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The numerous theories of contact energy quenching are compared between themselves and with the theories
of remote electron transfer. The Stern-Volmer constant used as a criterion is studied in the full range of
quencher concentrations and diffusion. When any one of these parameters is increased, diffusion-controlled
quenching gives way to kinetic control, although differently in the theories of contact and remote transfer.

I. Introduction

Fluorescence quenching in solutions is usually carried out
by electron or energy transfer from excited donors to acceptors
moving around, or vice versa. The main characteristic of the
phenomenon is the relative quantum yield of the fluorescence,
which obeys the famous Stern-Volmer law:1-3

HereN(t) is the survival probability of the excitation instanta-
neously created att ) 0. It decays with a timeτ and is quenched
by transfer partners given in concentrationc. The “Stern-
Volmer constant”κ is not actually a constant but was shown to
increase with quencher concentrationc and encounter diffusion
coefficientD, varying with solvent viscosity. This dependence,
κ(c, D), is deduced here from different theories of the same
phenomenon and used for their comparison.

Roughly speaking, all the theories are divided in two groups.
One group is based on the contact model, assuming that transfer
occurs only at the closest approach distanceσ with kinetic rate
constantk0. To another group belong all encounter theories using
the distance-dependent rate of transferW(r). We will prove that
there is practically no difference between the majority of contact
theories. All of them describe the monotonic increase ofκ(c)
with concentration from its lowest (“ideal”) value,κ0 ) κ(0,
D) to the largest one, which is

The contact value of the Stern-Volmer constant at zero
concentration is well-known:9-11

wherekD ) 4πσD is the diffusional rate constant,u ) 1/τ, and
τd ) σ2/D is the encounter time. The difference between these
two constants is most pronounced at slow diffusion whenkD ,

k0. Then the concentration increase causes the transition from
small κ0 ≈ kD(1 + xuτd) to largek0.

This transition is similar to the transition from diffusional to
kinetic control of electron transfer, which the “ideal” Stern-
Volmer constantκ0(D) experiences with an increase in diffusion.
The latter is given by one and the same eq 1.3 in all contact
approximations. Here we will demonstrate that in the encounter
theory of remote transferκ0 changes similarly with diffusion,
although it differs more from its contact estimate the larger the
tunneling length is. Moreover, the concentration dependence
of κ in theories of remote transfer is qualitatively the same as
in its contact analogue whosek0 is taken from eq 1.2. However,
the true value ofκ essentially exceeds its contact estimate,
especially under diffusional control.

Sometimes the experimentalκ values also are found to be
higher than the maximal contact estimates. To explain them,
the contact formulas were often supplemented by an additional
factor accounting for the static quenching.4 The latter is remote
in principle and precedes the diffusion-accelerated quenching
modeled as contact. As an alternative the “finite sink ap-
proximation” was proposed by Stevens and co-workers.5-8

Unfortunately, this model is inconsistent and the phenomenon
obtained with it is just an artifact bearing no relationship to
static quenching and its parameters. However, the data obtained
or used by Stevens indicates that only the theories of remote
transfer can be successful in fitting them. From such a fit made
with the oldest (differential) encounter theory, we get here quite
realistic parameters of an exponential transfer rate.

The outline of the article is as follows. In the next section
we will elucidate what are the basic encounter theories and
compare with them a number of others, which are all contact
and integral but will be discriminated by kernels (memory
functions) of corresponding integral equations. In Section III
the Stern-Volmer constant at a zero concentration limit will
be considered as function of diffusion to demonstrate the
essential difference between contact and remote quenching.
Their difference will be examined in Section IV in the whole
concentration range at given diffusional coefficient and different
tunneling lengths. In Section V we will prove that only the
theory of remote transfer provides the nonmodel explanation
of real experimental data. The results will be summarized in
the Conclusions.

† Part of the special issue “A. C. Albrecht Memorial Issue”.
* Corresponding author.

η ) ∫0

∞
N(t) dt/τ ) 1

1 + cκτ
(1.1)

k0 ) ∫W(r) d3r (1.2)

κ0 )
k0

1 + k0/[kD(1 + xuτd)]
(1.3)
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II. Kinetic Theories of Irreversible Energy Quenching

There are a number of multiparticle theories starting from
different axiomatic constructions but deducing one and the same
result: the average survival probability of the excitation,D*,
quenched by surrounding molecules,A. The general scheme of
the reaction isD* + A f D + A, but for the electron or energy
transfer mechanism it may be presented in more detail:

In solid solutions the excitation jumps from one donor to
another due to the resonance energy transfer approaching one
of the immobile acceptors where energy is trapped and dis-
sipates. This is the so-called “trapping problem” that was solved
for small and large steps of the random walk leading to
diffusional and hopping quenching of excitation. A few ap-
proximate and exact solutions of the trapping problem were used
in ref 3 to calculateκ at anyc and estimate the accuracy of
each from their comparison.

Similar work was partially done in ref 13 but for an excited
molecule quenched by electron transfer during diffusional
encounters with acceptors in liquid solutions. However, the
consideration there was restricted to encounter theories: dif-
ferential (DET), integral (IET), and modified (MET), while the
diversity of approaches to diffusion-assisted reactions in liquids
is much wider and makes uncertain the appropriate choice of
the theory for fitting the experimental data. Here we are going
to make the comparison more general and universal by
identifying some of the theories and discriminating between
others, comparing them with the exact one.

The particular case of immobile excitation surrounded by
independently moving point acceptors is known as a “target
problem”. The well-known solution to this problem is recog-
nized as exact at any concentration of acceptors,c ) [A].12 An
important fact is that this solution coincides with that provided
by differential encounter theory (DET) created long ago.14-16

It is based on non-Markovian, but the differential (rate) equation
for the survival probability of the excitationN(t) ) [D*]:

where the time-dependent “reaction constant” should be found
from the following equations:

wheren(r, 0) ) 1. The input data are onlyD, σ, andW(r). The
most popular approximations of the latter are either exponential
or contact:17

In the contact approximation, eqs 2.3 reduce to the classical
Collins-Kimball model:18

Whenk0 is calculated from eq 1.2 by using the exponentialW(r),
then approximatelyk0 ) Wc2πσ2l. If the tunneling lengthl is
turned to 0, keepingWcl as well ask0 constant, then the results
obtained for the remote transfer should approach those in the
contact approximation.

The integral encounter theory (IET) was deduced later19-21

as the lowest-order approximation with respect to partner
concentration. Although approximate in this sense it was shown
to be ultimately better than DET when the excited reactants
and products of reversible reactions have different lifetimes.22

IET is a kind of a memory function formalism using integral
kinetic equations instead of differential equations:

Σ(t) ) R(t) is the simplest kernel (memory function) of the
original IET, which takes the place of the rate constant. It is
defined throughW(r) and the pair correlation functionν
substituted forn:

where ν(r, 0) ) 1. As seen from these definitions,R is
concentration-independent. As a result the Laplace transforma-
tion of eq 2.7 used in eq 1.1 reproduces the original (linear in
c) Stern-Volmer law:

with the “ideal” (concentration-independent) Stern-Volmer
constant

However, it was proved long ago that the Stern-Volmer law
is nonlinear and its real constant

increases with concentration.23-26 From this point of view the
IET is just the lowest-order approximation with respect toc.
To eliminate this demerit, modified encounter theory (MET)
was developed, which redefines the kernel of the integral
equation in the following way:27,28

Here

is the stationary (asymptotic) value ofk(t). In the contact
approximation it takes the well-known form:

Unlike R(t), the MET kernel (eq 2.11) is concentration-
dependent and the corresponding Stern-Volmer constant was

Ṅ ) -k(t)cN - uN (2.2)

k(t) ) ∫W(r)n(r, t) d3r

n̆ ) -W(r)n(r, t) + D∆n
∂n
∂r |r)σ

) 0 (2.3)

W(r) ) Wce
-2(r-σ)/l (2.4a)

W(r) )
k0

4πσ2
δ(r - σ) (2.4b)

k(t) ) k0n(σ, t) n̆ ) D∆n 4πDr2∂n
∂r |r)σ

) k0n(σ, t)

(2.5)

Ṅ ) -c∫0

t
Σ(t - t′)N(t′) dt′ - uN (2.6)

R(t) ) ∫W(r)[δ(t) + ν̆ + uν] d3r

ν̆ ) -W(r)ν + D∆ν - uν ∂n
∂r |r)σ

) 0 (2.7)

1/η ) 1 + cκ0τ (2.8)

κ0 ) R̃(0) ) ∫0

∞
R(t) dt (2.9)

κ ) κ0 + âc + ... (2.10)

Σ(t) ) R(t) exp(-ckt) (2.11)

k ≡ k(∞) ) ∫0

∞
R(t)eut dt (2.12)

k )
k0

1 + k0/kD
(2.13)
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shown to increase withc:13

The similar dependence is inherent also with DET as well as
other theories that compete with it. It is remarkable that all of
them can be presented as integral theories, whoseN(t) obeys
one and the same eq 2.6 but with different kernels. Sometimes
the latter is explicitly defined in the original works, but more
often the reduction to the integral form and extraction of the
kernel was done ourselves. In a few cases this procedure was
nontrivial and required rather long and sophisticated calculations
that are not of interest in the present context, except the final
results represented by the Laplace-transformed kernelsΣ̃ in
Table 1.

In Table 1 we used the Laplace transformation of the general
solution of eq 2.2:

where

Besides, the Green function of the free diffusion equation with
reflecting boundary conditions,G0(r, r′, t), was used to define
the functiong(s) ) G̃0(σ, σ, s), which is well-known in the
contact approximation:

According to eq 2.14, the “ideal” Stern-Volmer constant
expressed through this very function is actually

It coincides with eq 1.3 and is the same for all theories listed in
Table 1.

The first group of theories was based on the superposition
approximation used for truncation of an infinite hierarchy of
equations for a reduced distribution function at the pair
distribution level.29,30It was generalized and applied to reversible
reactions by Lee and Karplus31 and their successors.32-34 After
linearization over deviations from equilibrium,35,36 the theory
became simpler and finally was recognized as one identical to
IET, provided the reduction to phenomenological equations is
not done.37,38This is why the linearized superposition approach
called LSA here provides exactly the same kernel as IET.

The superposition approximation was also applied to the
reversible reactions

for studying the asymptotic behavior ofN(t), when the system
approaches equilibrium.35,39Since the results were not satisfac-

tory, Naumann et al.40 developed an extended superposition
approach (ESA) that was later linearized and became known
as LESA. Independently, similar linearization over deviations
from equilibrium was also made in ref 41. Although the asymp-
totic description of the quenching kinetics is improved, it was
recognized that LESA is not valid at a large equilibrium constant
K ) ka/kd,41 because the superposition approach becomes worse
whenK increases.40 This is especially true for earlier times when
the deviations from equilibrium are not small. However, the
authors who constructed LESA pretend that it is “applicable at
all times”.40 Therefore, we took it for comparison in the
irreversible limit whereK f ∞ and the kernels obtained in both
works40,41 coincide with the one listed as LESA in Table 1.

The largest body of research carried out by different
authors42-45 with different methods on closer inspection are
noted to be identical to DET of contact-irreversible reactions,
that is, to the classical Collins-Kimball theory.18 This is equally
true for a few works35,46 based on convolution approximation
(CA) and those published by Lee and co-workers47,48as many-
particle kernel theory, named later MPK1. If the DET of
irreversible quenching is presented as integral theory, it has the
kernel listed in the table, which is common to all those works.

However, the upgrading of the theory designed for reversible
reactions was not stopped. After the first attempt, MPK249 and
MPK350 have arisen, which are not exact for irreversible target
problem as was their precursor. Therefore, their kernels are
different and the kernel for MPK2 is actually defined as a
solution of transcendent equation. Another one, for MPK3, in
the case of irreversible quenching appears to be identical to that
provided by MET. For a very long time the latter was considered
the most reasonable extension of IET for larger concentra-
tions,13,51but very recently a new theory named self-consistent
relaxation time approximation (SCRTA) has taken on this role.52

In the irreversible case the inverse relaxation time of SCRTA,
kfc, is defined by the transcendent equation forkf shown in Table
1. It is equivalent to the one expressed by the Laplace transform
of k(t): ck̃(kf) ) 1.4 Despite this complication, SCRTA looks
more reasonable than IET and MET when compared with other
theories in Section IV.

III. Viscosity Dependence of the Ideal Stern-Volmer
Constant

As follows from eqs 1.1 and 2.15, there is the following
concentration expansion of quantum yield:

whereκ0 is defined as in ref 4:

This is the constant that appears in the ideal (linear in
concentration) Stern-Volmer law (eq 2.8). Obtained from
DET,it is exactly the same one that follows from the IET eqs
2.9 and 2.7:

where we took into account thatν ) n exp(-ut). In view of

TABLE 1

theory k0/Σ̃(s)

LSA () IET) 1 + k0g(s + u)
LESA 1 + k0g(s + u + ck0)
CA, MPK1 () DET) [ck0P̃(s + u)]/[1 - (s + u)P̃(s + u)]
MPK2 1 + k0g(s + u + ck0Σ̃(s))
MPK3 () MET) 1 + k0g(s + u + ck0/[1 + k0g(s + u)])
SCRTA 1+ k0g(s + u + ckf), kf ) k0/[1 + k0g(ckf)]

κ ) Σ̃(0) ) R̃(ck) (2.14)

Ñ(s) ) ∫0

∞
e-(s+u)tP(t) dt ) P̃(s + u) (2.15)

P(t) ) exp(-c∫0

t
k(t′) dt′) (2.16)

1/g(s) ) kD(1 + xsτd) (2.17)

κ0 ) κ(c ) 0) ) lim
cf0

Σ̃(0) )
k0

1 + k0g(u)
(2.18)

D* + A y\z
ka

kd
[D*A]

η )
Ñ(0)

τ
) u∫0

∞
e-utP(t) dt )

1 - cu∫0

∞
e-ut dt∫0

∞
k(t′) dt′ + ...‚ ≈ 1 - cκ0τ (3.1)

κ0 ) 1
τ∫0

∞
e-t/τk(t) dt )

k̃(1/τ)
τ

(3.2)

κ0 ) ∫0

∞
dt ∫W(r)[δ(t) + ν̆ + uν] d3r )

u∫ W(r)ν̃(r, 0) d3r ) u∫ W(r)ñ(r, u) d3r (3.3)
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the definition ofk throughn(r, t) given in eq 2.3, this IET result
is exactly the same as in eq 3.2.

In the contact case of eq 2.4b, we get from the last equation

Here we used the well-known relationship (see eq 5.10 in recent
review17) between the Green function of eq 2.3 forn and that
for the free motion,G̃0(σ, r0, u). Since the integral of the latter
over space is 1/u while G̃0(σ,σ, u) is g(u) from eq 2.17, the
expression in eq 3.4 is identical to the ideal contact value of
the Stern-Volmer constant given in eq 1.3.

For remote transfer the analytic calculation of this quantity
from eq 3.3 is hardly possible, but for the exponential quenching
rateW(r) given in eq 2.4 at least the Laplace transformation of
n can be found from the equation, following from eq 2.3:

Following Pilling and Rice,53 we get the general solution of
this equation:

Herew ) w0 exp[-(r - σ)/l], w0 ) lxWc/D, ν ) lxs/D, and

whereIν is the modified first-kind Bessel function of the order
ν. However

differs from that obtained by Pilling and Rice in eq 10 of their
work.53 The difference is originated from boundary conditions.
They took the absorbing one,n(σ, t) ) 0, assuming that the
remote transfer is accompanied by very strong contact quench-
ing. Contrary to this, we are assuming that there is only a single
channel reaction, either remote or contact. If it is remote, no
quenching at contact is possible, so that the reflecting boundary
condition common for all encounter theories has to be used in
eqs 2.3 and 3.5.

After the substitution of eq 3.6 into the definition of the ideal
Stern-Volmer constant (eq 3.3), the integral was taken numeri-
cally at any diffusion coefficient except for very small values
of it, where the quenching is quasi-static. However, for this very
region there is an approximate expression derived in ref 54:

The Stern-Volmer constant increases monotonically with
diffusion from the lowest static valueκ0(0) up to the upper one,
which is the kinetic rate constantk0 ) limDf∞ κ0(D). In the
contact approximation represented by eq 1.3, this dependence
is qualitatively the same except that there is no static quenching

[κ0(0) ) 0]. At slowest diffusion it is proportional toxD due
to nonstationary diffusional quenching. To demonstrate this
linearity, xD is used as an abscissa in Figure 1. As seen from
this figure at the samek0, the remote transfer is more efficient
for larger tunneling lengthl.

IV. Concentration Dependence of the Stern-Volmer
Constant

As has been proved in eq 2.18, the lowest limit of the Stern-
Volmer constantκ0 ) κ(0) is the same for all contact theories.
But there is also the upper limit ofκ(c) reached at largestc:
this is k0 defined in eq 1.2, which is the maximal value of the
time-dependent rate constantk(t) from eq 2.3. The latter starts
from k0 at t ) 0 whenn(r, 0) ) 1 and goes down with time up
to the stationary (steady-state) valuek given in eq 2.13.
Therefore, at the very beginning the quenching kinetics is always
exponential:

but it remains the same till almost the end of quenching if the
concentration of quenchers,c, is high enough. With exponential
P(t) we obtain from eq 3.1 the classical Stern-Volmer law (eq
1.1) but with kinetic constant

The problem is, what is the true Stern-Volmer constant
behavior between these two limits, that is, in the intervalκ0 e
κ(c) e k0.

In the semilogarithmic plot of Figure 2 the concentration
dependenceκ(c) is represented by the S-like curves related to
different theories. The main one is that of DET, which is
expected to be exact for target problem for independently
moving point quenchers. This is also true for all equivalent
theories of irreversible transfer (CA, MPK1, Vogel43,44). From
the comparison of this result with others it is clear that LESA
is just a bad interpolation between border limits. This is partially
true also for MET/MPK3, although it is rather good for small
concentrations as was actually expected.27,28,55,56At least it is
better than IET and LSA, which reproduce the original Stern-
Volmer law with the concentration-independent constant (hori-
zontal dashed line) and are suitable for calculation of only this
ideal value. Two remaining theories, MPK2 and SCRTA, give

κ0 ) k0uñ(σ, u) ) k0u∫G̃(σ, r0, u) d3r0 )

k0u∫G̃0(σ, r0, u) d3r0

1 + k0G0(σ, σ, u)
(3.4)

(s + Wce
-2(r-σ)/l)ñ - D∆ñ ) 1

∂ñ
∂r |r)σ

) 0 (3.5)

ñ(r, s) ) 1
s[1 + Φ

r
Iν(w) + πl

2r sin νπ
Fνν(w)] (3.6)

Fµν(w) ) I-µ(w)Gν(w) - Iµ(w)G-ν(w)

Gν(w) ) ∫0

ω
x ln (x/λ)Iν(x) dx (3.7)

Φ ) - πl
2 sinνπ

[1 + xsτd]Fνν(w0) + xWcτdFν+1,ν(w0)

[1 + xsτd]Iν(w0) + xWcτdIν+1(w0)
(3.8)

κ0 ) ∫σ

∞ W(r)4πr2 dr

1 + W(r)τ
+ D∫σ

∞ (τ dW/dr)24πr2 dr

[1 + W(r)τ]4
(3.9)

Figure 1. Ideal Stern-Volmer constant as a function of diffusion in
contact approximation (a) and for the exponential transfer rate with
different tunneling lengths:l ) 1.6 Å (b) andl ) 2.5 Å (c).

P(t) ) exp(-ck0t + ...) (4.1)

k0 ) lim
cf∞

κ(c)
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results that are very close to each other and to the exact one.
We believe that this comparison is instructive to those who like
to employ one of the existing contact theories for the particular
problem of interest.

Even more important is the comparison of contact and remote
electron transfer shown in Figure 3. The calculations were
performed for a few realistic tunneling lengthsl (dashed lines).
The smallerl is, the closer the results obtained are to those
gained in the contact approximation. The latter is actually
justified for only the smallestl ) 0.1 Å, which is reasonable
for proton transfer but rather bad for electron transfer, where
usually l ) 1 ÷ 2 Å. We will make this point clear by a
straightforward fitting of the remote transfer theory to the data
presented in the recent work of Stevens and Biver.57

Neither contact nor exponential approximation ofW is good
for real fitting. Instead, one should use the true Marcus rate of
electron transfer, accounting for the energy balance and the
properties of the solution. In the simplest case of a single-
channel reaction in highly polar solvent, this rate is represented
by the following expression:

Here ∆G is the free energy of electron transfer whose
reorganization energy

increases with interparticle distance, making the Arrhenius factor
r-dependent andW(r) nonexponential and even nonmonotonic
at high exergonicity.17 If such a complex dependence is approxi-
mated by a pure exponential formula (eq 2.4a), thenl acquires
the sense of effective decrement, unlikeL, which is the true
tunneling length for an electron. For the case of transfer in the
normal Marcus region (-∆G < λ0), l may be essentially smaller
thanL, sometimes twice as small.58 No such reduction occurs
in the inverted Marcus region where-∆G > λ0. This is the
case investigated in ref 57. The other parameters of the system
studied at three different temperatures (T ) 0, 22, and 50°C)
in acetonitrile solutions are listed in Table 2. All the data are
taken from the original article,57 except contact reorganization
energyλ0, which is borrowed from another work.58

In Figure 4 the results of our best fit to the experimental points
from ref 57 are shown as functions of the dimensionless
concentrationcV whereV ) 4/3πσ3c. The agreement is rather
satisfactory and could be even better if a number of additional
factors were taken into account. Instead of a single-channel
transfer rate (eq 4.2), one could better use its multichannel
analogue to account for the vibrational excitation of the inner
quantum modes of reaction products.17,59,60The reorganization
energy attributed to quantum channels comprises an additional
λi, which is sometimes around 0.3 eV.61 Besides, we did not
take into account the liquid structure near the contact and the
spatial dependence of the diffusional coefficient as is sometimes
done.62-64 Also, we did not even mention chemical anisotropy,
which is essential sometimes.65

Due to these simplifications we have only two varying
parameters: the tunneling lengthL and its matrix elementV0.

Figure 2. Concentration dependence of the Stern-Volmer constantκ
in units of k0 for a number of contact theories, providedk0 ) 3.7 ×
1010 M-1 s-1 is the same for all of them.

Figure 3. Same comparison as in Figure 2 but for the exponential
transfer rates at different tunneling lengths indicated in the figure. The
contact approximation (l f 0) is represented by a solid line.

W(r) ) V0
2 exp[-

2(r - σ)
L ] xπ

xλ(r)T
exp[-

(∆G + λ(r))2

4λ(r)T ]
(4.2)

Figure 4. Concentration dependence of the Stern-Volmer constant
for three different temperatures fitted by DET with the Marcus transfer
rate (thick lines) and parameters listed in Table 2. Thin lines represent
contact analogues of the above curves for the same temperatures
(decreasing from top to bottom) and diffusion-controlled quenching
(k0 ) ∞).

TABLE 2: Parameters of DCA Quenching by TMPD in
Acetonitrile57

D (0°) D (22°) D (50°) σ τ ∆G λ0
58

2.4× 10-5

cm2/s
3.2× 10-5

cm2/s
4.3× 10-5

cm2/s
7.5 Å 12.6 ns 1.81 eV 1.3 eV

λ(r) ) λ0(2 - σ/r) (4.3)
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Found from the best fit, they are

With these parameters known, the kinetic rate constant (eq 1.2)
and the contact value of the rate,Wc ) W(σ), have definite
although different values for all three temperatures studied.

All the k0 values listed in Table 3 are much larger than the
contact diffusional constantskD ) 4πσD, so that the reactions
are strongly in the diffusional control limit, as was expected.57

Calculated in this limit, contactκ(c) is maximally available in
this approximation, as well askD(1 + xτd/τ) is the maximalκ0

resulting from eq 1.3 atk0 f ∞. The diffusionalκ(c) obtained
in the contact approximation and shown in Figure 4 indicates
that the experimental points are far above their contact estimates.
Likewise, the steady-state rate constant for the remote transfer,
k ) 4πRQD, is always higher thankD if the reaction is under
diffusional control because in this regionRQ > σ for certain.16,17

However, not only are the contact lines beneath all the points
but also their slope is too small to explain the true concentration
dependence. Perhaps these troubles stimulated Stevens to pro-
pose the original “finite sink approximation” instead of the
existing theory.5,6 The inconsistency of this model is seen from
the very fact that it does not discriminate between the Stern-
Volmer and the steady-state constants,κ andk, and ascribes to
the latter the concentration dependence that is not inherent tok
) limtf∞ k(t) in principle.66 At the same time, the model predicts
the linear dependence of the results in coordinates 1/κ versus
c1/3. Moreover, it was shown a number of times6-8,57 that the
straight lines representing this dependence for different tem-
peratures intersect at a common point where “the static quench-
ing limit is unambiguously located” according to ref 57.

To inspect this statement we redrew the previous figure in
similar but dimensionless coordinates,k0/κ versus (cV)1/3 (Figure
5), adding one more curve representing the true static quenching.
As has been known for a very long time, the kinetics of static
quenching following from eqs 2.16 and 2.3 atD ) 0 is given
by the following expression:67,68

This expression was applied to dipole-dipole quenching by
Förster himself67 and employed to “exchange” (exponential) rate
transfer by Inokuti and Hirayama.69 It is clear that for earliest
timesP ≈ exp(-ck0t), so that for the largest concentrationsκ

f k0. That is why all the curves approach 1 at the largest con-
centrations. Where they are close to this limit the quenching is
quasi-static, that is, almost viscosity-independent. But the exper-
imental points are far from this region. Just occasionally they
are near the bend of the S-like curves where the straight line
with viscosity-dependent slope is rather a good approximation.
The intersection of these lines at a common point is just artificial
and the point itself has nothing in common with the static
quenching. This artifact would be easily removed if the experi-
mental region were extended a little bit either to the right or to
the left.

However, even the existing data are unique. We already
demonstrated that their fitting is inaccessible for all contact

theories. From Figure 5 we see that this is equally correct for
MET, whose results cannot be advanced so far in the high-
concentration region without losing accuracy. Only the old clas-
sical DET is good enough for the appropriate fitting and inter-
pretation of these data. Making use of the parameters obtained
from this fitting at 0°C (Table 3), we reconstructed the true
Marcus rate (eq 4.2) as a function of the interparticle distance
(Figure 6). As usual in the inverted region, it has a maximum
near the contact, but at very large distances it has an exponential
asymptote with a true tunneling lengthL. If one models this
rate by exponential function (eq 2.4a) with effective lengthl )
L, keepingk0 the same, then the pre-exponent appears to be
much larger than the true contact rate. If quite the reverse, the
pre-exponent is equalized to the true contact value of the Marcus
rate, and thenl becomes more than twice as large asL and
cannot be associated with a true tunneling length. This alterna-
tive does not exclude all the intermediate choices ofWc and l.
Even when fitting with the exponential model is successful, it

TABLE 3: Kinetic Constants and Contact Rates

T (°C)

0 22 50

k0 × 10-6 (Å3/ns) 0.979 1.004 1.03
Wc (ns-1) 484 546 619

L ) 1.6 Å V0 ) 4.07× 10-2 eV (4.4)

P(t) ) exp{-c∫σ

∞
[1 - e-W(r)t]4πr2 dr} (4.5)

Figure 5. Same DET curves (solid lines) and experimental data
(points) as in Figure 4 but in Stevens’ coordinates. The static quenching
(- ‚ -) and the MET analogue of DET with the same parametrization
(‚‚‚) are shown for only the lowest temperature. The straight lines
intersecting at the common point are Stevens’ interpolation of the
experimental results.

Figure 6. Single-channel Marcus transfer rate obtained from the
best fitting and its exponential approximations: (a) with a true tunnel-
ing lengthl ) L ) 1.6 Å and effective contact rateWc ) 1400 ns-1

(- - -) and (b) with a true contact rate 484 ns-1 but effectivel )
3.59 Å (‚‚‚).
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leaves a great uncertainty in the model parameters and their
identification with the true ones.

V. Conclusions

By comparing all the existing theories between themselves
and with the available experimental data, we arrived at the
following conclusions:

(i) All contact theories provide the nonlinear concentration
dependence of the Stern-Volmer constant, which is either iden-
tical or very close to that of DET but insufficient to fit the real
data.

(ii) Among the theories that are suitable to work with distant
quenching, DET is the best while the “finite sink approximation”
is inappropriate.

(iii) The successful fitting of DET with the Marcus transfer
rate to the experimental data provides a unique tunneling length,
while the exponential models of this rate used for the same goal
are unable to get an unambiguous result.

The comparison of different theories by their application to
irreversible energy quenching is not exhaustive because most
of them were designed for reversible transfer reactions. This is
the more general and complex case that will be put to the test
soon.
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