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In this article, we discuss the electronic nonadiabatic coupling matriwhich under certain conditions is
characterized by two interesting features: (1) its components fulfill an extended Curl eq@tiem.(Phys.

Lett. 1975,35, 112, (see Appendix 1)) and (2) it is quantized in the sense that the topol@icetrix,
presented as an exponentiated line integral over thatrix, is a unitary diagonal matrixChem. Phys. Lett.
2000,319 489). These features can be shown to exist if the relevant group of states forms a Hilbert subspace,
namely, a group of states that are strongly coupled with each other but are only weakly coupled with all other
states. The numerical study is carried out applying the eigenfunctions of the Mathieu equation.

I. Introduction valuedness of the diabatic potential energy surfaces (PES), which

) are the ones to be applied in dynamical treatments, was revealed
It is well-known that molecular processes are governed by only a few years ag®: 1!

Coulombic interactions and therefore are accurately treated by An examole where sinaularities play an important role is field
applying the relevant Schdinger equation (SE). The connection 1 P 9 play por
between the solutions of the SE and observables such as cros5'€°"Y: namely, the theory of elementary particles, whgre the
sections or spectroscopic measurements is well established fronf€/evant (singular) vector potentials are connected with the
the early days of quantum theory so that the main theoretical crgatlon and annihilation of .elementary' particles. We recently
interest is in developing numerical algorithms to solve the SE. Pointed out that the appropriate theoretical approach to handle
The basic theory that enables the quantum mechanical treatmenth® Singularities in molecular physics is similar to approaches
of realistic molecular systems was presented by Born and Within field theory and elementary particlés1®
Oppenheimer (BO) and later completed by Born and Hugng. Because the singular NACTs appear in the nuclear adiabatic
Any additional theoretical treatment is essentially considered BO—SESs, these equations cannot be solved unless the singu-
as overdoing. Indeed, as long as the main attention is given tolarities are eliminated rigoroushf=2° In ref 17, where this issue
processes taking place on the ground electronic state, no rigorousvas discussed for the first time, it was revealed that a necessary
additional theoretical input is needed. condition for being able to eliminate the NACTs from the BO
The situation changes once electronic excited states have toSE is the fulfilment of a Curl condition (to be discussed in
be included to account for possible electronic transitions. Hints sectionll ; see eq 4). In the process of eliminating the NACTs
toward potential difficulties follow from the HellmaniFeyn- (a process also known as gauge transforméafjpthe adiabatic
man theorem which points at the possibility that the BO PESs (see next section) are transformed to become diabatic
approach may lead to magnitudes, the nonadiabatic couplingPESs. This transformation was termed dokabatic-to-diabatic
terms (NACT), which are singular. The singularities can be transformation(ADT).17 It is obvious that the newly formed
considered as mishaps caused by the fact that electronic statediabatic potentials, just like the original adiabatic ones, have to
become degenerate at certain points in configuration spce.  be single-valued in the region of interest. It was shown that for
numerous cases it was assumed that singular NACTs are rarghem to be single-valued, the mateixhat contains the NACTs
and therefore can be ignored. The Hellmafigynman theorem  (see next section) has to be quanti®el The quantization
was ignored for sometime until, two decades later, Longuet- feature depends on the number of states that are included in

Higgins and others revealed that singularities may affect the the calculation and is probed via a matfxto be introduced
single-valuedness of some of the electronic eigenfuncliohs. in the forthcoming section.

However, that these singularities may also affect the single- | <o tion Il brief discussion is given concerning the

nonadiabatic matrixz, the topological matrixD, and the
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Il. Theoretical Background

The nonadiabatic coupling matrix element, the NAGT, is
defined as
T = [@ﬂVgiD

i>j={1.} )

Vertesi et al.

assume the existence of one singular point so that eq 4 can be
“extended” in the following way:

F=9(03,0;--a) | |9(q — gjo) 4)
142 D ] 0.

Here the matrixg, like F, is a tensorial matrix, the coordinates

where the grad operator is expressed with respect to (mass{Qio,0z0,... o) are the position coordinates of the singularity

scaled) nuclear coordinates, and the y(e|v) functions,
k = j,i, are the eigenfunctions of the electronic Hamiltonian
He(ev):
(He(elv) —u ()i (elv) =0; k=] 2

Here, u(v) is the kth, adiabatic PES, and stands for the
electronic coordinates.

In the present article we concentrate on two subjects:

(a) Having the definition of the matrix (which is a vector
of matrixes), we introduce the matrkx, defined as:

qu = %tq - 88(:] p [Tqup]; {pqun} (3)
wherep andq are (Cartesian) internal coordinatess(ands for
their number),zy and r, are, respectively, the and thep
components of, andFq is recognized as the) component
of the tensorial Yang-Mills field! The set of equations in eq 3
can be written also in a more compact way:

3)
It was shown that in case of a complete Hilbert space, the

components of are zero at every point in the configuration
space (for details, see Appendix 1 in ref 17). Thus,

F = Curlt — [7 x 1]

F=0 (@)

(also known as the point of the conical intersection %),

and 6(q — gjo) is the corresponding Diraé-function. It is
important to emphasize that in case the coordingtgs= 1,..n

are not Cartesian coordinates,is not necessarily equal t@

In fact, in most caser’ < n. Equation 4 takes an interesting
form in the case of a two-state system defined in terms of two
(polar) coordinatesgp), namely:

1 0 1
F= eqnf<¢)(_1 O)a(q) 5)
wheree is the unit vector in the direction df andf(¢) was
found to be equal to the angular component;gfq,¢), namely,
to 7412(q,¢).2%

(b) The second subject is related to a feature thfat, under
certain conditions, satisfies quantization conditions. We start
by saying that it can be shown that for a group of states that
spans a Hilbert space, thematrix is quantized, and that the
following matrix, D(I'), defined a% !

D() =4 exp(~$ds'7) (6)
is a diagonal unitary matrix for any contodr, defined in the
multidimensional region of configuration space (because the
integration is done along a contour, we frequently termed this
integration as &ine integra)).1%-20 This implies that its numbers
along the diagonal are of norm 1, which in the case of real
eigenfunctions aret1. Here,ds is a differential vector along
I', the dot represents a scalar product, and the symli®la
path-ordering operator. Again, as in the previous case, it can

In other words, every set of states that forms a Hilbert space be shown that a group of states which does not form a Hilbert

yields a zero YM field. As it turns out, eq 4 enables the
elimination of the NACTSs from the BOSE or, in others words,

space but is isolated from “the rest of the world” in a given
region in configuration space will approximately fulfill the

guarantees the validity of the ADT. However, because eq 4 is "élévant quantization condition. Consequently, the extent to
fulfilled for a complete Hilbert space, it just guarantees the Which theD matrix is diagonalized is another way of finding
elimination of the NACTSs for such a case. A few years ago, out to yvhat extent this group of states forms a H|Ibert subspace.
the validity of eq 4 was extended for groups of states which do AS & final comment on this subject, we mention the fact that
not form a complete Hilbert space but are characterized by the th€ number of-1s along the diagonal, designatedasand
feature that, in the region of interest, the states included in suchd&fined as the topological number, is contour dependent, i.e.,
a group are strongly coupled with each other but are only weakly K = K(I'), and yields information regarding the various Cls
coupled with all the states not included in the group (see Surrounded by"2¢This number was shown to be always even,

Appendix in ref 22). In what follows, we define such a group Which implies that theD matrix is not only unitary but also
of states as a Hilbesubspace that its determinant is equal to 1. In_other w_or@sb(_alongs to
Consequently, eq 4 can be used as a means to determine (fof’€ SON) symmetry group (wherél is the dimension of the
a given region) whether one is able to eliminate the NACTs Hilbert subspace). - o ,
from the BO-SE. This is a mathematical procedure known as 10 clarify the subject of quantization, we consider a case of
diabatization a two-state system. Because the mallribs a unitary matrix, it
However, eq 4 is a very inconvenient method to check Will be written as
whether indeed a group of states can be diabatized. It is a
complicated expression (from a numerical point of view) @)
because it has to be carried out at every point in the region of
interest and it cannot be carried out at singular points, namely, \yhere it can be shown that is given by the following line
at points where the matrix elements are not analytical functions integrall’
of the (nuclear) coordinates. Therefore, this condition is never
considered in realistic cases.
In what follows, we briefly show how to modify eq 4 to
include the singular points. To simplify the presentation, we

—sino

_ [cosx
cosx

)

o= $7,49)ds = kr (8)

Here,t1, is the only nonzero term of the 2 2 r matrix andk
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is some number. It was shown that the condition for the two  To simplify somewhat the forthcoming treatment, we intro-
states to form a Hilbert subspace is ttats an integer (or duce a new parametex, defined as:

zero)?~11 This requirement is reminiscent of the ordinary Behr

Sommerfeld quantization law for the angular momerftum x=q(KE,) (20)
(which in this particular case is the matrix elementy).

Returning to théD matrix in eq 7, itis seen that for it to become  Thus, the parameter replacesy as the radial coordinate. As
the topological matrix as explained abo¥eis allowed to have  was mentioned earlier, the size of theregion (in configuration

two values K = 0 or 2, but neveK = 1.26 space) plays an important role in our study. The present notation

Thus far we discussed two mathematical items: Rimeatrix gis the (nuclear) coordinate directly associated with the size of
and theD matrix. Having anF matrix which is zero at every  the A region. Thus, the larger thg the larger theA region.
point (where it is not singular) in a given region guarantees the The same applies now far(which replacesj), so that the larger
diabatization in that region, and having a diagoBamatrix the x the larger the\ region. The numerical study concentrates
for every contour in that region guarantees single-valued on the dependence of various functionson
diabatization. This can be said in a more mathematical way: Equation 9 is based on two nuclear coordinatgg)( and
The fulfillment of the Curl condition (eq 4) is a necessary and thereforer has two components, and 7, (even with the
sufficient condition for diabatization. The quantization is a simplified G function). It was shown that in the caseMf= 2
necessary condition for single-valued diabatization. We already and small enougix values, the corresponding two matrix
mentioned that because of numerical “inconveniences”, the Curl elementstq, andz,12 become??
condition is not likely to be considered in realistic cases. ,

However, probing the quantization condition is a much friendlier _ 1 X\, _
act and can be easily carried out in realistic molecular studies TyaX) = — Zq(l + 3_2) TqoX$) = O 11)
(as we and others frequently do).

The fulfillment of the Curl equation and the quantization (in fact, zq:2 is zero for anyx value). Next, by choosing the
condition are the subjects of the present article. In general, if contourI’ to be a circle centered at= 0, it was shown that
one of the two conditions is satisfied, we expect the other to be the topological angle: (see eq 8) takes the form:
satisfied as well. (This statement is not necessarily correct in 2
case of singularities.) In the following study we consider a model _ (e _ X
based on the eigenfunctions of the Mathieu equafiofi,which *= qﬁ) Tt = ﬂ(l + 32) (12)
not only yields details related to the meaning of the above two
features of ther matrix but also explains the interrelation Similarly, it can be shown that the only nonzero element of the
between the two. Recalling that is (also) the dimension of  F tensor, i.e.Fg12, is:
ther matrix, we discuss two aspects: (1) how, for a given value
of N, increasing the regiorh harms the fulfillment of both 1 X
features and (2) to what extent increashidor a given region Fap2 = naf(q&)é(q) - ng
A improves the fulfillment of both features.

(13)

where the first term on the right-hand side is due to eq 5 and
the second is the result of the relevant two-state (two-coordinate)

IIl. The Mathieu Equation: A Summary of the Curl expression when applied to the two components, afs

Two-State System

given in eq 11:
The electronic SE to be considered is written for one 1[0(0T,10) Ty, N
electronic (circular) coordinat®, and is expressed in terms of a5 - o =- >
two nuclear polar coordinateg,and g:28-31 q d 3

Recalling eq 10, the expression in eq 13 becomes:

1 &
—§Ee|8—02 — G(q,¢) cos(D — ¢) — u(a,8)|5(0la.¢) =0 . 2
9) Fopro = 7=H(9)0(Q) — 13
ap12 q( )o(a) 3o ? (13)
Here Eg is a characteristic electronic quantit§(q,¢) is the
nuclear-electronic interaction coefficient, ang(q,¢) and Thus, at every point thaj > 0, the vectorFg2 is a constant

&(01g,¢) are thejth eigenvalue and eigenfunction, respectively, and therefore is never equal to zero (unlgégs— «). This fact
which parametrically depend on the nuclear coordinates. Equa-implies that the two lowest states of the Mathieu equation can
tion 9 is recognized as the well-known Mathieu equation. For never form a Hilbert subspace.

the present study, we assum@&¢t},¢) to be independent ap Equation 13was derived with the assumptions that does
and linearly dependent a;y namely, equal tdq (here,k is a not have a-component and that,;, is independent of. As a
given constant not related toin eq 8). This choice of the  result of thatFg12is a vector perpendicular to the,$) plane.
interaction term has several numerical advantages: (1) It forms As a final point in this subsection, we mention the fact that
singular NACTs (or degenerate eigenvaluesyjat 0, only. the two expressions, presented in egs 11 and 13 (or §q 13
Therefore, in what follows, the value ofyields the distance ~ have to fulfill Stokes’ theorer®? which states:

of a point in configuration space from the position of the

singularity point. (2) The eigenvalues of eq 9 dependjdut $.1,(9)+ds = #$do-Curl(z,(s)) (14)
are independent @, and the eigenfunctions of eq 9 are such
that the resulting NACTSs are algbindependent (but depend Assuming the surfacesz, to be a circular area of a given

on @). This fact makes our whole studyindependent. radius,q, surrounding the poing = 0 and employing egs 11
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and 13, it is seen that eq 14 is fulfilled if and only if: required convergence. This slow convergence enforced numeri-
cally, rather than analytically, calculated coefficients to avoid
27[ . .
= inaccuracies.
S dgf(p) =1 (15)

IV.1. The Topological D Matrix and the Size of Config-
uration Space.The expression to calculate tBematrix is given
in eq 6, but because in all our forthcoming numerical treatments
we assume the contolirto be a circle centered at the point of
f the ClI, eq 6 simplifies in the following way:

In a previous publicatiof®2 this condition was termed as the
guantization of the pseudo-electromagnetic fidlohg the seam
(reminiscent of Dirac’s quantization of the magnetic monci3éle
It is interesting that the condition in eq 15 was derived in re
23a assuming the two states form a Hilbert subspace. Here it is ox
shown to be fulfilled even in that case where the two states do D(0) =4 exp(-q [, d¢r,(a.¢)) (18)
not form a Hilbert subspace.
wherery(q,¢) is the¢ component ofr:

IV. The Mathieu Equation: A Numerical Study of the
Multistate System = 1@;_

S q )

0
gral (19)
The numerical study is divided into two parts. (a) In the first

part, we study the interrelation between the size of configuration anq we recall that in all our applicationsreplacesy. In fact,
space expressed in termsxaind the size of the Hilbert subspace  the calculation of théd matrix becomes even simpler for the
expressed in terms & when applied to the topological matrix  present model because none of #g¢) matrix elements i

D. In other words, we intend to show that for a fixed value of gependent, and therefore the integration in eq 18 can be done
x, increasingN causes the unitar) matrix to become more  immediately:

and more diagonal, which is an indication that the group of

states converges toward becoming a Hilbert subspace. The D(x) = exp(—27ar,(q)) (18)
opposite is expected wheais increased for a fixedll value. In

such a case, the matrix becomes less diagonal, implying that The study of theD dependence or andN, i.e., D(N,x), is

the relevant group of states distances itself from being a Hilbert presented in terms of the diagonal elements of Dhmatrix,
subspace. (b) In the second part, we study the interrelationnamely,Dj {j = 1,N}. In the converged case (that is, the case
between the size of configuration space (expressed, as beforefor which the group ol states forms a Hilbert subspace in the
in terms ofx) and the behavior of the Yang-Mills field. We circular region defined by) we expect these diagonal elements
intend to show that for a fixed value, increasindN causes  to be+1, and the rest (the off-diagonal ones) to become zero.
more and more elements of tife matrix elements (in their  For our particular model the diagonal elements are all expected
absolute values) to decay to zero. In the previous section, weto become-1 whenN is an even number but for the case where
showed that in case & = 2 the (1,2) element of the R 2 F N is an odd number, one of the diagonalsti4 and the rest
matrix is a constant and therefore never becomes zero. Howeverare, as before;-1. In what follows, we consider the even case
in a recent publication it was shown, analytically, that increasing only. Therefore, for a giveN andx, a significant deviation of

N from 2 to 4 causes the (1,2) element of thex44 F matrix a diagonal term from-1 implies that within the region defined
element to approach zero for small enougbalues® In fact, by x the consideredN statesdo notform a Hilbert subspace.
it was this observation which motivated us to extend our study In Figure 1, the diagonal matrix elemenB;(N,x) are
to much larger groups of states. presented as a function gfor five different values oN: 2, 4,
To solve the Mathieu equation, we expand %)&|q,¢) 6, 8, and 12. In Figure 1d),; is presented as a function ®f

eigenfunctions in the Fourier series. For our purposes and incalculated folN = 2; in Figure 1b,D,, andDy4 are presented

the notation of ref 31a, we select the following two families of as calculated foN = 4; in Figure 1c,D2,, D44, and Degs are

solutions: presented as calculated fdr= 6; in Figure 1d,D44, Dgg, and
Dgg are presented as calculated fér= 8; and in Figure le,

S DggandD1212are presented as calculated for= 12. We noticed
Cona(2—X) = ZDA2m+1(_X) cos(an+ 1)z that all curves related to the variopsind N values start with

= the valueD;(N,x ~ 0) = —1.0 and then increase (that is,
o approach zero or evettl) in different paces ag increases.

S€11(2—X) = ZDBgmll(—X) sin(2n+ 1)z However, the rate of increase becomes slower the larger is the

= (16) N value. For instance, two states (i.Bl,= 2) form a Hilbert

subspace only as long as< 1.0 (see Figure 1a), but eight

wherez is given as: states (i.e.N = 8) form a Hilbert subspace, which holds as

long asx < 6.0 (see Figure 1d). Thus, for a giventhe larger

_ 1) the N the closer the set of states comes to being a Hilbert

z=0- 2 17) subspace. These results also imply that the larger the region in

the configuration space, the larger the size of the set of states

Here, the cosine series stands for tj@|q,¢) functions with has to be to become a Hilbert subspace. In this respect, we
odd j values and the sine function for those with the eyen mention that the relevant measure for a region in the configu-
values. ration space is the area (and not the radius). Therefore, the

It is well-known that the geometrical series, as presented in previous eight lower states of the Mathieu equation are able to
egs 16 and 17, does not converge at points close to the reaform a Hilbert subspace in a region which is about 40 times
axis. This feature may affect the rate of convergence for points larger than a region in which two states can form a Hilbert
on the real axis. Because of that, the convergence in each cassubspace.
was treated with care. In this respect it is important to mention  Another observation is related to the rate of increase of
that we had to include 200 terms in each case to guarantee thé;j(N,x), for a fixedN value but for different values. We noticed
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Figure 1. Diagonal matrix elementS;(N,x), calculated as a function
of x for variousN values. (a) Results fdD,(N = 2x); (b) results for
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trianglesj = 12.

that the larger th¢ value, the larger the rate of increase. Thus,
for instance, in Figure 1c the sixth diagonal elemPe§(N =

J. Phys. Chem. A, Vol. 107, No. 37, 2008193

In summary, we show here that the more the region in the
configuration space is extended, the larger the size of a set of
states is required to be to be able to become a Hilbert subspace.
We already had hints for this tendency in our studies related to
real molecular systems, namely, theHdnoleculé® and the H
+ H, system?* However, the important message of this study
is that the convergence to the required size of the function space
is relatively fast. This is the case because the region increases
asx? and not ax. Indeed, assuming that for a given region the
required size of a Hilbert subspaceNs= 2, then the required
size for a region almost 2 orders of magnitude larger is obtained
for ~N = 10.

IV.2. The Yang-Mills F Matrix and the Size of Configu-
ration Space.The Yang-Mills field, described in terms of the
F matrix and presented in eqs 3 and & made up of two
expressions:

H-T (20)

where
H=curlr and T=7x7 (22)

TheH matrix elements, expressed in terms of polar coordinates,
are given in the form:

—Aor]d.r. 0|9
M= a{aq@i a¢CkD o= aqék[ﬂ
or:
T, or
= 1'(_‘7’ — _q) (22)
a\dq  d¢
where7, is defined as:
g WG] .
Tyik = Ej £D=' Ty =0ty (23)
and theT matrix follows from the expression:
T= Yo s — o3 24
= a(t¢rq L) (24)

Hererq(q,¢) is defined in a similar way a&, but with respect

to g. Because all the expressions in eqs 22 and 24 are multiplied
by (1/g), the numerical study will be performed for the same
expressions but ignoring @).

6,X) increases faster as compared to the diagonal elements The dependence of the various matrixéss H, T, F, onx

D2x(N = 6,X) andD44(N = 6,x) calculated for the sané value

and N is presented in Figures-3 in terms of several

(i.e., N=6). In fact in all cases, the last diagonal element along off-diagonal elements of the kind(N,q) wherej = k.

the diagonal, namelnn(N,X), shows ax increases, the largest
deviations from—1.0. It is important to mention that the
Dji(N,x) matrix element is related to theh highest adiabatic
state and thaDnn(N,X), therefore, is related to thhighest
adiabatic state of the considered set of states.

Since for eaclN the last element (related to the highest state)
shows the largest deviation from1.0, we present in Figure 2
the Dyn(N,X) matrix elements as functionof N for differentx
values. We noticed that the variolByn(N,X) curves decay
asymptotically toward the valuel asN increases, but the rate
of decay becomes slower avecomes larger (i.e., the larger is
the region in configuration space). Thus, it is noticed that at
= 4, for example, the rate of decay is very fast (all diagonal
elements folN > 4 are already-1.0), but forx = 16 the rate
of decay is so slow that we reach the value-df.0 only when
N > 16.

To grasp the importance of the two matriddsand T that
make up forF, we show in Figure 3, a and b, several
off-diagonal elements of these matrixes as a functiorNof
calculated atx = 10. It is well noticed that most of these
elements are relatively large-(.1) and therefore differ from
zero for all practical purposes.

The situation changes when considering Fhenatrix ele-
ments. In Figure 4, the off-diagonal elements of Ehenatrix
are presented (note the logarithmic scales along both axes): in
Figure 4a, results are shown far= 1 and in Figure 4b, for
x = 10 (the same value as applied in Figure 3). It is well
noticed that the various numerical values of this matrix are by
far much smaller than those of the corresponding elements of
theH and theT matrixes, and they become smaller and smaller
asN increases. The interesting aspect of this study is the very
fast decrease of most of these matrix elements Witmd the
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Figure 3. Off-diagonal matrix elementgy(N,x); Z = H,T, calculated
as a function oN (note the logarithmic scale) for= 8.0. (a)Z = H;
(b) Z = T. Empty circles (1,2) off-diagonal matrix element; full circles
(3,4) off-diagonal matrix element; diamondsN}. off-diagonal matrix
element; squared\N(2,N/2 + 1) off-diagonal matrix element; triangles

Figure 4. Off-diagonal matrix elementsy(N,x) calculated as a function
of N for two x values. (a)x = 1.0; (b)x = 10.0. Note the logarithmic
scales along both the abscissa and the ordinate.

(N—1N) off-diagonal matrix element. exception is thelast off-diagonal element=y_1n(X), which
decreases witiN but at a very slow rate.
fact that they decrease to values as small as'®Qecalling Comparing the results for= 1 andx = 10, we noticed that

the large values of thél and T matrix elements). The only  in both cases the various values decrease16-19, but in the
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Figure 5. Off-diagonal matrix elementSy(N,x) calculated as a function

of x for N = 8. Note the logarithmic scales along both the abscissa
and the ordinate.

case ofx = 1, the rate of decrease is faster. The reason is that
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term that couples the electronic and the nuclear motions and
depends on all three of them is written in the present application
as a product®(qg) cos(d—¢)], which yields NACTSs that are
independent of the polar coordinate a fact which simplifies
significantly the numerical treatment.

The numerical results support the basic theoretical expecta-
tions: for a given, arbitrary size of a region in configuration
space, we can always find (usually) a final set of states that
forms a Hilbert subspace. In addition, we also revealed two
practical findings: (1) It is true that the larger the region, the
more states are required for the group to become a Hilbert
subspace, but we found that the convergence toward a Hilbert
subspace is relatively fast (this fact, however, depends on the
distribution of the various Cls). (2) We found that for both
matrices, i.e., th® matrix and theF matrix, the elements that
relate to the higher states converge more slowly than those
related to the lower states. In other words, it is alwaysNtte
diagonal term of thé matrix that is the last one to reaeti,
and it is always theN,N—1) off-diagonal term of thé& matrix
that is last to become close to zero.

In this article we analyzed the matricds and D by

it is easier for a given group of states to become a Hilbert considering a model. As a final statement, we reiterate the
subspace the smaller is the x value, namely, the smaller is theimportance of these two matrices: The diabatization is guar-
region surrounding the Cls. anteed by the Curl condition (eq 4), which implies tkahas

This feature is even better seen in Figure 5 where the samet® be zero at every point in the region of interest but single-

F matrix elements are presented but as a functionaafculated valued diabatization is guaranteed only by the quantization of
for a fixed value ofN (=8). The results in this figure support
what is claimed in the previous paragraph, that is, that these
matrix elements tend to increase as a functionxafwhen
calculated for a fixedN value).

V. Conclusions

In this article, we considered the nonadiabatic coupling matrix
t which, under certain conditions, is characterized by two
interesting features: (1) its components fulfill the Curl condition
(see egs 24), and (2) it is quantized in the sense that Ehe
matrix presented in eq 6 is a unitary diagonal matrix. These
features can be shown to exist if the relevant group of states
forms a Hilbert space. In case this group does not form a Hilbert
space, the fulfillment of these relations depends on the various
Cls in the configuration space (namely, on the positions and

the spatial distribution of their NACTSs) and the size of the region 35

in the configuration space that surrounds them.
It has been known for quite some time that a region

surrounding a Cl can always be made small enough so that the

2 x 2 D matrix becomes a unitary diagonal matrix, which
implies that the two relevant states form a Hilbert subspace in
this (reduced) regiof?~38 (In fact, we recently revealétithat
even this statement is not always true.) From studies that were
extended to three statés3*we learned that in a given region
where two states are not enough for forming a Hilbert subspace
of two states we can form a Hilbert subspace of three states. In
other words, there are regions where the 2 D matrix may

not be a unitary diagonal matrix, but the corresponding 3

is such a matrix. Thus, it seems that the larger the region, the
more states are required to make the relefantatrix diagonal
(and theF matrix a zero matrix). This article is devoted to this
subject.

The idea was to consider for this purpose a simple model for
which the “electronic” eigenstates can be easily produced; thus,
the above-mentioned relations can be studied quantitatively. On
the basis of our previous experience, we chose for this task the
Mathieu equation. This equation is characterized by one
electronic coordinate}, and two nuclear coordinateg,¢). The

ther matrix as expressed in terms of tBematrix in that same
region.
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