kog(ck)] whenkK increase4? This is especially true for earlier imes when

the deviations from equilibrium are not small. However, the
authors who constructed LESA pretend that it is “applicable at
x =3(0) = R(ck) (2.14) all times”#° Therefore, we took it for comparison in the
irreversible limit wherek — o and the kernels obtained in both
The similar dependence is inherent also with DET as well as works*041 coincide with the one listed as LESA in Table 1.
other theories that compete with it. It is remarkable that all of ~ The largest body of research carried out by different
them can be presented as integral theories, wiNg§eobeys authoré?=45 with different methods on closer inspection are
one and the same eq 2.6 but with different kernels. Sometimesnoted to be identical to DET of contact-irreversible reactions,
the latter is explicitly defined in the original works, but more that is, to the classical CollirsKimball theory!8 This is equally
often the reduction to the integral form and extraction of the true for a few work3 46 based on convolution approximation
kernel was done ourselves. In a few cases this procedure wagCA) and those published by Lee and co-workéf8as many-
nontrivial and required rather long and sophisticated calculations particle kernel theory, named later MPK1. If the DET of
that are not of interest in the present context, except the final irreversible quenching is presented as integral theory, it has the

shown to increase with:13

results represented by the Laplace-transformed kerhdls kernel listed in the table, which is common to all those works.

Table 1. However, the upgrading of the theory designed for reversible
In Table 1 we used the Laplace transformation of the general reactions was not stopped. After the first attempt, MEéhd

solution of eq 2.2: MPK350 have arisen, which are not exact for irreversible target

problem as was their precursor. Therefore, their kernels are
N(s) = [ e ™'P(t) dt = P(s + u) (2.15) different and the kernel for MPK2 is actually defined as a
solution of transcendent equation. Another one, for MPK3, in
where the case of irreversible quenching appears to be identical to that
provided by MET. For a very long time the latter was considered
P(t) = exp(-c ftk(t') dt) (2.16) the most reasonable extension of IET for larger concentra-
0 tions351put very recently a new theory named self-consistent
relaxation time approximation (SCRTA) has taken on this tdle.
In the irreversible case the inverse relaxation time of SCRTA,
kic, is defined by the transcendent equationkfshown in Table
1. Itis equivalent to the one expressed by the Laplace transform
of k(t): ck(k) = 1.4 Despite this complication, SCRTA looks
_ more reasonable than IET and MET when compared with other
Lo(e) =o(1 + “/gd) (2.17) theories in Section 1V.

Besides, the Green function of the free diffusion equation with
reflecting boundary condition&(r, r', t), was used to define
the functiong(s) = Go(o, o, ), which is well-known in the
contact approximation:

According to eq 2.14, the “ideal” SteftVolmer constant

. . [ll. Viscosity Dependence of the Ideal Sterr-Volmer
expressed through this very function is actually

Constant
. ko As follows from eqgs 1.1 and 2.15, there is the following
=k(c=0)=I1lim%0) = ——— 2.18 i i ield:
Ko = K( ) lim (0) 11 kg(U) ( ) concentration expansion of quantum yield:
. : : o N(0) o _ut
It coincides with eq 1.3 and is the same for all theories listed in y = —— = uj(’) e "P(t) dt =
Table 1. T
The first group of theories was based on the superposition 1-— cufome‘“t dtfowk(t') dt' + ...~ 1— ¢kt (3.1)

approximation used for truncation of an infinite hierarchy of
equations for a reduced distribution function at the pair
distribution levek®21t was generalized and applied to reversible
reactions by Lee and Karpltisand their successofs:34 After 1 oo
linearization over deviations from equilibriuf#3® the theory Ko = ‘j(; e Vk(t) dt =
became simpler and finally was recognized as one identical to T
IET, provided the reduction to phenomenological equations is

7,38 ici i i iti
not done3"28This is why the linearized superposition approach concentration) SterAVolmer law (eq 2.8). Obtained from

called LSA here _p_rowdes exgctly_ the same kemel as IET. DET,it is exactly the same one that follows from the IET eqs
The superposition approximation was also applied to the 29 and 2.7

reversible reactions

wherekg is defined as in ref 4:

k(1h)

T

(3.2)

This is the constant that appears in the ideal (linear in

ko= [odt [WN[B(M) + 7+ w] d* =

D* + A% [D*A]
u [ W(n)i(r, 0) d’r =u [ W()ii(r, u) dr (3.3)

for studying the asymptotic behavior Nft), when the system
approaches equilibriud?:3° Since the results were not satisfac- where we took into account that= n exp(—ut). In view of
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the definition ofk throughn(r, t) given in eq 2.3, this IET result K
is exactly the same as in eq 3.2. 100000 £
In the contact case of eq 2.4b, we get from the last equation

(b)

Ko = ka0, U) = kgt [ G(o, 1o, U) d’rg =

kot [ G(a, 1o, u) drg
1 + kOGO(Ov o, u) (34) 5-40 50000

Here we used the well-known relationship (see eq 5.10 in recent

review!’) between the Green function of eq 2.3 foand that

for the free motionGo(o, ro, U). Since the integral of the latter

over space is 1/ while Go(o,0, U) is g(u) from eq 2.17, the

expression in eq 3.4 is identical to the ideal contact value of 0

the Stern-Volmer constant given in eq 1.3. o 2 40 & s 10
For remote transfer the analytic calculation of this quantity D"

from eq 3.3 is hardly possible, but for the exponential quenching Figure 1. Ideal Stera-Volmer constant as a function of diffusion in

rateW(r) given in eq 2.4 at least the Laplace transformation of contact approximation (a) and for the exponential transfer rate with
n can be found from the equation, following from eq 2.3: different tunneling lengthsi = 1.6 A (b) andl = 2.5 A (c).

(s+We A - DAR=1 on

=0 (35) [x0(0) = Q]. At slowest diffusion it is proportional te/D due
or '

r=o to nonstationary diffusional quenching. To demonstrate this
linearity, VD is used as an abscissa in Figure 1. As seen from
this figure at the samly, the remote transfer is more efficient
for larger tunneling length.

Following Pilling and Ricé? we get the general solution of
this equation:

fi(r, s) = 1[1 + 9I (w) + J.[—IF (w)] (3.6) IV. Concentration Dependence of the Sters-Volmer
S rv 2r sinvar Y Constant
Herew = wq exp[—(r — o)/l], wp = I{/W/D, v = I/s/D, and As has been proved in eq 2.18, the lowest limit of the Stern
Volmer constanko = «(0) is the same for all contact theories.
F,w) =1_,wG,w) —I,WG_,(w) But there is also the upper limit af(c) reached at largest

_ [ this isky defined in eq 1.2, which is the maximal value of the
G.(w) fo xIn (dA)1,(x) dx (3.7) time-dependent rate constdt) from eq 2.3. The latter starts
from ko att = 0 whenn(r, 0) = 1 and goes down with time up

wherel, is the modified first-kind Bessel function of the order " stationary (steady-state) valkegiven in eq 2.13.

v. However Therefore, at the very beginning the quenching kinetics is always
exponential:
7l [1 + Y, S[d] F‘V‘V(WO) + WCTdFerl,v(WO)
2T [+ o )+ W) P = expeigt +-) @D

but it remains the same till almost the end of quenching if the
differs from that obtained by Pilling and Rice in eq 10 of their concentration of quenchers,is high enough. With exponential
work 53 The difference is originated from boundary conditions. P(t) we obtain from eq 3.1 the classical SteiMolmer law (eq
They took the absorbing one(o, t) = 0, assuming that the  1.1) but with kinetic constant
remote transfer is accompanied by very strong contact quench- .
ing. Contrary to this, we are assuming that there is only a single ko= L[QOK(C)
channel reaction, either remote or contact. If it is remote, no
guenching at contact is possible, so that the reflecting boundaryThe problem is, what is the true SterWolmer constant
condition common for all encounter theories has to be used in behavior between these two limits, that is, in the intergak
egs 2.3 and 3.5. k(C) < ko.

After the substitution of eq 3.6 into the definition of the ideal In the semilogarithmic plot of Figure 2 the concentration
Stern-Volmer constant (eq 3.3), the integral was taken numeri- dependence(c) is represented by the S-like curves related to
cally at any diffusion coefficient except for very small values different theories. The main one is that of DET, which is
of it, where the quenching is quasi-static. However, for this very expected to be exact for target problem for independently
region there is an approximate expression derived in ref 54: moving point quenchers. This is also true for all equivalent

5 _ theories of irreversible transfer (CA, MPK1, Voé&ty. From
o W(r)4mr© dr o (T dW/dr)“4zr® dr the comparison of this result with others it is clear that LESA
KO—L—HWU)T S o B9 abadi i itis clear that LE
[1 4+ W] is just a bad interpolation between border limits. This is partially
true also for MET/MPK3, although it is rather good for small
The Sterm-Volmer constant increases monotonically with concentrations as was actually expecte#:5556At least it is
diffusion from the lowest static valug(0) up to the upper one,  better than IET and LSA, which reproduce the original Stern
which is the kinetic rate constaly = limp—. «o(D). In the Volmer law with the concentration-independent constant (hori-
contact approximation represented by eq 1.3, this dependencezontal dashed line) and are suitable for calculation of only this
is qualitatively the same except that there is no static quenchingideal value. Two remaining theories, MPK2 and SCRTA, give
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1.5x10°
___.._w-'-"".-
-
c=TA
08+ D=10°cm’s .
k, I 4ra® =100 Alns @é 1.0x10°
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o
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0.2 4 —— MPK1 = DET (contact)
LSA = ET
00 T T T T 1
0.0 -mmmmmm 0-0 0~1 0.2 0.3
10* 10* 10" 10" 10' 10° 10* 10 ov
cv Figure 4. Concentration dependence of the Stevfolmer constant
Figure 2. Concentration dependence of the Stevfolmer constank for three different temperatures fitted by DET with the Marcus transfer
in units of ky for a number of contact theories, providkgd= 3.7 x rate (thick lines) and parameters listed in Table 2. Thin lines represent
109 M~1 s71js the same for all of them. contact analogues of the above curves for the same temperatures
(decreasing from top to bottom) and diffusion-controlled quenching
I= 2\A 1 05 0.1 (ko = o0).
1.0 | | - _I —
\ 1= TABLE 2: Parameters of DCA Quenching by TMPD in
’ Acetonitrile 7
084 D (0°) D (22°) D (50°) 1% T AG 2058
24%x 105 32x105 43x105 75A 126ns 1.8l1eV 1.3eV
° 06 cnéls cnéls cn¥ls
~° 064
< /
/ Here AG is the free energy of electron transfer whose
/ . .
044 — DET (contac) reorganization energy
] - - -DET with tial WA
024 :-zit ey Ar) = A2 = olr) .3)
00 increases with interparticle distance, making the Arrhenius factor
: T T

P P A r-dependent ani(r) nonexponential and even nonmonotonic
ov at high exergonicity? If such a complex dependence is approxi-
Figure 3. Same comparison as in Figure 2 but for the exponential mated by a pure ex_ponentlal formula (eq 2.4a), ﬂlaqures
transfer rates at different tunneling lengths indicated in the figure. The the sense of effective decrement, unlikewhich is the true
contact approximationl (— 0) is represented by a solid line. tunneling length for an electron. For the case of transfer in the
normal Marcus region{AG < 1¢), | may be essentially smaller

We believe that this comparison is instructive to those who like i the inverted Marcus region whereAG > o. This is the
to employ one of the existing contact theories for the particular 55 investigated in ref 57. The other parameters of the system
problem of interest. _ studied at three different temperatur@s= 0, 22, and 50C)

Even more important is the comparison of contact and remote i, 5 cetonjtrile solutions are listed in Table 2. All the data are

electron transfer shown n F|gurg 3. The calculathns WEre taken from the original article’, except contact reorganization
performed for a few realistic tunneling length@ashed lines). energyio, which is borrowed from another wofR

The smallerl is, the closer the results obtained are to those . i . .
gained in the contact approximation. The latter is actually In Figure 4 the results of our bestflt to the experlmenta! points
from ref 57 are shown as functions of the dimensionless

justified for only the smallest = 0.1 A, which is reasonable ) -
for proton transfer but rather bad for electron transfer, where concentratiorcy wherev = 43mo’c. The agreement is rather
usually| = 1 — 2 A. We will make this point clear by a satisfactory and could be even better if a number of additional
straightforward fitting of the remote transfer theory to the data factors were taken into account. Instead of a single-channel
presented in the recent work of Stevens and B¥er. transfer rate (eq 4.2), one could better use its multichannel

Neither contact nor exponential approximatiorMdis good analogue to account for the vibrational excitation of the inner
for real fitting. Instead, one should use the true Marcus rate of quantum modes of reaction produét$?°The reorganization
electron transfer, accounting for the energy balance and theenergy attributed to quantum channels comprises an additional
properties of the solution. In the simplest case of a single- i, which is sometimes around 0.3 éVBesides, we did not
channel reaction in highly polar solvent, this rate is represented take into account the liquid structure near the contact and the
by the following expression: spatial dependence of the diffusional coefficient as is sometimes

doneb2-64 Also, we did not even mention chemical anisotropy,
5 F{ 20 —o)| Vx ﬁ{ (AG + Ar))? which is essential sometimés.

W(r) =V, exp — expy —

L 20T 4A(r)T

Due to these simplifications we have only two varying
(4.2) parameters: the tunneling lengthand its matrix elemenp.
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TABLE 3: Kinetic Constants and Contact Rates

T(°C)
0 22 50 20
ko x 1078 (A3/ns) 0.979 1.004 1.03
W (ns?) 484 546 619
%
Found from the best fit, they are <
L=16A V,=4.07x 10 % eV (4.4) 10

With these parameters known, the kinetic rate constant (eq 1.2)
and the contact value of the ratd,. = W(0), have definite
although different values for all three temperatures studied.
All the ko values listed in Table 3 are much larger than the 0 N \ NG

contact diffusional constants, = 470D, so that the reactions 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
are strongly in the diffusional control limit, as was expectéd. (o)™
Calculated in this limit, contaact(c) is maximally available in ) o )

Figure 5. Same DET curves (solid lines) and experimental data

this approxmatlon, as well ag(1 + v _Td/r)_ is the maX|m_ako (points) as in Figure 4 but in Stevens’ coordinates. The static quenching
resulting from eq 1.3 ato — . The diffusionalc(c) obtained (- - —) and the MET analogue of DET with the same parametrization

in the contact approximation and shown in Figure 4 indicates (---) are shown for only the lowest temperature. The straight lines

that the experimental points are far above their contact estimatesintersecting at the common point are Stevens’ interpolation of the
Likewise, the steady-state rate constant for the remote transfergxperimental results.

k = 4nRgD, is always higher thakp if the reaction is under

diffusional control because in this regi® > o for certainl6.17 14009
However, not only are the contact lines beneath all the points 1
but also their slope is too small to explain the true concentration 12007+
dependence. Perhaps these troubles stimulated Stevens to pro- 10
pose the original “finite sink approximation” instead of the 10004
existing theory’.® The inconsistency of this model is seen from & 1\
the very fact that it does not discriminate between the Stern  ~. 8004
Volmer and the steady-state constartandk, and ascribes to § 1 Y
the latter the concentration dependence that is not inherdnt to 600 - \
= lim— k(t) in principle 8¢ At the same time, the model predicts
the linear dependence of the results in coordinates/érsus 200
cY3. Moreover, it was shown a number of tinfe%° that the l
straight lines representing this dependence for different tem- 200
peratures intersect at a common point where “the static quench-
ing limit is unambiguously located” according to ref 57. 0

To inspect this statement we redrew the previous figure in
similar but dimensionless coordinaté&g versus ¢v)2 (Figure
5), adding one more curve representing the true static quenching
As has been known for a very long time, the kinetics of static

Figure 6. Single-channel Marcus transfer rate obtained from the
best fitting and its exponential approximations: (a) with a true tunnel-

quenching following from eqgs 2.16 and 2.3@t= 0 is given ing lengthl = L = 1.6 A and effective contact ra, = 1400 ns?
by the following expressiof#68 (- — —) and (b) with a true contact rate 484 hdut effectivel =
3.59 A ().

P(t) = exp{—c [ [1 — e "Mz}  (4.5) _ _ o
i theories. From Figure 5 we see that this is equally correct for

MET, whose results cannot be advanced so far in the high-
concentration region without losing accuracy. Only the old clas-
sical DET is good enough for the appropriate fitting and inter-
pretation of these data. Making use of the parameters obtained

— ko. That is why all the curves approach 1 at the largest con- from this fitting at 0°C (Table 3), we recpnstructgd theT true
centrations. Where they are close to this limit the quenching is Marcus rate (eq 4.2) as a function of the interparticle distance
quasi-static, that is, almost viscosity-independent. But the exper-(Figure 6). As usual in the inverted region, it has a maximum
imental points are far from this region. Just occasionally they Near the contact, but at very large distances it has an exponential
are near the bend of the S-like curves where the straight line @symptote with a true tunneling length If one models this
with viscosity-dependent slope is rather a good approximation. fate by exponential function (eq 2.4a) with effective lenigth
The intersection of these lines at a common point is just artificial L. keepingko the same, then the pre-exponent appears to be
and the point itself has nothing in common with the static much larger than the true contact rate. If quite the reverse, the
quenching. This artifact would be easily removed if the experi- pre-exponent is equalized to the true contact value of the Marcus
mental region were extended a little bit either to the right or to rate, and ther becomes more than twice as largelasnd
the left. cannot be associated with a true tunneling length. This alterna-
However, even the existing data are unique. We already tive does not exclude all the intermediate choice®\bfandl.
demonstrated that their fitting is inaccessible for all contact Even when fitting with the exponential model is successful, it

This expression was applied to dipeldipole quenching by
Farster himseff” and employed to “exchange” (exponential) rate
transfer by Inokuti and Hirayanfd.lt is clear that for earliest
timesP ~ exp(—ckt), so that for the largest concentrations
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leaves a great uncertainty in the model parameters and their (19) Sakun, V. PPhysica A1975 80, 128.

; i At ; (20) Doktorov, A. B.Physica A1978 90, 109.
identification with the true ones. (21) Kiprianov, A. A.; Doktorov, A. B.; Burshtein, A. IChem. Phys.
1983 76, 149, 163.
V. Conclusions (22) Burshtein, A. 1.J. Lumin.2001, 93, 229.
(23) Ware, W. R.; Novros, J. S. Phys. Chem1966 70, 3246.
By comparing all the existing theories between themselves §24§ Ngmlfek, Th. L.;hWare, W. Rl ﬁhem.hPhysl975 62, 479.

i i ; i 25) Eftink, M. R.; Ghiron, C. RJ. Phys. Cheml975 80, 486.
and V\."th the ava.”abl_e eXpenmental data, we arrived at the (26) Murata, S.; Nishimura, M.; Matsuzaki, S. Y.; Tachiya, ®hem.
following conclusions: Phys. Lett1994 219, 200.

(i) All contact theories provide the nonlinear concentration  (27) Kipriyanov, A. A.; Gopich, I. V.; Doktorov, A. BChem. Phys.
dependence of the SteriVolmer constant, which is either iden- 1994 187, 241;1995 191, 101.

tical or very close to that of DET but insufficient to fit the real ZSézgllf'pnyanov’ A A.; Gopich, 1. V. Doktorov, A. BPhysica AL99§

data. (29) Monchick, L.; Magee, J. L.; Samuel, A. BH. Chem. Phys1957,
(i) Among the theories that are suitable to work with distant 26, 935.

: . : PP PR (30) Waite, T. RPhys. Re. 1957, 107, 463.
quenching, DET is the best while the “finite sink approximation (31) Lee, S.; Karplus, MJ. Chem. Phys1987 86, 1883.

is inappropriate. (32) Molski, A.; Keizer, J.J. Chem. Phys1992 96, 1391.
(iii) The successful fitting of DET with the Marcus transfer (33) Naumann, W.; Molski, AJ. Chem. Phys1995 103 3474.

. - : . (34) Molski, A.; Naumann, WJ. Chem. Phys1995 103 10050.
rate to the experimental data provides a unique tunneling length, (35) Szabo, AJ. Chem. Phys1991, 95, 2481.

while the exponential models of this rate used for the same goal  (36) Naumann, WJ. Chem. Phys1994 101, 10953.
are unable to get an unambiguous result. (37) Naumann, WJ. Chem. Phys1999 111, 2414;200Q 112, 7152.

; ; ; ; P (38) Burshtein, A. 1.J. Chem. Phys2002 117, 7640.
The comparison of different theories by their application to (39) Szabo, A Zwanzig RJ. Stat. Phys1991 65, 1057.

irreversible energy quenching is not exhaustive because most (40) Naumann, W.; Shokhirev, N. V.; Szabo, Rhys. Re. Lett. 1997,
of them were designed for reversible transfer reactions. This is 79, 3074.

; (41) Sung, J.; Shin, K. J.; Lee, 3. Chem. Phys1997, 107, 9418.
the more general and complex case that will be put to the test (42) Berg O, G.Chem. Phys1978 31, 47,

soon. (43) Vogelsang, J.; Hauser, M. Phys. Chem199Q 94, 7488.
(44) Vogelsang, JJ. Chem. Soc., Faraday Trans993 89, 15.
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