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We report converged full-dimensional quantum dynamical calculations of the vibrational relaxation in the
collision: H, (U1 =1, jl = 0,1) + H» (Uz =0, jz = 0,1)_’ H, (U'l = O,j'l) + H» (U'z = O,jlz), employing

a recent global potential energy surface fitted to a large number of high-level ab initio points. The scattering
dynamics is characterized by a time-independent wave packet approach based on the Chebyshev polynomial
expansion of Green'’s operator, which requires repetitive calculations of the action of the system Hamiltonian
onto the propagating wave packet. The full-dimensional Hamiltonian within the coupled-states approximation
is discretized in a mixed grid/basis representation with the adaptation of the parity and diatomic exchange
symmetry, and its action is efficiently computed in the appropriate representation facilitated by a series of
one-dimensional pseudospectral transformations. Scattering involvingpb@hd o-H, are studied. Rate
constants up to a high temperature (3500 K) are obtained from S-matrix elements and compared with available
experimental measurements as well as with previous theoretical results.

I. Introduction for characterizing collisional dynamics between two diatomic
) ) molecules is well-establish@#:26 However, earlier applications
As the most abundant molecule in the universe, the hydrogeny, the H, + H, system have resorted to various approximations,
molecule plays an important role in many areas of astrophysics g ,ch as the distorted wave?7 rigid-rotor 20.22:24.26 28 gffective
and astrochemistry. For example, collision-induced energy potential?3 and two-state approximatiod@? as well as asym-
transfer between #molecules and betweerpldnd other atoms/ eatric treatments of the two colliding hydrogen molecdfed?
molecules is believed to be closely related to various astrophysi- ojthough these approximations appear to be reasonable, little
cal phenomena, such as cooling of primordial gas and shockpas peen done until recently to verify their validity by
wave-induced heating in mterste_llar_meéITé.To accurately performing exact full-dimensional calculations. The lack of full-
model the thermal balance and kinetics of such systems, stateimensional dynamic studies can probably be attributed to the

to-state rate constants become highly desiraBbperimentally, jqyolvement of six internal degrees of freedom, which represents
it is rather difficult to measure such guantum-state resolved 4 significant numerical challenge.

guantities in these systems, and only a limited set of data
exists>1% On the other hand, accurate theoretical data require |,
both a reliable potential energy surface (PES) and accurate, ncertainties arising from both the dynamical approximations

dynamical treaFment of the scatterllng event. and the inaccurate PES make it difficult for a rigorous
The calculation of the electronic energy of the H H comparison with the experimental data or an unambiguous
system is considered to be straightforward as it contains a smallgya|uation of the validity of either the PES or the dynamical
number of electrons and is amenable to high-level ab initio method used in the calculation.
methods with a Iqrge basis set. Howgver, it is only repgntly The recent emergence of high-quality global PESs of the H
that such calculations have been carried out on a sufficiently gygtem has stimulated some interests in dynamical calculations
large scale to cover the relevant configuration sgace. by quantum mechanical methods with as few approximations
Analytical fits of these ab initio points have since been ,q hossible. This is important not only for checking the validity
developed by Aguado, Suarez, and Paniagua (AS#)d by of the PES used in the calculation but also for establishing an
Boothroyd, Martin, Keogh, and Peterson (BMKP)he BMKP accurate benchmark for more approximate dynamical models.
PES is much more reliable tha_n previous versions as a largeTo this end, Pogrebnya and Clafyreported extensive full-
number (48 180) of MRD-CI points were used in the fitting of gimensional close-coupling (CC) calculations of rovibrational
the global potential energy function and it has an estimated i, a|astic collisions betweepH, molecules as well as between
uncertainty I(_ass than 1 kcal/mol. Hence, this PES provides a0-H, molecules employing the BMKP PES. The calculated rate
valuable testing ground for dynamical models. constants over the 28800 K temperature range were found to
Dynamical studies of the + H; system have been rather  overestimate experimental measurements. They attributed this
extensive. Classic#l and semiclassical treatmetfts!® of the disagreement to the strong anisotropy of the BMKP PES and
Hz + H collision have been reported, but there is always the modified the PES to lower the anisotropy. This modification
risk of missing out on important quantum effects in this simplest was shown to improve the agreement between theory and
diatom-diatom system. The quantum mechanical framework experiment. In the meantime, our group has studied the pure
rotationaf® as well as rovibrational inelastici#yinduced by
T Part of the special issue “Donald J. Kouri Festschrift”. collisions between twop-H, molecules by using a time-

10.1021/jp0302156 CCC: $25.00 © 2003 American Chemical Society
Published on Web 06/07/2003

Moreover, many previous dynamical studies of this system
ave used empiric&?3or low-quality ab initio PES$*36 The
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independent quantum wave packet approach, also with full

Lin and Guo

(J) andj12 = j1 + j- are given byQ. The total wave packet is

dimensionality. Rate constants over a wide range of temperaturesexpanded to a parity-adapted basis:

(0~3500 K) were calculated. The trend of our results is in

qualitative agreement with experimental measurements and the

agreement improves at high temperature5@0 K). However,
significant disagreement was found at low temperatures where
the theoretical results significantly overestimate experimental

PP =

igiiol1]2mQ

00 gl o Mo, ,mQ:IMpD - (3)

Iof

where the total angular momentuid),(its projection onto the

measurements. This observation is consistent with the conclusiorsPace-fixed (SFy-axis M), and the parity § = +1) are all

of Pogrebnya and Clas/.

In this contribution, we extend our previous studies of the
para—paraH collision to include bottortho—ortho andortho—
para collisions. In particular, we include scatterings with
nonzeroQ, which were avoided in our earlier work on the
para—para H> collision. The discretization scheme thus needs
to be modified to accommodate the change. But otherwise, the
dynamical methods used here are quite similar to our earlier
work. The calculations yield transition probabilities and cross-
sections up to a high energy (2.2 eV), which allow the
calculation of rate constants up to a rather high temperature
(3500 K). This paper is organized as follows. In Section Il, the
discretization scheme and time-independent Chebyshev wav
packet method are briefly reviewed in the context of diatom
diatom collisions. In Section 1ll, results from the dynamical
calculations are presented and discussed. A short summary i
given in Section V.

Il. Theory

A. Discretization and Evaluation of Hy. For the molecular
system studied here, it is convenient to use the diatdiatom
Jacobi coordinatesd, ri, ry, 61, 62, andg). Here, the first three
radial coordinates denote the intermolecular and diatomic
internuclear distances. The Jacobi angtasa0d0,) are defined
between the diatomic and the intermolecular vectors, while
is the dihedral angle. The Hamiltonian in these coordinates can
be written as belowH = 1):4°

~

P2

2

- Tz)z
|=;2u.r.2 i 2uqr 2
i 0'0

. 1 & 2. J1
A=-——+SYh+

2uy 8r02

+

2
V(ro, I, 15, 04, 05 ¢) — 2 Vi(r) (1)

whereuo, u1, andu, are the appropriate reduced masseand

Ji are respectively angular momentum operators corresponding

to the overall and diatomic rotationg s the PES of the system,
andVi(ri) (i = 1, 2) is the potential energy function of free
diatomic molecules. The vibrational reference Hamiltonians
are given by

A

h =

19
T2 Vi(r)

(i=12) (2)

As shown below, the major numerical task in propagating
the wave packet is the evaluation of the action of the Hamil-
tonian on to the propagation state, namély;. This is done in
a mixed grid/basis representation that minimizes the dimen-
sionality of the wave function and renders efficient computation
of Hy. In particular, we choose the body-fixed (BF) frame with
the intermolecular vectoir{) as the reference-axis. This is
convenient as projections of both the total angular momentum

e

S

good quantum numbeijg,andj, are rotational quantum numbers
of the diatoms, andn is the projection of rotational angular
momentunyj; onto the BFz-axis. As there is no external field,
the quantum numbeM can be arbitrarily chosen. Thus, we
assumeM = 0 and drop it from subsequent equations for
simplicity. Our choice is equivalent to the E2 frame discussed
by Gatti et at42The discretization strategy is similar to the
recent work of Goldfield and Gra¥¢,although differences exist

in implementation.

The treatment of the three radial coordinates is straight-
forward. As shown above, the radial basis is given in a three-
dimensional direct product grid representation, indexeify.

The action of the first radial kinetic energy operator (KEO) in
eq 1 is evaluated by fast (sine) Fourier transform on an
equidistant grid? The two vibrational reference Hamiltonians

in eq 2 are represented on potential-optimized discrete variable
representation (PODVR) grid8:46 The use of PODVR mini-
mizes the grid size and improves computational efficiency.
Partial sum is used to achieve quasi-linear scaling in the matrix-
vector multiplication.

In contrast to the radial degrees of freedom, the angular part
is complicated and deserves a more thorough discussion. The
parity-adapted angular basis used in the expansion in eq 3 is
given below:

lj,MQ:IpC= (2 + 206 Omo) 2 x [19QMI;Mj,Q — mH
p(—1)’1d — QMj, — mj, — Q + m] (4)

where the quantum numbg is restricted to nonnegative values
to avoid linear dependency, and in the caseof= 0, mis
nonnegative. The basis for the overall rotation is the Wigner
rotational matrix Dg’M) defined in terms of the Euler angles

(o, B, y): 47

2J+1
872

Qo= Da e B, 7) (5)
The internal angular basis is, on the other hand, given as a
product of uncoupled spherical harmonics:

lismLpQ — M= 6, (0.0, _(6:)V(1/27) expmg) (6)

whereOjy(0) are normalized associated Legendre functions with
the Condon-Shortley phase conventidfiNote that this is not
a direct product basis. The use of uncoupled angular basis
[j1j2mQ:Jpl] instead of the conventional coupled one
[j1j2j12€2:JpCP>49 is because of the pseudospectral transforms
used in calculating the action of PES to the wave packet, as
discussed below. These two bases can be readily interconverted.
In the angular finite basis representation (FBR) outlined
above, the matrix of KEOs is very sparse, albeit not diagonal.
In particular, the first two angular KEOs in eq 1 are diagonal
with the following matrix elements:

0J, M Q" :3p(] 2l ,mQ:Ip= i, + 1)9;,1.9;,.0mm0 o
(7)
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For convenience, the third angular KEO is broken into four forward direction in the following equation:

parts:

R R A A R o2 O e K022 ™ ioilizgﬂwioilizg (11)
@-1,-1°=04+0,+0,+ 0, (8a) o oam e o0

where oy, oz, and 8 respectively denote the indices of the
angular grids in thé,, 6,, and¢ coordinates. The transformation

Oy =P +12+12— 231G, +1) + 2.,  (8D) matrixes are defined as

where

O, = T1ido- +11-Tos (8c) Lo (6:m) = ‘/WaGi,m(ea) 1= 1Ml Jmax
o=1,..,n, (12a)
O =-3j_-3] i=1,2 (8d)
' o " Lom(@) = Y1, @, ()  B=1,...n, (12b)

The matrix elements of these operators are given as egl 9a ) S
(below) wherel: = G + 1) — mm + 1“2 Similar wheren, andn, are the numbers of grid points in the polar and
’ m .

expressions have been derived before by Gatti & ahd by dihedral angles_, respecnvelw =6 - 1/2)”./ Ny, andf, and
Goldfield and Gray*® However, neither provided explicit matrix Wo are respectively the abscissas and weights of the'Gauss
elements for a parity-adapted basis. Our results also differ from L_egendre quadrgtu_l%.The traqsf_ormed wave packet in th_e
those of Goldfield and Gray by a phase factor due to the dlrec_t product grid is then multlplled by the_d|agonal potential
Condon-Shortley convention used in this work. Because of the matrix. Aftgr that, the resulting wave pgcket IS transfqrmeo! back
restrictionQ, Q' > 0, the terms associated witli—1)? in eq 9 to the orlglqal FBR py three sequential transformations in the
survive only for special values & and<' (for example Q = backward direction in eq 11. The e_tbove pseudospectral trans-
Q' = 0in eq 9b). Despite the formidable appearance of these form strategy for the angular coordinates can be traced back to

i d|355}55 i i 6,57
matrix elements, the action of KEOs on to the wave packet is eaE)Iler \tNO;Kﬁby s?verall auth . HT:n;:Iudllng USE.? tin eith
quite easy to evaluate. ue to different nuclear spins,zHnolecules exist in either

In this work, we impose the coupled-state (CS) approxima- theparaor o_rt_hoforms, which_ are practically noninterconvert-
tion, which ignores the Coriolis coupling between different able by collisions. To maintain total symmetgyH, can only

Q channel$95 The CS approximation rende® a good populate evepstates, while-H, can only populate odgstates.

guantum number and neglects the off-diagonal Coriolis terms F_or para—para or ortho—ortho collisions, one can further

in eq 9c,d. Previous experience has indicated that the CSS|mpIify the calculatior_l by adaptin_g _the _diato_mic exchange

approximation is a reasonable one when applied to the-H symmetry that recognizes the indistinguishability of the H

Ha systen molecules921.23-25 As discussed in detail earligfthe existence
Finally, we discuss the calculation of the action of the of such symmetry renders nearly half of the grid redundant.

potential operator on to the wave packet. It can be shown that Consequently, one only needs to store the wave function at a

at a given radial grid point labeled fyy1i», the potential matrix grid point {o, i, iz, 1, j2, M) for i1 = iz. When needed, valges.
element has the form of eq 10 (below), where at other grid points can be generated by a simple mapping:

X _ X

. sin =1 toiiziziym = X¥igiigiyiym (13)
q)gg((p):[ﬂ(l—i_ém,o)] 1/2X{C032:«r$)) EI_Z)) ol2lnl2ly olvl2lvl2

wherex = £1. In this scheme, it is the wave function, rather

As the potential matrix depends parametrically on three radial than the Hamiltonian matrix, that is symmetrized, which
indices, a large amount of memory is required to store the matrix simplifies the coding. Since the exchange and parity operators
elements. This problem can be efficiently circumvented by the commute, there are four symmetry species for thesgystems.
pseudospectral method: the wave paclgzﬁ;ﬁg) originally in For collisions betweep- ando-H,, however, the Hmolecules
the angular FBR is transformed to the grid representation should be treated as distinguishable moieties with no exchange
(122 py three sequential transformations indicated by the symmetry.

000

Gj M Q":3p|Oyljj,mR:Ip= [I + 1) + j,(, + 1) + jo(j, + 1) — 2Q% + 2m(Q — M08, 0mmd00  (92)

0 j, M Q:3p|O,, ) ,mQ:IpC= [(1 + Og O (1 + 6Q,Oém,0)]7l/2 [ﬂjt,mﬂj;g—md 01,5, 0m mi100 @ T

i1 12 2
p(_l)Jafm,nwléfg',g) + lj:,w(lj:szfmdj1',jlajzv,jz(5m,m7169',9 + p(_l)Jéfmr,mﬂanzg)] (9b)
0J5' M Q":3p|O, 14j,MQ:Ip0= —[(1 + 0 B (L + 0o, Pl 2 [As A1, m015,01,5, Ot 10001 T
p(_l)Jé—m,m—lé—Q’,Q—l) + ;{IK;{jt,méj1’,j16j2’,jz(ém,mlég’,9+1 + p(_l)Jé—m,m15—9',Q+1)] (9¢c)
@1’j2'm’Q’:Jp|f)2|j1j2mQ:JpD= —[1+ g Omod+ 59,05m,0)]_1/2 X [lg,gllj;,gfmaj1',11512',12(5m,m59',971 +

P10 0-cr0-1) + Asrh om0 .01, Om w0 T P10 100 010)] (90)

J1d1 0o
a1+ 6m’0)(1 + 6m’0) 2 2
{[0g o+
(14 0g Oy (L + g Omo) ;
P 0_g ol2®y, 1 (098, (O PRIV,

a1z

i M QpIV i |i4i,MQ:IpC=

10, (000 o0 PRH)T (10)
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B. S-Matrix and Chebyshev PropagationlIn this work, we
follow the correlation function formulation proposed indepen-
dently by Tannor and Wee¥s and by Kouri et aP? in
calculating the S-matrix elements. To this end, the S-matrix
element for a transition from initialto final (f) state at energy
E is given as

S-i(B) = HIG (B0 (14)

i
2na(E)ar*(E)

where the initial (final) state wave packetd{|y:J is normally
expressed as a product of an internal staté gigenfunction

and a translational wave packet localized in the asymptotic %px

region. The energy amplitude(E) = [E|y[ldepends on the

choice of the translational wave packet and can be readily

evaluated.
The major numerical task in eq 14 is to calculate the action
of Green’s operatoG(E) = (E — H)~! on to the initial wave

packet. A common approach is to expand the operator in terms

of the time propagatd® Alternatively, a Chebyshev polynomial
expansion ofG* can be usef®64 As discussed in our earlier

Lin and Guo

comparison, the time propagator cannot be evaluated directly
and approximations are inevital§feln addition, the Chebyshev
wave packet can be propagated exclusively in real arithmetic
provided the Hamiltonian is real-symmetric and the initial wave
packet is real. In contrast to the necessarily complex wave packet
in time propagation, this is sometimes referred as a “real wave
packet” propagatiof

C. Cross-Sections and Rate Constantg.or givenQ, p, and
X, the state-resolved integral cross-section for the transition from
an initial statevjivgjoj12 to a final statevy'j;'v2'j2'j12 IS given
by

E 7N
1’1'11'”2'1'2'1'12'“”11-1”21-21'12( )_ x
RN =
U112,
I+ 1)PXex . (E)
V1)1 V22012 Va1Vl 12
_ Qpx
z 0L’1'j1'”2’12'112'HU1111’212112(J’E)
=
(18)

where Ko, = [2uo(E — Eujuyn)]¥% Depending on the

work,383° the S-matrix elements are calculated as a Fourier existence of exchange symmettyequals to (1+ 0,,,,05,j,)(1

transform of the Chebyshev correlation functions:
S4B =
2

e—ikfrof

2(2 — 6k,0)e_ikarcco£EnomD Ck

021 - B2 ®
(15)

wherek: = \/2uy(E—E;). To avoid divergence, it is necessary

P i iy, dENOtes the transition
ézllz 1122212

, p, andx and is expressed in terms

+ (31,1'1,2'.(?]1']2') or 1_. oy

probability for a glver{],

of the S-matrix element:
g (E)=10

R O 0, 0 —
v1lyv2)2)12 VYA LT E R A PP
Qpx
GNP PYEP e PP PP

V1

B (19)

We note that in the above equations the initial or final rotational
state is labeled in terms of coupled angular basis with the index
jaij2j1z in which [j1 — j2| < ji2 = j1 + 2. It can be readily

to normalize both energy and its corresponding operator by transformed to the uncoupled angular basis representation used

upper and lower spectral bound#l,(;x and Hnin) of the
Hamiltonian:
=(H—HYH

=(E-HYH" (16)

A
Enorm Hnorm

with H* = (Hmax &= Hmin)/2.

The correlation function in eq 15 is the overlap between the
final internal state eigenfunctiofg() and the Chebyshev wave
packet (y[= Ty|yol) at an asymptotic intermolecular distance
(rd): Ck = [drlyx (ro = ro)lJ Noting that the Chebyshev
polynomial is a cosine-type propagatdk(Hnorm) = cosk®],%°

in propagation.

Finally, the state-resolved thermal rate constant is obtained
by a Boltzmann average of the corresponding integral cross-
section over the collision energ¥ed = E — E,jj,u,,):

© _Qpx —E/kgT
ng 0”1'11'1’2'1'2']12'“”11'1”21'21'12(EC)e EC dEC (20)

whereT is temperature anks is the Boltzmann constant.
Usually experimental measurements provide more averaged

Qpx
NP PY EP S PP PP

this expression bears strong resemblance to the time correlatioyuantities, for example, cross-sections or rate constants corre-

formulism advanced by Tannor and WeéRs.ike the time-
dependent methot, the Chebyshev approach is energy-
global: a single propagation with the initial wave packefl

produces a column of the S-matrix at all desired energies,

provided the corresponding value afE) is not very small.

sponding to thevq'j1'v2'jo" — wvijivgj2 transition without the
resolution ofQpx. These quantities can easily be obtained by
averaging over all allowed values 6fpxj;2 and summing all
allowedj,2. Taking the integral cross-section in eq 18 as an
example (similarly for the rate constant in eq 20), the averaged

In practice, the propagation of the Chebyshev wave packet quantity is given as

lyOis carried out with asymptotic damping to enforce the
outgoing wave boundary conditi¢As3

[P LF D(Zﬂnorm| Y U— Dl Wk—lm

with [po0= |y0and |yp10= DHnomlyol] The coordinate-
dependent damping functiorD) is related to an energy-

(17)

dependent negative imaginary potential and should be chosen’V*
to damp the wave packets smoothly at the edges of grid. As in

our earlier work®83% a Gaussian shaped damping function in
the intermolecular coordinate is used@t ro: D = e 7o T2,

An advantage of the Chebyshev propagation is that it can be

GUl'j1'”2'j2'kU111U2j2(E) -
1 Qpx

o 1 anger L N W0 NI PIITS (2 1)
(21 1 + 1)(3 2 + 1)QPX1121 12

“Ui1?a1e
wherew, = ?/3 andw_ = 1/ for collisions betweem-H,, and

= 1 andw- = 0O for collisions betweem-H,.2* In other
cases where two diatomic molecules are distinguishable, e.g.,
collisions betweeip- ando-H,, the sum ovek collapses.

Ill. Results

realized efficiently and accurately by a three-term recursion (eq For the collision betweem-H; with the lowest rotational

17), which involves mainly matrix-vector multiplication. In

quantum numberg(, = 0), some simplifications are possible
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as demonstrated in our earlier wafié® The most significant
one is that all the®2 = 0 components vanish even far> 0.
However, when the collision involves-H,, whose lowest
rotational state i$ = 1, such simplifications do not exist and
the calculation is much more demanding. For ¢inéo—ortho
collision withj; = j, = 1, for example, there are three possible
values ofj12 (=0, 1, 2). For eaclj,, there are multiple allowed
channels labeled b® = 0, ...,j12. Therefore, propagation of
multiple initial wave packets corresponding to differgntand

Q is required. For theortho—para collision, the number of
propagations needed is less than that of drtho—ortho
collision, but the exchange symmetry is lost. We note that there J
are two cases for the collision betweg@n and o-H,: The
vibrationally excitedo-H, can be relaxed by the collision with
the ground-statp-H, and vice versa. We differentiate these two
cases a®rtho—para for the former andpara—ortho for the
latter.

Following Gray and Balint-Kurtf® we used in our calcula-
tions a real initial wave packety;C= Ne (o "o)/e1%2 coskirg| g
where|girepresents the internal state eigenfunction &rid
the normalization constant. The outgoing part of the initial wave
packet does not impact the calculation as long as it is effectively 00 100
eliminated by the damping. The initial wave packets were 0 0.5 1 1.5 2
launched arg = 12..0 bohr with a Gaussian widt = 0.3 Collision energy (eV)
bohr and central kinetic energy of 0.5 eV. The final state
projection was made at = 12.0 bohr. The onset of the Figure 1. Comparison of partial cross-sections from interpolation and
damping was placed & = 16.0 bohr withy = 0.01 bohr?2. explicit calculatlon_s._ The cross-sections are for the collision between

. . . two o-H; from the initial statg, = j. = j1,=1,Q2=1,p=+1,x=

To test the convergence, several calculations with different 1 to all the final rotational states in the vibrationally relaxed channel.
grid/basis sizes and grid ranges have been performed. TheTheJ- andE-dependent curves are obtained by cubic spline interpola-
numerical parameters used to obtain the results reported in thistion with AJ = 6, while (+) represent the explicit results not included
work are as follows. For the scattering coordinatg, (128 in the interpolation.

equally spaced grid points extending from 2.0 to 21.0 bohr were

1.5 104 [
1.0 10°4

5.0 10°5

G(J.E) (A?)

used. For each of the two vibrational coordinateg = 1, 2), 25100
four PODVR points were found to be sufficient. The rovibra- 20 103 |
tional eigenvalues and eigenfunctions of the freentblecule :&’“

were calculated variationally and represented in the PODOVR ( ~ 15103
= 0) grid. For the angular FBR, we have ugedax = jomax= GI

7 for theortho—ortho collision andjimax= 7, j2max= 8 for the 2 1.0 10°3
ortho—paracollision. Onlyj = odd (even) foo-H; (p-H.) were o

included in the angular basis. For the angular gnid= ny, = 5.0 104 |
ng = 12 points were used for the three angular coordinates.

The PES was cut off at 5.4 eV to minimize the spectral range 0.0 10°

of the Hamiltonian. Typically, 3000 steps of Chebyshev o 10

propagation were found to be sufficient. ) ) ] ) N
B th isti . tal dat d .thFlgure 2. Final-state-summed partial cross-section for transitions from
ecause the existing experimental data are concerned Withy, e injtia| statg, = j, = 1,j;,= 0, = 0. The even and odd exchange

vibrational relaxation [{; = 1,02 = 0) — (v1' = 0, v2' = 0)], symmetry results are strongly oscillatory.
only the S-matrix elements in this final vibrational channel were
calculated. Thus, the results reported below are exclusively interpolation in thel space, which avoids the calculation of all
related to the vibrational relaxation in the collision. the partial wave contributions. Indeed, this scheme works quite
To obtain accurate integral cross-sections, one has to calculatevell as demonstrated by Figure 1, in which the curves represent
numerous partial wave contributions (see eq 18). The results obtained by cubic spline interpolation will = 6. As
dependence of the final-state-summed partial cross-sectionshown in the upper panel, the explicitly computed values
2t 01—i(J, E) is displayed in the upper panel of Figure 1 for the (pluses) not included in the interpolation fell nicely on top of
transitions fromjs = j, = j12 = 1 with Q = 1, p = +1, andx the interpolated curves. In the lower panel, the dependence of
= +1 at two collision energies. Herérefers to the rotational  the cross-section on the collision energy is shownJXer 4
states in the’ = v»' = 0 channel. Typically, the partial wave and 33. Again, the interpolated curves coincide with the
contribution rises initially and decays to zero at very lajge  explicitly computed cross-sections (pluses) very well.
The number of partial waves needed to converge the cross- Some special treatments were needed in interpolating the
section increases with the collision energy. At the collision results for@2 = 0 because the smoothdependence & = 0
energy of 1.6 eV, for example, about 70 partial waves are no longer holds. As shown in Figure 2, the final-state-summed
necessary. It can also be noted from the figure that the partial cross-sections for transitions frga—= j, = 1, j1 = 0,
dependence of the cross-section on the total angular momentunf2 = 0 strongly oscillate. For even exchange symmelry=(
quantum numberJj is quite smooth. Consequently, one can +1), contributions from eved dominate. Similarly, the odd
approximate the) dependence of the partial cross-section by components are much larger for odd exchange symmetry (
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Figure 3. Final-state-summed total cross-section for transitions from
the initial statg, = j = 1,10 =0, Q2 = 0. The even and odd exchange
symmetry results are nearly identical.
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—1). Our approach to this special situation is to interpolate
separately forJ = even block and forJ = odd block.
Interestingly, nearly identical interpolation curves are obtained
for theJ = even block in even exchange symmetry and for the
J= odd block in odd exchange symmetry, and vice versa. This
can be clearly seen in Figure 2.

Unlike thepara—para collision where only the even exchange
symmetry contributes, both the even and odd exchange sym-
metries should be included in tloetho—ortho collision, cf. eq
21. However, one needs to compute the results of only one T (K)
symmetry as t.he integral cro SS.-SECtIOI‘) IS mdgpende)ptauén Figure 4. Temperature dependence of calculated thermal rate constants
when the partial cross-se_ctlon is drast|_call)_/ different in t_he two (solid lines) for the vibrational relaxation @ara—para, ortho—para,
exchange symmetry species as shown in Figure 2. This is shownpara—ortho, andortho—ortho H; collisions at low (lower panel) and
in Figure 3, where the final-state-summed integral cross-sectionshigh (upper panel) temperatures. The op®)f @nd solid circles ®)®
forj1=j2=1,j12= 0, Q = 0 are plotted for both the even are experimental data for collisions between normal While the
and odd exchange symmetries. The phenomenon has previouslyduarest) and triangles4) are measurements for collisions between
been noted by Zarur and RaBtan the study of rotationally ~ P-Hz and betweer-Hg, respectively.
inelastic B + H; collisions, and also by Huo and Grééin

the study of the N+ N collision. We are not aware of any states were considered in our calculations. Previous stud-
mathematical proof of this numerical observation. les!”3137%% have indicated significant rate enhancement by

In Figure 4, the calculated thermal rate constants for the rotational excitation of the collision partners. Hence, a bett(_er
vibrational relaxation [f; = 1,0, = 0) — (v1' = 0, v’ = 0)] agreement between theory and experiment is expected at high
are displayed for thertho—ortho (kos), ortho—para (Kp), para— temperatures after the Boltzmann averaging in the the_orethal
ortho (kyo), andpara—para (k) collisions. This figure repre- calculations. On the other hand, the Boltzmann averaging will

sents the major results of this work. The calculated rate constantsgxacerbate the discrepancy between theory and experiment at
are initial-state-resolvedy{ = 1, j1,0» = 0, j», with average  OW temperatures.

80 160 240 320 400 480 560

overjiz) and summed over the rotational states inkie= v, The above conclusions indicate that the inclusiorodf,
= 0 channel: does not change qualitatively the picture obtained in our earlier
work on thepara—para collision3® Our calculations are also
kvl’vz'*vﬂlvzjz(E) = consistent with the low-temperature results of Pogrebnya and
1 Clary3”who used a rather different (CC) numerical method but
- - WK FJ)XU i (22) the same EES._The_onIy _dynamical approximation, namely, the
@i, + D@, + DepxiSzi, 0 rr e CS approximation, is unlikely to be responsible for such large

discrepancies with experimental data. One possible source of
The rate constants are displayed in two panels to better compareerror is the PES. Indeed, Pogrebnya and Clamave attributed
with the available experimental d&te8 which are also plotted  the theory-experiment discrepancies to the large anisotropy of
in the figure. At the high temperature range, experimental rate the BMKP PES, which stems from the pairwise contributions
constants are available only for collisions between normal H in the potential energy function. A modified version of the
(kar), which is some kind of combination do, Kop, kpo, @nd BMKP PES with weaker anisotropy was proposed by these
P authors and a better agreement was obtained. Although the large
Qualitatively, the calculated rate constant reproduces the anisotropy pointed out by these authors probably represents a
overall trend of the experimental measurements spanning overgenuine artifact of the BMKP PES, their modification was a
5 orders of magnitude. Quantitatively, however, the agreementlittle superficial. It might be worthwhile to add more ab initio
is less promising, particularly at low temperatures. The calcu- points and perform a better fit in order to confirm the
lated rate constant overestimates the experimental data at lowspeculation.
temperatures by about a factor ef B0 and underestimates them The theoretical results show that theho—orthorate constant
at high temperatures by about a factor ef2 The underesti- is larger than theara—para one and the difference between
mation of the experimental data at high temperatures is them decreases with increasing temperature. Although this
reasonable, given the fact that only the lowest initial rotational feature is in qualitative agreement with experimental observa-
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tions, quantitative differences exist. For example, the gap (9) Dove, J. E.; Teiteloaum, HChem. Phys1979 40, 87.
betweenko, and ky, is much larger than experimental data at 192(;}30)12?%‘?;' T. G, Gelfand, J.; Miles, R. B.; Rabitz, Bhem. Phys.
most temperatures. The calculated results also show that the 1) Bbothrbyd, A. I.; Keogh, W. J.; Martin, P. G.; Peterson, MJ.J.
ortho—ortho rate constant is always larger than all others and Chem. Phys1991, 95, 4331.

the ortho—para rate constant is significantly larger than both (12) Diep, P.; Johnson, J. K. Chem. Phys200Q 112, 4465.

the para—para and para—ortho ones at temperatures below Chglng’q) Eﬁggg%’éd'lfé 'gG“ga”'”* P. G.; Keogh, W. J.; Peterson, MJ.J.
1200 K. Thepara—pararate constant is slightly larger or equal (14)' Aguado, A.; Suarei, C.; Paniagua, M.Chem. Phys1994 101,
to the para—ortho one at this temperature range. At higher 4004. _

temperaturesX1200 K), thepara—pararate constant exceeds 1oé12)sazMandy' M. E.; Martin, P. G.; Keogh, W. J. Chem. Phys1998
the other two. Unfortunately, experimental results of rate .

o (16) Cacciatore, M.; Billing, G. DJ. Phys. Chem1992 96, 217.
constants for thertho—para andpara—ortho collisions are not (17) Zenevich, V. A.; Biling, G. D.; Jolicard, GChem. Phys. Letl.999

available. 312,530. » '
In the experimental work of Audibert et dla relationship 165(9118) Zenevich, V. A.; Billing, G. D.; Jolicard, Gvlol. Phys.200Q 98,

between different rate constants is determined with256%,

Koo 1+ Kpp = Kop + kpo. From an analysis based on the calculated
rate constants, we found the relationshkip + koo = 1.32kop

+ kpo), holds very well over a broad range of temperatures
(0~3500 K). This theoretically determined relationship is in
reasonable accord with the experimental observation.

(19) Zenevich, V. A;; Billing, G. DJ. Chem. Phys1999 111, 2401.
(20) Davison, W. DDiscuss. Faraday S0d.962 33, 71.
(21) Takayangi, KAdv. At. Mol. Phys.1965 1, 149.
(22) Allison, A. C.; Dalgarno, AProc. Phys. Soc1967 90, 609.
(23) Zarur, G.; Rabitz, HJ. Chem. Physl974 60, 2057.
(24) Green, SJ. Chem. Phys1975 62, 2271.
(25) Alexander, M. H.; DePristo, A. B. Chem. Physl977, 66, 2166.
(26) Heil, T. G.; Green, S.; Kouri, D. J. Chem. Physl978 68, 2562.
IV. Conclusions (27) Roberts, C. SPhys. Re. 1963 131, 209.
. . . (28) Schaefer, J.; Meyer, W. Chem. Phys1979 70, 344.

In thl_s work, we r_eported accurate fuII-dlmer_13|or_1aI quantum  (59) Flower, D. R.; Roueff, EJ. Phys. B: At. Mol. Opt. Phy<.998
dynamical calculations of vibrational relaxation induced by 31, 2935.
collisions between hydrogen molecules. A time-independent  (30) Flower, D. RMon. Not. R. Astron. Sod99§ 297, 334.

Chebyshev wave packet method and a mixed grid/basis repre-sz(?éégg': lower, D. R.; Roueff, EJ. Phys. B: At. Mol. Opt. Phy4.999

sentation were used to compute the S-matrix elements. The " '(32) Flower, D. RJ. Phys. B: At. Mol. Opt. Phy200Q 33, L193.
approach used in this work has more favorable scaling laws (33) Flower, D. RJ. Phys. B: At. Mol. Opt. Phy200Q 33, 5243.

than the traditional CC method; thus it should find more g‘s‘g "S/'Ot:‘ChiCEv LI-D? S\,‘&?aéfﬁ“ J--P%hilfgsghgglgggg& 6153.

H H H _ chwenke, D. . em. Y A .
applications in other systems. State-resolved rate constants for (36) Billing, G. D.. Kolesnick, R. EChem. Phys. Let1993 215, 571.
both thepara—para, ortho—ortho, andortho—para/para—ortho (37) Pogrebnya, S. K.: Clary, D. ©hem. Phys. Let2002 363 523.
collisions were obtained up to a high temperature (3500 K) by  (38) Lin, S. Y.; Guo, HJ. Chem. Phys2002 117, 5183.
use of the ab initio based BMKP PES. Calculated rate constants (39) Lin, S. Y.; Guo, HChem. Phys2003 289, 191.

were compared with available experimental measurements and g% ég?t?g,’:J_'lﬁh: ';Clj_a,'\}lggozuhl,{’/lw\iu':?g; (\:(h.e ,ﬂgg?sz io-lczh;‘;%isat
previous theoretical results. Phy 310 T T T '

X. J. Chem. Phys1998 108 8804.
The calculated rate constants reproduce qualitatively the (42) Gatti, F.;lung, C.; Menou, M.; Chapuisat, X.Chem. Physl998

; ot ; i~ry. 108 8821.
FxFenmtlental trend. However, guantltatlr\]/e ccr)]mparllsor, pzrtlcu (43) Goldfield, E. M.: Gray, S. KJ. Chem. Phys2002 117, 1604.
arly at low temperatures, indicates that the calculated rate (44) Kosloff, D.; Kosloff, R.J. Comput. Phys1983 52, 35.

constants overestimate the experimental data by as much as an (45) Echave, J.; Clary, D. Chem. Phys. Lett1992 190, 225.
order of magnitude. Such disagreement was also reported (46) Wei, H.; Carrington, TJ. Chem. Phys1992 97, 3029.

; (47) Zare, R. NAngular MomentumWiley: New York, 1988.
recently by Pogrebnya and Clé?yusmg the same PES. The (48) Condon, E. U.; Shortley, G. H'he Theory of Atomic Spectra

consistency of the two theoretical calculations rules out the cambridge: London, 1964.
possibility of inaccuracy in dynamical calculations as a possible  (49) zZhang, D. H.; Zhang, J. Z. H. Chem. Phys1994 101, 1146.

source of error. Further work on the PES and on the experi- (30) McGuire, P.; Kouri, D. JJ. Chem. Phys1974 60, 2488.

; : : (51) Pack, R. TJ. Chem. Phys1974 60, 633.
mental measurements is needed to identify the source of such (52) Light. J. C.: Hamilton, I. P.: Lill, J. VJ. Chem. Phys1985 82,
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