
The Electronic Non-Adiabatic Coupling Matrix: A Numerical Study of the Curl Condition
and the Quantization Condition Employing the Mathieu Equation†
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In this article, we discuss the electronic nonadiabatic coupling matrix,τ, which under certain conditions is
characterized by two interesting features: (1) its components fulfill an extended Curl equation (Chem. Phys.
Lett. 1975,35, 112, (see Appendix 1)) and (2) it is quantized in the sense that the topologicalD matrix,
presented as an exponentiated line integral over theτ matrix, is a unitary diagonal matrix (Chem. Phys. Lett.
2000,319, 489). These features can be shown to exist if the relevant group of states forms a Hilbert subspace,
namely, a group of states that are strongly coupled with each other but are only weakly coupled with all other
states. The numerical study is carried out applying the eigenfunctions of the Mathieu equation.

I. Introduction

It is well-known that molecular processes are governed by
Coulombic interactions and therefore are accurately treated by
applying the relevant Schro¨dinger equation (SE). The connection
between the solutions of the SE and observables such as cross
sections or spectroscopic measurements is well established from
the early days of quantum theory so that the main theoretical
interest is in developing numerical algorithms to solve the SE.
The basic theory that enables the quantum mechanical treatment
of realistic molecular systems was presented by Born and
Oppenheimer (BO) and later completed by Born and Huang.1,2

Any additional theoretical treatment is essentially considered
as overdoing. Indeed, as long as the main attention is given to
processes taking place on the ground electronic state, no rigorous
additional theoretical input is needed.

The situation changes once electronic excited states have to
be included to account for possible electronic transitions. Hints
toward potential difficulties follow from the Hellmann-Feyn-
man theorem3 which points at the possibility that the BO
approach may lead to magnitudes, the nonadiabatic coupling
terms (NACT), which are singular. The singularities can be
considered as mishaps caused by the fact that electronic states
become degenerate at certain points in configuration space.4 In
numerous cases it was assumed that singular NACTs are rare
and therefore can be ignored. The Hellmann-Feynman theorem
was ignored for sometime until, two decades later, Longuet-
Higgins and others revealed that singularities may affect the
single-valuedness of some of the electronic eigenfunctions.5-8

However, that these singularities may also affect the single-

valuedness of the diabatic potential energy surfaces (PES), which
are the ones to be applied in dynamical treatments, was revealed
only a few years ago.9-11

An example where singularities play an important role is field
theory,12 namely, the theory of elementary particles, where the
relevant (singular) vector potentials are connected with the
creation and annihilation of elementary particles. We recently
pointed out that the appropriate theoretical approach to handle
the singularities in molecular physics is similar to approaches
within field theory and elementary particles.13-16

Because the singular NACTs appear in the nuclear adiabatic
BO-SEs, these equations cannot be solved unless the singu-
larities are eliminated rigorously.17-20 In ref 17, where this issue
was discussed for the first time, it was revealed that a necessary
condition for being able to eliminate the NACTs from the BO-
SE is the fulfillment of a Curl condition (to be discussed in
sectionII ; see eq 4). In the process of eliminating the NACTs
(a process also known as gauge transformation13), the adiabatic
PESs (see next section) are transformed to become diabatic
PESs. This transformation was termed theadiabatic-to-diabatic
transformation(ADT).17 It is obvious that the newly formed
diabatic potentials, just like the original adiabatic ones, have to
be single-valued in the region of interest. It was shown that for
them to be single-valued, the matrixτ that contains the NACTs
(see next section) has to be quantized.9-11 The quantization
feature depends on the number of states that are included in
the calculation and is probed via a matrixD to be introduced
in the forthcoming section.

In section II brief discussion is given concerning the
nonadiabatic matrixτ, the topological matrixD, and the
extended (non-Aeblian) Curl matrix,F (related to the Curl
condition). The Mathieu equation and its solutions are briefly
discussed in the third section, numerical results for the ele-
ments of both theD matrix and theF matrix are presented in
the fourth section, and Discussion and Conclusions are the fifth
section.
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II. Theoretical Background

The nonadiabatic coupling matrix element, the NACT,τji, is
defined as

where the grad operator is expressed with respect to (mass-
scaled) nuclear coordinates,ν, and the úk(e|ν) functions,
k ) j,i, are the eigenfunctions of the electronic Hamiltonian
He(e|ν):

Here, uk(ν) is the kth, adiabatic PES, ande stands for the
electronic coordinates.

In the present article we concentrate on two subjects:
(a) Having the definition of theτ matrix (which is a vector

of matrixes), we introduce the matrixF, defined as:

wherep andq are (Cartesian) internal coordinates (n stands for
their number),τq and τp are, respectively, theq and thep
components ofτ, andFqp is recognized as the (p,q) component
of the tensorial Yang-Mills field.21 The set of equations in eq 3
can be written also in a more compact way:

It was shown that in case of a complete Hilbert space, the
components ofF are zero at every point in the configuration
space (for details, see Appendix 1 in ref 17). Thus,

In other words, every set of states that forms a Hilbert space
yields a zero YM field. As it turns out, eq 4 enables the
elimination of the NACTs from the BO-SE or, in others words,
guarantees the validity of the ADT. However, because eq 4 is
fulfilled for a complete Hilbert space, it just guarantees the
elimination of the NACTs for such a case. A few years ago,
the validity of eq 4 was extended for groups of states which do
not form a complete Hilbert space but are characterized by the
feature that, in the region of interest, the states included in such
a group are strongly coupled with each other but are only weakly
coupled with all the states not included in the group (see
Appendix in ref 22). In what follows, we define such a group
of states as a Hilbertsubspace.

Consequently, eq 4 can be used as a means to determine (for
a given region) whether one is able to eliminate the NACTs
from the BO-SE. This is a mathematical procedure known as
diabatization.

However, eq 4 is a very inconvenient method to check
whether indeed a group of states can be diabatized. It is a
complicated expression (from a numerical point of view)
because it has to be carried out at every point in the region of
interest and it cannot be carried out at singular points, namely,
at points where theτ matrix elements are not analytical functions
of the (nuclear) coordinates. Therefore, this condition is never
considered in realistic cases.

In what follows, we briefly show how to modify eq 4 to
include the singular points.23 To simplify the presentation, we

assume the existence of one singular point so that eq 4 can be
“extended” in the following way:

Here the matrixg, like F, is a tensorial matrix, the coordinates
(q10,q20,...,qn′0) are the position coordinates of the singularity
(also known as the point of the conical intersection (CI)24,25),
and δ(qj - qj0) is the corresponding Dirac-δ function. It is
important to emphasize that in case the coordinatesqj, j ) 1,..,n
are not Cartesian coordinates,n′ is not necessarily equal ton.
In fact, in most casesn′ < n. Equation 4′ takes an interesting
form in the case of a two-state system defined in terms of two
(polar) coordinates (q,φ), namely:

whereE is the unit vector in the direction ofF and f(φ) was
found to be equal to the angular component ofτ12(q,φ), namely,
to τφ12(q,φ).23a

(b) The second subject is related to a feature ofτ that, under
certain conditions, satisfies quantization conditions. We start
by saying that it can be shown that for a group of states that
spans a Hilbert space, theτ matrix is quantized, and that the
following matrix, D(Γ), defined as9-11

is a diagonal unitary matrix for any contour,Γ, defined in the
multidimensional region of configuration space (because the
integration is done along a contour, we frequently termed this
integration as aline integral).19-20 This implies that its numbers
along the diagonal are of norm 1, which in the case of real
eigenfunctions are(1. Here,ds is a differential vector along
Γ, the dot represents a scalar product, and the symbolp is a
path-ordering operator. Again, as in the previous case, it can
be shown that a group of states which does not form a Hilbert
space but is isolated from “the rest of the world” in a given
region in configuration space will approximately fulfill the
relevant quantization condition. Consequently, the extent to
which theD matrix is diagonalized is another way of finding
out to what extent this group of states forms a Hilbert subspace.
As a final comment on this subject, we mention the fact that
the number of-1s along the diagonal, designated asK and
defined as the topological number, is contour dependent, i.e.,
K ) K(Γ), and yields information regarding the various CIs
surrounded byΓ.26 This number was shown to be always even,
which implies that theD matrix is not only unitary but also
that its determinant is equal to 1. In other words,D belongs to
the SO(N) symmetry group (whereN is the dimension of the
Hilbert subspace).

To clarify the subject of quantization, we consider a case of
a two-state system. Because the matrixD is a unitary matrix, it
will be written as

where it can be shown thatR is given by the following line
integral:17

Here,τ12 is the only nonzero term of the 2× 2 τ matrix andk

τji ) 〈új|∇úi〉; i > j ) { 1,...} (1)

(He(e|ν) - uk(ν))úk(e|ν) ) 0; k ) j,i (2)

Fqp ) ∂

∂p
τq - ∂

∂q
τp - [τq,τp]; {p,q;n} (3)

F ) Curlτ - [τ × τ] (3′)

F ) 0 (4)

F ) g(q1,q2,...,qn)∏
j)1

n′

δ(qj - qj0) (4′)

F ) E1
q

πf(φ)(0 1
-1 0)δ(q) (5)

D(Γ) ) p exp(-IΓds‚τ) (6)

D ) (cosR sinR
-sinR cosR ) (7)

R ) IΓτ12(s)‚ds ) kπ (8)
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is some number. It was shown that the condition for the two
states to form a Hilbert subspace is thatk is an integer (or
zero).9-11 This requirement is reminiscent of the ordinary Bohr-
Sommerfeld quantization law for the angular momentum27

(which in this particular case is the matrix element,τ12).
Returning to theD matrix in eq 7, it is seen that for it to become
the topological matrix as explained above,K is allowed to have
two values,K ) 0 or 2, but neverK ) 1.26

Thus far we discussed two mathematical items: theF matrix
and theD matrix. Having anF matrix which is zero at every
point (where it is not singular) in a given region guarantees the
diabatization in that region, and having a diagonalD matrix
for every contour in that region guarantees single-valued
diabatization. This can be said in a more mathematical way:
The fulfillment of the Curl condition (eq 4) is a necessary and
sufficient condition for diabatization. The quantization is a
necessary condition for single-valued diabatization. We already
mentioned that because of numerical “inconveniences”, the Curl
condition is not likely to be considered in realistic cases.
However, probing the quantization condition is a much friendlier
act and can be easily carried out in realistic molecular studies
(as we and others frequently do).

The fulfillment of the Curl equation and the quantization
condition are the subjects of the present article. In general, if
one of the two conditions is satisfied, we expect the other to be
satisfied as well. (This statement is not necessarily correct in
case of singularities.) In the following study we consider a model
based on the eigenfunctions of the Mathieu equation,28-31 which
not only yields details related to the meaning of the above two
features of theτ matrix but also explains the interrelation
between the two. Recalling thatN is (also) the dimension of
theτ matrix, we discuss two aspects: (1) how, for a given value
of N, increasing the regionΛ harms the fulfillment of both
features and (2) to what extent increasingN for a given region
Λ improves the fulfillment of both features.

III. The Mathieu Equation: A Summary of the
Two-State System

The electronic SE to be considered is written for one
electronic (circular) coordinate,θ, and is expressed in terms of
two nuclear polar coordinates,φ andq:28-31

Here Eel is a characteristic electronic quantity,G(q,φ) is the
nuclear-electronic interaction coefficient, anduj(q,φ) and
új(θ|q,φ) are thejth eigenvalue and eigenfunction, respectively,
which parametrically depend on the nuclear coordinates. Equa-
tion 9 is recognized as the well-known Mathieu equation. For
the present study, we assumedG(q,φ) to be independent ofφ
and linearly dependent onq, namely, equal tokq (here,k is a
given constant not related tok in eq 8). This choice of the
interaction term has several numerical advantages: (1) It forms
singular NACTs (or degenerate eigenvalues) atq ) 0, only.
Therefore, in what follows, the value ofq yields the distance
of a point in configuration space from the position of the
singularity point. (2) The eigenvalues of eq 9 depend onq but
are independent ofφ, and the eigenfunctions of eq 9 are such
that the resulting NACTs are alsoφ independent (but depend
on q). This fact makes our whole studyφ independent.

To simplify somewhat the forthcoming treatment, we intro-
duce a new parameter,x, defined as:

Thus, the parameterx replacesq as the radial coordinate. As
was mentioned earlier, the size of theΛ region (in configuration
space) plays an important role in our study. The present notation
q is the (nuclear) coordinate directly associated with the size of
the Λ region. Thus, the larger theq, the larger theΛ region.
The same applies now forx (which replacesq), so that the larger
the x, the larger theΛ region. The numerical study concentrates
on the dependence of various functions onx.

Equation 9 is based on two nuclear coordinates (q,φ), and
thereforeτ has two components,τq and τφ (even with the
simplified G function). It was shown that in the case ofN ) 2
and small enoughx values, the corresponding two matrix
elementsτq12 andτφ12 become:29

(in fact, τq12 is zero for anyx value). Next, by choosing the
contourΓ to be a circle centered atx ) 0, it was shown that
the topological angleR (see eq 8) takes the form:

Similarly, it can be shown that the only nonzero element of the
F tensor, i.e.,Fqφ12, is:

where the first term on the right-hand side is due to eq 5 and
the second is the result of the relevant two-state (two-coordinate)
Curl expression when applied to the two components ofτ, as
given in eq 11:

Recalling eq 10, the expression in eq 13 becomes:

Thus, at every point thatq > 0, the vectorFqφ12 is a constant
and therefore is never equal to zero (unlessEel f ∞). This fact
implies that the two lowest states of the Mathieu equation can
never form a Hilbert subspace.

Equation 13′ was derived with the assumptions thatτ12 does
not have az-component and thatτφ12 is independent ofz. As a
result of that,Fqφ12 is a vector perpendicular to the (q,φ) plane.

As a final point in this subsection, we mention the fact that
the two expressions, presented in eqs 11 and 13 (or eq 13′)
have to fulfill Stokes’ theorem,32a which states:

Assuming the surface,σ, to be a circular area of a given
radius,q, surrounding the pointq ) 0 and employing eqs 11

(-1
2
Eel

∂
2

∂θ2
- G(q,φ) cos(2θ - φ) - uj(q,φ))új(θ|q,φ) ) 0

(9)

x ) q(k/Eel) (10)

τφ12(x,φ) ) - 1
2q(1 + x2

32); τq12(x,φ) ) 0 (11)

R ) q∫0

2π
τφ12dφ ) -π(1 + x2

32) (12)

Fqφ12 ) π1
q
f(φ)δ(q) - x2

32q2
(13)

1
q(∂(qτφ12)

∂q
-

∂τq12

∂φ ) ) - x2

32q2

Fqφ12 ) π1
q
f(φ)δ(q) - k2

32Eel
2

(13′)

IΓτ12(s)‚ds ) IIdσ‚Curl(τ12(s)) (14)
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and 13′, it is seen that eq 14 is fulfilled if and only if:

In a previous publication,23a this condition was termed as the
quantization of the pseudo-electromagnetic fieldalong the seam
(reminiscent of Dirac’s quantization of the magnetic monopole32b).
It is interesting that the condition in eq 15 was derived in ref
23a assuming the two states form a Hilbert subspace. Here it is
shown to be fulfilled even in that case where the two states do
not form a Hilbert subspace.

IV. The Mathieu Equation: A Numerical Study of the
Multistate System

The numerical study is divided into two parts. (a) In the first
part, we study the interrelation between the size of configuration
space expressed in terms ofx and the size of the Hilbert subspace
expressed in terms ofN when applied to the topological matrix
D. In other words, we intend to show that for a fixed value of
x, increasingN causes the unitaryD matrix to become more
and more diagonal, which is an indication that the group of
states converges toward becoming a Hilbert subspace. The
opposite is expected whenx is increased for a fixedN value. In
such a case, theD matrix becomes less diagonal, implying that
the relevant group of states distances itself from being a Hilbert
subspace. (b) In the second part, we study the interrelation
between the size of configuration space (expressed, as before,
in terms ofx) and the behavior of the Yang-Mills fieldF. We
intend to show that for a fixedx value, increasingN causes
more and more elements of theF matrix elements (in their
absolute values) to decay to zero. In the previous section, we
showed that in case ofN ) 2 the (1,2) element of the 2× 2 F
matrix is a constant and therefore never becomes zero. However,
in a recent publication it was shown, analytically, that increasing
N from 2 to 4 causes the (1,2) element of the 4× 4 F matrix
element to approach zero for small enoughx values.30 In fact,
it was this observation which motivated us to extend our study
to much larger groups of states.

To solve the Mathieu equation, we expand theúj(θ|q,φ)
eigenfunctions in the Fourier series. For our purposes and in
the notation of ref 31a, we select the following two families of
solutions:

wherez is given as:

Here, the cosine series stands for theúj(θ|q,φ) functions with
odd j values and the sine function for those with the evenj
values.

It is well-known that the geometrical series, as presented in
eqs 16 and 17, does not converge at points close to the real
axis. This feature may affect the rate of convergence for points
on the real axis. Because of that, the convergence in each case
was treated with care. In this respect it is important to mention
that we had to include 200 terms in each case to guarantee the

required convergence. This slow convergence enforced numeri-
cally, rather than analytically, calculated coefficients to avoid
inaccuracies.

IV.1. The Topological D Matrix and the Size of Config-
uration Space.The expression to calculate theD matrix is given
in eq 6, but because in all our forthcoming numerical treatments
we assume the contourΓ to be a circle centered at the point of
the CI, eq 6 simplifies in the following way:

whereτφ(q,φ) is theφ component ofτ:

and we recall that in all our applicationsx replacesq. In fact,
the calculation of theD matrix becomes even simpler for the
present model because none of theτ(q,φ) matrix elements isφ
dependent, and therefore the integration in eq 18 can be done
immediately:

The study of theD dependence onx andN, i.e., D(N,x), is
presented in terms of the diagonal elements of theD matrix,
namely,Djj {j ) 1,N}. In the converged case (that is, the case
for which the group ofN states forms a Hilbert subspace in the
circular region defined byx) we expect these diagonal elements
to be(1, and the rest (the off-diagonal ones) to become zero.
For our particular model the diagonal elements are all expected
to become-1 whenN is an even number but for the case where
N is an odd number, one of the diagonals is+1 and the rest
are, as before,-1. In what follows, we consider the even case
only. Therefore, for a givenN andx, a significant deviation of
a diagonal term from-1 implies that within the region defined
by x the consideredN statesdo not form a Hilbert subspace.

In Figure 1, the diagonal matrix elementsDjj(N,x) are
presented as a function ofx for five different values ofN: 2, 4,
6, 8, and 12. In Figure 1a,D22 is presented as a function ofx
calculated forN ) 2; in Figure 1b,D22 andD44 are presented
as calculated forN ) 4; in Figure 1c,D22, D44, andD66 are
presented as calculated forN ) 6; in Figure 1d,D44, D66, and
D88 are presented as calculated forN ) 8; and in Figure 1e,
D88 andD1212are presented as calculated forN ) 12. We noticed
that all curves related to the variousj andN values start with
the valueDjj(N,x ≈ 0) ) -1.0 and then increase (that is,
approach zero or even+1) in different paces asx increases.
However, the rate of increase becomes slower the larger is the
N value. For instance, two states (i.e.,N ) 2) form a Hilbert
subspace only as long asx e 1.0 (see Figure 1a), but eight
states (i.e.,N ) 8) form a Hilbert subspace, which holds as
long asx e 6.0 (see Figure 1d). Thus, for a givenx, the larger
the N the closer the set of states comes to being a Hilbert
subspace. These results also imply that the larger the region in
the configuration space, the larger the size of the set of states
has to be to become a Hilbert subspace. In this respect, we
mention that the relevant measure for a region in the configu-
ration space is the area (and not the radius). Therefore, the
previous eight lower states of the Mathieu equation are able to
form a Hilbert subspace in a region which is about 40 times
larger than a region in which two states can form a Hilbert
subspace.

Another observation is related to the rate of increase of
Djj(N,x), for a fixedN value but for differentj values. We noticed

∫0

2π
dφf(φ) ) 1 (15)

ce2n+1(z,-x) ) ∑
m)0

∞

A2m+1
2n+1 (-x) cos(2m + 1)z

se2n+1(z,-x) ) ∑
m)0

∞

B2m+1
2n+1 (-x) sin(2m + 1)z

(16)

z ) θ - φ

2
(17)

D(q) ) p exp(-q∫0

2π
dφτφ(q,φ)) (18)

τφjk ) 1
q〈új| ∂

∂φ
úk〉 (19)

D(x) ) exp(-2πqτφ(q)) (18′)
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that the larger thej value, the larger the rate of increase. Thus,
for instance, in Figure 1c the sixth diagonal elementD66(N )
6,x) increases faster as compared to the diagonal elements
D22(N ) 6,x) andD44(N ) 6,x) calculated for the sameN value
(i.e.,N ) 6). In fact in all cases, the last diagonal element along
the diagonal, namelyDNN(N,x), shows asx increases, the largest
deviations from-1.0. It is important to mention that the
Djj(N,x) matrix element is related to thejth highest adiabatic
state and thatDNN(N,x), therefore, is related to thehighest
adiabatic state of the considered set of states.

Since for eachN the last element (related to the highest state)
shows the largest deviation from-1.0, we present in Figure 2
theDNN(N,x) matrix elements as afunctionof N for differentx
values. We noticed that the variousDNN(N,x) curves decay
asymptotically toward the value-1 asN increases, but the rate
of decay becomes slower asx becomes larger (i.e., the larger is
the region in configuration space). Thus, it is noticed that atx
) 4, for example, the rate of decay is very fast (all diagonal
elements forN g 4 are already-1.0), but forx ) 16 the rate
of decay is so slow that we reach the value of-1.0 only when
N g 16.

In summary, we show here that the more the region in the
configuration space is extended, the larger the size of a set of
states is required to be to be able to become a Hilbert subspace.
We already had hints for this tendency in our studies related to
real molecular systems, namely, the C2H molecule33 and the H
+ H2 system.34 However, the important message of this study
is that the convergence to the required size of the function space
is relatively fast. This is the case because the region increases
asx2 and not asx. Indeed, assuming that for a given region the
required size of a Hilbert subspace isN ) 2, then the required
size for a region almost 2 orders of magnitude larger is obtained
for ∼N ) 10.

IV.2. The Yang-Mills F Matrix and the Size of Configu-
ration Space.The Yang-Mills field, described in terms of the
F matrix and presented in eqs 3 and 3′, is made up of two
expressions:

where

TheH matrix elements, expressed in terms of polar coordinates,
are given in the form:

or:

whereτ̃φ is defined as:

and theT matrix follows from the expression:

Hereτq(q,φ) is defined in a similar way asτ̃φ but with respect
to q. Because all the expressions in eqs 22 and 24 are multiplied
by (1/q), the numerical study will be performed for the same
expressions but ignoring (1/q).

The dependence of the various matrixes,Z ) H, T, F, on x
and N is presented in Figures 3-5 in terms of several
off-diagonal elements of the kindZ jk(N,q) wherej * k.

To grasp the importance of the two matrixesH andT that
make up for F, we show in Figure 3, a and b, several
off-diagonal elements of these matrixes as a function ofN
calculated atx ) 10. It is well noticed that most of these
elements are relatively large (>0.1) and therefore differ from
zero for all practical purposes.

The situation changes when considering theF matrix ele-
ments. In Figure 4, the off-diagonal elements of theF matrix
are presented (note the logarithmic scales along both axes): in
Figure 4a, results are shown forx ) 1 and in Figure 4b, for
x ) 10 (the samex value as applied in Figure 3). It is well
noticed that the various numerical values of this matrix are by
far much smaller than those of the corresponding elements of
theH and theT matrixes, and they become smaller and smaller
asN increases. The interesting aspect of this study is the very
fast decrease of most of these matrix elements withN and the

Figure 1. Diagonal matrix elementsDjj(N,x), calculated as a function
of x for variousN values. (a) Results forD22(N ) 2,x); (b) results for
Djj(N ) 4,x), j ) 2,4; (c) results forDjj(N ) 6,x), j ) 2,4,6; (d) results
for Djj(N ) 8,x), j ) 4,6,8; (e) results forDjj(N ) 12,x), j ) 8,12.
Empty circlesj ) 2; full circles j ) 4; diamondsj ) 6; squaresj ) 8;
trianglesj ) 12.

F ) H - T (20)

H ) curlτ and T ) τ × τ (21)

H jk ) 1
q{ ∂

∂q〈új| ∂

∂φ
úk〉 - ∂

∂φ〈új| ∂

∂q
úk〉}

H ) 1
q(∂τ̃φ

∂q
-

∂τq

∂φ) (22)

τ̃φjk ) 〈új|∂úk

∂φ〉 w τ̃φ ) qτφ (23)

T ) 1
q
(τ̃φτq - τqτ̃φ) (24)
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fact that they decrease to values as small as 10-10 (recalling
the large values of theH and T matrix elements). The only

exception is thelast off-diagonal elementFN-1N(x), which
decreases withN but at a very slow rate.

Comparing the results forx ) 1 andx ) 10, we noticed that
in both cases the various values decrease to∼10-10, but in the

Figure 2. Highest diagonal matrix elementsDNN(N,x), calculated as a function ofN for variousx values. Empty circlesx ) 1.0; full circles
x ) 4.0; diamondsx ) 8.0; squaresx ) 12.0; trianglesx ) 16.0.

Figure 3. Off-diagonal matrix elementsZ jk(N,x); Z ) H,T, calculated
as a function ofN (note the logarithmic scale) forx ) 8.0. (a)Z ) H;
(b) Z ) T. Empty circles (1,2) off-diagonal matrix element; full circles
(3,4) off-diagonal matrix element; diamonds (1,N) off-diagonal matrix
element; squares (N/2,N/2 + 1) off-diagonal matrix element; triangles
(N-1,N) off-diagonal matrix element.

Figure 4. Off-diagonal matrix elementsFjk(N,x) calculated as a function
of N for two x values. (a)x ) 1.0; (b)x ) 10.0. Note the logarithmic
scales along both the abscissa and the ordinate.
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case ofx ) 1, the rate of decrease is faster. The reason is that
it is easier for a given group of states to become a Hilbert
subspace the smaller is the x value, namely, the smaller is the
region surrounding the CIs.

This feature is even better seen in Figure 5 where the same
F matrix elements are presented but as a function ofx calculated
for a fixed value ofN ()8). The results in this figure support
what is claimed in the previous paragraph, that is, that these
matrix elements tend to increase as a function ofx (when
calculated for a fixedN value).

V. Conclusions

In this article, we considered the nonadiabatic coupling matrix
τ which, under certain conditions, is characterized by two
interesting features: (1) its components fulfill the Curl condition
(see eqs 2-4), and (2) it is quantized in the sense that theD
matrix presented in eq 6 is a unitary diagonal matrix. These
features can be shown to exist if the relevant group of states
forms a Hilbert space. In case this group does not form a Hilbert
space, the fulfillment of these relations depends on the various
CIs in the configuration space (namely, on the positions and
the spatial distribution of their NACTs) and the size of the region
in the configuration space that surrounds them.

It has been known for quite some time that a region
surrounding a CI can always be made small enough so that the
2 × 2 D matrix becomes a unitary diagonal matrix, which
implies that the two relevant states form a Hilbert subspace in
this (reduced) region.33-38 (In fact, we recently revealed34 that
even this statement is not always true.) From studies that were
extended to three states,33,34 we learned that in a given region
where two states are not enough for forming a Hilbert subspace
of two states we can form a Hilbert subspace of three states. In
other words, there are regions where the 2× 2 D matrix may
not be a unitary diagonal matrix, but the corresponding 3× 3
is such a matrix. Thus, it seems that the larger the region, the
more states are required to make the relevantD matrix diagonal
(and theF matrix a zero matrix). This article is devoted to this
subject.

The idea was to consider for this purpose a simple model for
which the “electronic” eigenstates can be easily produced; thus,
the above-mentioned relations can be studied quantitatively. On
the basis of our previous experience, we chose for this task the
Mathieu equation. This equation is characterized by one
electronic coordinate,θ, and two nuclear coordinates (q,φ). The

term that couples the electronic and the nuclear motions and
depends on all three of them is written in the present application
as a product [G(q) cos(2θ-φ)], which yields NACTs that are
independent of the polar coordinateφ, a fact which simplifies
significantly the numerical treatment.

The numerical results support the basic theoretical expecta-
tions: for a given, arbitrary size of a region in configuration
space, we can always find (usually) a final set of states that
forms a Hilbert subspace. In addition, we also revealed two
practical findings: (1) It is true that the larger the region, the
more states are required for the group to become a Hilbert
subspace, but we found that the convergence toward a Hilbert
subspace is relatively fast (this fact, however, depends on the
distribution of the various CIs). (2) We found that for both
matrices, i.e., theD matrix and theF matrix, the elements that
relate to the higher states converge more slowly than those
related to the lower states. In other words, it is always theNth
diagonal term of theD matrix that is the last one to reach(1,
and it is always the (N,N-1) off-diagonal term of theF matrix
that is last to become close to zero.

In this article we analyzed the matricesF and D by
considering a model. As a final statement, we reiterate the
importance of these two matrices: The diabatization is guar-
anteed by the Curl condition (eq 4), which implies thatF has
to be zero at every point in the region of interest but single-
valued diabatization is guaranteed only by the quantization of
theτ matrix as expressed in terms of theD matrix in that same
region.
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