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The quantum dynamics of the reaction D2 + OH f DOH + D on the Wu-Schatz-Lendvay-Fang-Harding
ab initio-based potential energy function is investigated. A recently developed four-atom implementation of
the real wave packet method is employed. Extensive six-dimensional calculations for a total angular momentum
of J ) 0 and, within the helicity-decoupled approximation, numerousJ > 0 calculations are performed.
Cross sections and rate constants for reaction are estimated using aJ-shifting procedure and compared with
quasi-classical trajectory, transition state theory, and experimental results. The results are also contrasted
with comparable results for H2 + OH. A surprising feature is that our rate constants agree best with zero-
curvature transition state theory results, indicating that tunneling may not be as important as expected.

I. Introduction

The reaction

and its reverse reaction, as well as isotopic analogues such as
the main subject of this paper,

continue to be a focus of current interest, as a recent review by
Smith and Crim1 will attest.

The presence of several light atoms facilitates accurate
theoretical work on these systems and makes them ideal test
beds of electronic structure and dynamics theories. In particular,
over the past 10 years, some of the most impressive and trend-
setting quantum dynamics calculations on four-atom systems
have been performed on these reactions,2-9 establishing the
viability of full-dimensional four-atom scattering dynamics.
Work within just the past few years includes full-dimensional
rate-constant calculations with angular momentum effects treated
rigorously,5 as well as more extensive quantum dynamics results
that are based on novel and more accurate potential energy
surfaces6-9 than the older, widely used Walch-Dunning-
Schatz-Elgersma (WDSE)10, 11 surface.

The purpose of the present paper is to present quantum
dynamics results for reaction 1.2, on the basis of the Wu-
Schatz-Lendvay-Fang-Harding (WSLFH) potential func-
tion,12 for which complementary quantum dynamics work on
reaction 1.1 has recently been published.13 Although based on
high-level ab initio calculations,12 the WSLFH surface is
probably not as good as the best of the surfaces developed by
Zhang, Collins, and co-workers.6-9 However, the availability

of extensive quasi-classical trajectory and transition state theory
calculations on the WSLFH surface12,14makes the corresponding
quantum calculations also a point of interest, from the standpoint
of learning the adequacy of these more approximate approaches.

Section II below outlines our theoretical methods, section III
presents our results, and section IV concludes.

II. Methods and Computational Details

As in Ref. 13, the wave packet is written as

whereJ denotes the total angular momentum quantum number
(J ) 0, 1, 2,...),K is its projection on a body-fixed axis, andp
is the parity (p ) +1 or -1). The centrifugal sudden (CS) or
helicity-decoupled approximation (i.e, the neglect of Coriolis
coupling between differentK-states15,16) is adopted, which has
been shown to be a good approximation for the H2 + OH
system.5 Diatom-diatom Jacobi coordinates are employed:R
is the distance between the D2 and OH centers of mass and the
body-fixed axis is associated withR; r1 is the D-D internuclear
distance, andr2 is the OH internuclear distance. The polar angles
θ1 and θ2 are associated with the angles between the D2

and OH bond vectors andR, and æ is the dihedral angle.
Gj1,k1,j2

J,K,p (θ1,θ1,æ) is a parity-adapted rotational basis function13

that also depends on the diatomic angular momentum quantum
numbers for diatom 1,j1,k1, and diatom 2,j2 (with k2 being
determined viak1 + k2 ) K). With parity adaptation, it is
possible to restrict theK-index to valuesK g 0. (Note that, for
K > 0, k1 can still be negative.) Neglecting Coriolis coupling,
as we do here, and focusing on a particularj1,j2 initial state, the
upper limit ofK is min(J, j1 + j2). Each value ofK (including
K ) 0) hasp ) +1 and-1 uncoupled parity states. ForK >
0, the+1 and-1 parities yield the same Hamiltonian matrix
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H2 + OH f H2O + H (1.1)

D2 + OH f DOH + D (1.2)

ψJ,K,p(R,r1,r2,θ1,θ1,æ,t) )

∑
j1,k1,j2

Cj1,k1,j2

J,K,p (R,r1,r2,t) Gj1,k1,j2

J,K,p (θ1,θ2,æ) (2.1)
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elements (within the CS approximation) and, thus, generate the
same dynamics; therefore, only calculations for one parity block
with K > 0 need to be performed. ForK ) 0, the parity blocks
are not equivalent and, depending on what is desired, a separate
calculation for each parity may need to be performed.

The time evolution of a given initial wave packet is performed
with the real wave packet method,17 which is a more explicitly
time-dependent interpretation of Mandelshtam and Taylor’s
damped Chebyshev iterations18 and Kouri and co-workers time-
independent wave packet ideas.19 Flux techniques are used to
infer the energy-resolved reaction probabilities from the real
part of the evolving wave packet.20 Further details of the
particular four-atom Hamiltonian that we employ in this study
may be found in Ref. 13.

The reactive cross section for reactants D2(V1,j1) and
OH(V2,j2) is

whereµ ) (2mD)(mH + mO)/(2mD + mH + mO), ε is the collision
energy, and

is the average reaction probability for a given total angular
momentumJ. The rate constant may be written as

with

Qelec(T) accounts for the spin-orbit splitting of OH,14 and
Qr(T) is

The nuclear/rotational degeneracy factor in eqs 2.4 and 2.6 is
gj1,j2. D has nuclear spin 1; therefore, D2 can have total nuclear
spins 2, 1, and 0, with degeneracies 5, 3, and 1. Evenj1 levels
occur with even total nuclear spins, and oddj1 levels occur with
odd nuclear spins. Therefore,gj1,j2 ) 6(2J1 + 1)(2J2 + 1) if j1
is even, and 3(2J1 + 1)(2J2 + 1) if j1 is odd. Actually, simply
ignoring nuclear spin and using (2J1 + 1)(2J2 + 1) as the
degeneracy factor leads to rate constants that agree, to two
significant figures, with those computed with the correct
degeneracy factor for the moderate to high (T g 250 K)
temperatures studied here.

Even for just a four-atom system, a complete quantum
mechanical calculation of the rate constant,k(T), is still a
challenging computational problem, because of the large number
of total angular momentaJ (and associated states for givenJ)
that must be considered. There are numerous strategies for
calculating or approximatingk(T), many of which are based on
cumulative reaction probability (N(E)) ideas.21 N(E) is the sum

of all possible reactive transition probabilities, as a function of
total system energyE, and the Boltzmann average ofN(E) is
proportionate tok(T). One extremely useful (approximate)
approach isJ-shifting.22 The originalJ-shifting idea involves a
full calculation of theJ ) 0 cumulative reaction probability as
a function of energy,NJ)0(E), and then assuming that theJ >
0 contributions toN(E) have the same functional form as the
J ) 0 result but are shifted in energy, relative to this result, to
reflect centrifugal barriers at the transition state.

Here, we adopt a related approach to estimating cross sections
and rate constants on the basis of the modifiedJ-shifting
procedure of Ref. 13. This procedure allows us to estimate
certain state-resolved cross sections or rate constants and to later
combine the results to estimate the fully averaged quantity,k(T).
Reference 13 showed, for the H2 + OH system, that this type
of procedure led to a better estimate of the actual rate constant
than the simplestJ-shifting procedure outlined previously. For
a specific initial reactant combination,V1,j1,V2,j2, and some
appropriately “typical”J (Jref), we evaluate eq 2.3 to obtain

We then construct either state-resolved cross sections (eq 2.2)
or rate constants (eq 2.5), via theJ-shifting approximation:

with EJ denoting the mean centrifugal barrier at the transition
state,

wherenJK is the number of possible initial conditions for given
values ofJ andK, andnJ is the total number of initial conditions
for givenJ. (For example, ifj1 ) j2 ) 2, then the largestK can
be is 4, and, for anyJ g 4, the sum of all the allowedk1 and
K combinations such thatk1 + k2 ) K is nJ ) 25 or the rotational
degeneracy (2J1 + 1)(2J2 + 1) ) 25.) If A, B, andC are the
rotor constants at the transition state, which here is assumed to
be an almost prolate symmetric top,Bh ) (B + C)/2. (For the
D2OH transition state, we findA ) 25.71 cm-1, B ) 1.47 cm-1,
andC ) 1.39 cm-1.)

To estimatek(T), we use a generalization of the approach in
Ref. 13, which should be suitable for a wider temperature range.
We choose a particular set of{V1,j1,V2,j2} states and perform
state-specific rate-constant calculations, as outlined previously
with the modifiedJ-shifting procedure. A reasonable estimate
of the full rate constant is then provided by

where the brackets around the summation index terms ({...})
indicates that the sums are restricted to a particular set of reactant
states. The set corresponding toV1 ) V2 ) 0 and all permutations
of j1 and j2 with j1, j2 e 4 should yield reasonably accurate
estimates of the rate constants forT e 1000 K. (AtT ) 300 K,
j1 ) 2 andj2 ) 2 are the two most populous states, and atT )
1000 K, j1 ) 2 andj2 ) 4 are the two most populous states.)
We explicitly performed all relevant propagations to obtain (for
a givenJref) reaction probabilities for (j1,j2) ) (0,0), (1,0), (1,1),
(1,2), (2,0), (2,1), (2,2), (3,0), and (4,0). Because of the known

σV1,j1,V2,j2
(ε) )

π

2µε
∑

J

(2J + 1)PV1,j1,V2,j2

J (ε) (2.2)

PV1,j1,V2,j2

J (ε) )
1

(2J1 + 1)(2J2 + 1)
∑

K,p,k1

PV1,j1,V2,j2

J,K,p (ε) (2.3)

k(T) )
Qelec(T)

Qr(T)
∑

V1,j1,V2,j2

gj1,j2
exp[-εV1,j1,V2,j2

/(kBT)] kV1,j1,V2,j2
(T)

(2.4)

kV1,j1,V2,j2
(T) )

(8kBT

πµ )1/2 1

(kT)2∫0

∞
dε ε exp[-ε/(kBT)]σV1,j1,V2,j2

(ε) (2.5)

Qr(T) ) ∑
V1,j1,V2,j2

gj1,j2
exp[-

εV1,j1,V2,j2

kBT ] (2.6)

pV1,j1,V2,j2
(ε) ≡ PV1,j1,V2,j2

Jref (ε) (2.7)

PV1,j1,V2,j2

J (ε) pV1,j1,V2,j2
[ε′ ) ε + (Eref

J - EJ)] (2.8)

EJ )
1

nJ
∑
K

(BhJ(J + 1) + (A - Bh)K2)nJK (2.9)

k(T) ≈
Qelec(T)

Qr{V1,j1,V2,j1}(T)
∑

{V1,j1,V2,j2}
gj1,j2

exp[-
εV1,j1,V2,j2

kBT ]kV1,j1,V2,j2
(T)

(2.10)
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weak dependence of the reaction probabilities on the OH
rotational quantum number,j2, we can approximate the various
missingj1, j2 probabilities by a calculated probability with the
samej1 value.

It is important to note that the general idea of including the
effects of nonzero total angular momentum dynamics in
J-shifting and related approximate rate-constant theories is not
unique to this work or the work in Ref. 13. (See, for example,
earlier work by Truhlar and co-workers,23 Miller and co-
workers,24 Bowman and Shnider,25 and Zhang and Zhang.26) It
is difficult to comment reliably on the relative merits of all these
approaches under the present circumstances without explicitly
applying these methods to the present problem, and without
knowledge of the exact quantum rate constant for the WSLFH
surface.

The numerical Hamiltonian representation of Ref. 13 is
employed: R andr1 are described by evenly spaced grids, and
the dispersion-fitted finite-difference approximation27 is used
for the action of the relevant kinetic-energy operator terms;r2

is described with a two-point potential optimized discrete
variable representation.28,29 The propagation of a given initial
state, characterized by quantum numbersJ, K, V1, j1, V2, j2, k1

and an incoming Gaussian wave packet inR, with appropriate
energy spread, is analyzed to yield the relevant reaction
probabilities over a range of energies, as in Ref. 13. To achieve
convergence of the relevant reaction probabilities for collision
energiesε e 1 eV, experimentation has led to rotational basis
sets withj1 ) 0, 2,..., 14 or 1, 3, 5,..., 15 andj2 ) 0, 1,..., 9. For
example, withK ) 0, p ) +1, we have 345 (evenj1) or 370
(odd j1) rotational basis states, whereas ifK ) 1, we have 605
(evenj1) and 655 (oddj1) rotational basis states; i.e., the basis
sets are approximately twice the size of those used previously13

for H2 + OH. The radial grid details were similar to those
previously used13 and∼4000 Chebyshev iterations were required
for each propagation. We also employed the product analysis
“trick” outlined in Ref. 30 to further refine our reaction
probabilities. A typical propagation requires almost a full day
of computational time on a 667 MHz, Compaq model XP1000
(“Dec-Alpha”) workstation and up to 400 MB RAM. (Calcula-
tions were also performed on a Linux cluster of 1 GHz Pentium
III computers with each calculation, despite the higher clock
speed, now requiring up to 2 days of computation time. Of
course, in this case, many simultaneous calculations can be
performed.)

III. Results

A. Reaction Probabilities. Figure 1 displays various prob-
abilities for reaction 1.2. Figure 1a shows solid probabilities
for J ) 0, 10,..., 50 for reactants in their ground states. The
dashed curve corresponds to ourJ ) 0 result, and the solid
curves are the predictions forJ ) 10, 20, 30, 40, and 50, based
on J-shifting this J ) 0 result (section II). The open circles
correspond to the results of our actual CS (or helicity-decoupled)
quantum dynamics calculations. We see thatJ-shifting is a
reasonable estimator of the trends but tends to overestimate the
reaction probabilities asJ increases. For a collision energy of
0.6 eV, for example, theJ ) 30 reaction probability is
overestimated by 20%.

In addition to reaction out of ground-state reactants, numerous
excited reactant state combinations were investigated. Figure
1b displays someJ-dependent reaction probabilities forV1 )
0, j1 ) 2, V2 ) 0, j2 ) 2, averaged over all other angular
momentum components (eq 2.3). (We focus on fewerJ states
than in Figure 1a because, as discussed in section II,nJ ) 25

k1,k2 or k1,p combinations must be considered for eachJ g 4.
Allowing for the equivalence of even and odd parity Hamilto-
nians within the CS approximation forK > 0, the number of
unique propagations required perJ is 15, still requiring a large
effort perJ.) This particular reactant-state combination is one
of the most important ones for room temperature. The dashed
curve corresponds to theJ ) 8 quantum dynamics result, which
was used as a basis for the modifiedJ-shifting procedure
outlined in section II (i.e.,Jref ) 8). Solid curves correspond to
shifts of this reaction probability and, as in Figure 1a, the open
circles are the results of our quantum dynamics calculations.
Because a large number of calculations are required for eachJ
> 0 result, we have limited the comparison to just a fewJ cases.
Nonetheless, it would appear that the modifiedJ-shifting
procedure for excited-state reactants is also quite reasonable.

B. Cross Sections.The calculations summarized in Figure
1a allow one to estimate the initial ground-state (V1 ) j1 ) V2

) j2 ) 0) state-specific cross sections. Figure 2 depicts some
of the results that we have obtained. The CS result (lowest,
dotted curve) is an explicit evaluation of eq 2.2, based on the
CS reaction probabilities in Figure 1a and linear interpolation
for J values for which we did not perform quantum calculations.
This represents our best state-resolved cross section estimate
for this case.

The other curves in Figure 2 correspond to the evaluation of
eq 2.2 but with the modifiedJ-shifting reaction probabilities
based onJref ) 8. Motivation for this choice ofJref is provided
by inspecting the relative contributions of the variousJ terms
to the CS cross section. For collision energies near 0.3 eV, the
4 e J e 16 range accounts for almost the entire cross section,

Figure 1. Centrifugal sudden (CS) total reaction probabilities for
reaction 1.2 for reactants (a) (V1,j1,V2,j2) ) (0,0,0,0) and (b) (V1,j1,V2,j2)
) (0,2,0,2). In each panel, the dashed curve and symbols represent
our calculated results and the solid curves represent predictions of the
otherJ results based onJref ) 0 in panel a andJref ) 8 in panel b. See
text for further discussion.
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with J ) 8 being the peak region. (For consistency, we therefore
conducted an additional CS propagation withJ ) 8 and ground-
state reactants to obtain the relevant reference reaction prob-
ability.) Comparison of the (j1,j2) ) (0,0) modifiedJ-shifting
(solid curve) and the more accurate CS results (dotted curve)
in Figure 2 shows that we might expect good accuracy (10%)
in the J-shifting approximation for collision energies ofe0.5
eV and reasonable accuracy (20%) for collision energies up to
1 eV.

Troya et al.14 conducted some quasi-classical trajectory (QCT)
calculations for D2 + OH on the WSLFH potential surface. In
particular, they determined theV1 ) V2 ) 0 and (j1,j2) ) (2,2)
energy-resolved total cross section in theε ) 0.2-0.5 eV range.
Their results are displayed as open circles in Figure 2. (The
explicit results presented in Fig. 6 of Ref. 14 include a factor
of 0.5, the high-temperature limit ofQelec, to account for the
electronic degeneracy. We have therefore multiplied those results
by 2 to compare with our results.) Our (j1,j2) ) (2,2) quantum
results agree reasonably well with these QCT results. Atε )
0.5 eV, the QCT cross section is (2.0( 0.1)a0

2, just 13% lower
than ourJ-shifting result of 2.3a0

2. At lower ε, however, the
QCT results tend to be larger than the quantum results. Still, at
the relatively lowε value of 0.25 eV, the QCT cross-section
result, (0.13( 0.02)a0

2 is in reasonable accord with our
J-shifting result of 0.09a0

2.
C. Rate Constants. We determined both certain state-

resolved rate constants and the full thermal rate constant,
according to the procedures discussed in section II. Thek00,00

rate constant is useful because we can compare it to both the
presumably more correct CS-based results and the modified
J-shifting results. Table 1 compares these rate constants for
moderate to low temperatures, showing that they agree remark-
ably well. Interestingly, theJ-shifting result only becomes

noticeably larger than the CS result (as would be expected on
the basis of Figures 1 and 2) forT g 400 K.

The full thermal rate constant for reaction 1.2 was also
estimated using the procedures outlined in section II. Figure 3
displays the standard Arrhenius plot (solid curve) inferred from
our calculations. Experimental results,31,32 as well as the
improved canonical variational transition state theory (ICVT)33

results of Ref. 14, are shown. Our quantum estimate of the rate
constant (solid curve) tends to be lower than the experimental
results (unconnected solid symbols), particularly at lower
temperatures. Table 2 further quantifies our result forT ) 298
K. We see, for example, that the best quantum estimate of the
rate constant is a factor of 2.6 smaller than the more recent
experimental result.32 This situation is quite similar to the
underestimation of the H2 + OH rate constant by a factor of
2.6, found in previous calculations on the WSLFH surface.13

We should note that the (estimated) quantum rate-constant
estimates of Ref. 9, based on the YZCL2 potential surface,8

are in much better quantitative accord (20% or better) with the
experimental data, implying that this potential surface may be
superior to the WSLFH12 surface employed here. Specifically,
Zhang and co-workers9 estimate a rate constant of 21.0× 10-16

cm3 molecule-1 s-1 atT ) 301 K, which is in very good accord
with the experimental result32 at this temperature, (18.0( 0.7)
× 10-16 cm3 molecule-1 s-1.

Table 2 also shows thatQeleck02,02, which is the thermal rate-
constant estimate that is based on just the most populous reactant
state at 298 K, is quite close to the best result, which considered
contributions fromj1, j2 e 4. (Even by temperatures as high as
1000 K, we find that the difference betweenQeleck02,02and our
best estimate is typically<10%.)

Figure 2. Initial state-resolved reactive cross sections for reaction 1.2.
In all cases,V1 ) V2 ) 0 and the particular (j1,j2) initial state is indicated.
Modified J-shifting based onJref ) 8 was used to infer the (0,0), (2,2),
and (4,0) cross sections, and the centrifugal sudden (CS) result for (0,0)
is also displayed. Open circles represent the (j1,j2) ) (2,2) QCT results
of Ref. 14, multiplied by 2 (because those results originally included
a factor of 0.5 for the electronic degeneracy factor, which is not included
in our results).

TABLE 1: W1 ) j1 ) W2 ) j2 ) 0 State Resolved Rate
Constants for D2(W1, j1) + OH(W2, j2) f HOD + D

Qeleck00,00(× 10-16 cm3 molecule-1 s-1)

T (K) Qelec CS J-shifting

250 0.69 0.53 0.49
300 0.66 3.3 3.2
350 0.64 13.3 12.9
400 0.62 29.2 38.6

Figure 3. Arrhenius plot of the thermal rate constant for D2 + OH f
HOD + D. Solid curve denotes our quantum estimate, unconnected
open symbols are experimental results of Ref. 31, and filled symbols
are data obtained from Ref. 32. The transition state theory results of
Ref. 14 are also shown: (‚ ‚ ‚) CVT, (- - -) ICVT/ZCT (difficult to
discern from our quantum results) and (- ‚ - ‚ -) ICVT/µOMT.

TABLE 2: Various Thermal Rate Constant (k) Estimates at
T ) 298 K for D2 + OH f HOD + D

level k (× 10-16 cm3 molecule-1 s-1)

best quantum estimate,
present calculations

6.3

Qeleck02,02, present calculations 6.2
ICVTa 3.15
ICVT/ZCT 6.38
ICVT/µOMT 8.73
experiment, 1981b 18.3( 1.2
experiment, 1996c 16.4( 1.3

a The transition state theory (ICVT) results are from Troya et al.14

b Data from Ravishankara et al.31 c Data from Talukdar et al.32
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The comparison of our thermal rate constant results with the
transition-state theory results is interesting. In Figure 3, the curve
labeled ICVT represents a variational transition state theory level
with no tunneling corrections. The curve labeled ICVT/ZCT
involves a relatively simple tunneling correction that does not
involve reaction path curvature (“zero curvature tunneling”).
The ICVT/µOMT curve represents a higher level of tunneling
correction that is the larger result of certain tunneling paths that
incorporate reaction path curvature (“microcanonical, optimized,
multidimensional tunneling”).33 For T < 1000 K, the ICVT/
ZCT result (dashed curve), on the scale of the figure, can hardly
be discerned from our quantum result (solid curve). On the other
hand, the ICVT/µOMT result, while agreeing better with
experimental results, is higher. Table 2 also quantifies these
results forT ) 298 K, showing that the ICVT/ZCT result is
just 1.3% higher than our best result, whereas the ICVT/µOMT
result is 38% higher.

The ratio of the thermal rate constants for H2 + OH and D2

+ OH is also of interest.14 Figure 4 presents an estimate of this
ratio, employing our present D2 + OH results and the previous
quantum estimates of Ref. 13 for H2 + OH. Note that Ref. 13
only used the most populous H2 + OH reactant state (V1 ) 0,
j1 ) 1, V2 ) 0, j1 ) 2) atT ) 300 K. However, it is quite likely
that an improved estimate of the H2 + OH rate constant, based
on the inclusion of more reactant states, would not be too
different, because that is what we found here for D2 + OH.
Our calculations (the solid curve in Figure 4) show that the H2

+ OH reaction is faster than the D2 + OH reaction over a wide
temperature range with the largest effect at lower temperatures
(larger 1/T) most likely being due to the greater importance of
tunneling in the H2 + OH reaction. Experimental data (open
circles with error bars), inferred from data in Ref. 31, are also
displayed that are in reasonable accord with our results. The
agreement is particularly good in the room temperature regime.
We also give the results from the transition state theory
calculations of Ref. 14. As with just the D2 + OH rate-constant
results in Figure 3, we see that the best transition state theory
result (assuming that our own quantum estimate is the most
correct result for the WSLFH surface) is the ICVT/ZCT level.

IV. Concluding Remarks

We have performed a variety of quantum dynamics calcula-
tions on the D2 + OH f HOD + D reaction and estimated
cross sections and rate constants. Our results, based on the
WSLFH potential energy surface,12 were compared with avail-

able quasi-classical trajectory, transition state theory, and
experimental results. Consistent with previous results for the
H2 + OH reaction,13 it appears that the thermal rate constants
are underestimated on the WSLFH surface, and the surface of
Yang and co-workers8,9 provides a more quantitative description.

The availability of a variety of transition state theory results14

on the WSLFH surface allowed us to gauge the adequacy of
these more approximate but easier to apply theories. Interest-
ingly, we found that a low-level tunneling correction (ICVT/
ZCT) led to results that were in better accord with our best
quantum estimates than a higher-level tunneling correction that
allows for reaction path curvature effects (ICVT/µOMT). Does
this mean that reaction path curvature effects are less important
than those that would be expected for this system (and also H2

+ OH)? We have examined plots of our evolving wave packets,
as well as Fourier transforms of our wave packets, on selected,
tunneling regime energies. These plots show little evidence of
“corner cutting”, in relation to the reaction path. However, there
are other explanations for the relatively poor performance of
the higher-level transition state theory. For example, the
calculations of Ref. 14 did not employ any corrections for
vibrational anharmonicity, which could be important.27,28
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