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We present a new inverse scattering series for quantum elastic scattering in three spherical dimensions. The
new series, which converges absolutely, independent of the strength of the scattering interaction, results from
a renormalization transformation of the Lippmann-Schwinger Fredholm integral equation to a Volterra form.
A new feature of the formulation is that it doesnot require the determination of phase shifts and it can be
applied even to integral cross-section measurements. The approach is illustrated by application to a simple
example problem.

I. Introduction

There have been several general approaches to the inverse
scattering problem in quantum mechanics. The earliest of those
was pioneered by Jost and Kohn1 and Moses,2 and it is based
on the Born-Neumann perturbation expansion of the Lipp-
mann-Schwinger integral equation describing quantum scat-
tering. Additional work on the approach includes that of
Razavey,3 Prosser,4 and most importantly, in the context of the
seismic inverse problem, Weglein and co-workers.5 The key
mathematical issue in the approach concerns the convergence
of the resulting inverse scattering series, and this can be deferred,
at least for some aspects of the problem, by considering certain
subseries.5

The other general approach has been that pursued, for
example, by Marchenko,6 Gel’fand, and Levitan7 and R. G.
Newton.8 In these approaches, alternative integral equations (of
the Volterra type) are derived, leading to extremely robust
behavior under iteration (i.e., absolute convergence independent
of interaction strength). So far as we can tell, the principle
difficulty associated with these approaches is in the nature of
the input data required for their implementation. Indeed, it is
true in general for quantum scattering that experiment does not
readily provide the quantities that are directly involved in the
inversion equations.8 This is in part a consequence of the fact
that in quantum mechanics probabilities rather than amplitudes
are observed, thereby leading to ambiguities in phases. The
present paper is not primarily directed at dealing with this issue,
although our results are interesting from this aspect. We shall
assume that either measurements of angular distributions are
available experimentally because thesedo provide the sort of
phase information that one desires or that one has access to
integral cross sections for a range of collision energies.

The approach that we shall pursue has its origin in the first
class of methods.1-5 These methods are most simply formulated

in terms of the solution, by iteration, of the Lippmann-
Schwinger equation for the transition amplitude. Thus, for
structureless particle scattering in 3-D, one has

where

denote the noninteracting Green function and the Hamiltonian,
H, which is the sum ofK, the kinetic energy, andV, the
interaction responsible for the scattering. We view eq 1 now as
an integral equation forV (rather than forT):

Then a power series solution forV in terms ofT has the form

Such an expression is problematic because it requires knowledge
of the off-shell T-matrix elements (which are generally not
available because they are equivalent to near-field measurements
of the wave function). However, for the case of a local potential,
we must interpret eq 5 as a sum of local, effective interactions
that (provided the series converges) add up to the true, local
interaction. Thus, consider the first-order term:

An arbitrary off-shell matrix element of this is then of the form
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T ) V + VG0
+T (1)

G0
+ ) 1

E - K + iε
(2)

H ) K + V (3)

V ) T - VG0
+T (4)

V ) T - TG0
+T + TG0

+TG0
+T - ...

) ∑
j

∞

Vj (5)

V1 ) T (6)
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Thus, because of the local character assumed forV (and
therefore also forVj, j ) 1, 2,...), we can obtain approximately
all neededT-matrix elements for eq 5 onceV1(rb) is determined.1-5

This results from the inverse Fourier transform of eq 9, where
in particular we consider backward-scattered amplitudes.8 Then
kB′ ) -kB and

Notice that all of the matrix elements ofT can be obtained from
Ṽ1(2kB) approximately from the condition that

where

Thus, eq 5 can also be expressed approximately in the form

This is all well and good except that it can lead only to well-
defined results if the perturbation expansion (eq 9) converges.
Unfortunately, this is extremely difficult to ascertain in general,
and it depends on the strength of interaction,V, the existence
of bound states in the spectrum ofH, the energy of the collision
process, and so forth.8 In general, the expansion does not
converge if the interaction is too strong (or if it supports bound
states).

The goal of the present paper is to provide an alternative
inverse scattering series approach that is guaranteed to converge
absolutely, independent of the strength of the interaction. The
paper is organized as follows. In the next section, we derive a
renormalized inverse scattering series and discuss its conver-
gence. In section III, we discuss the information required to
apply the new inversion, and in section IV, we illustrate the
approach by applying it to a simple model scattering system.
In section V, we discuss our results.

II. Renormalization of the Lippmann -Schwinger
Equation

We begin by remembering that eqs 1-14 also apply in an
appropriately modified form if one considers the various partial
wave components. For simplicity, we shall restrict ourselves to
spherically symmetric interactions in this paper, but the method
is general.9 The radial Lippmann-Schwinger equation is well
known to be8,10

wherer>(r<) is the usual greater (lesser) component of the pair
(r, r′), jl is the lth regular spherical Bessel function,hl

+ is the

lth spherical Hankel function with the outgoing wave condition,
ψlk

+ is the lth partial wave component of the scattering bound-
ary condition solution to the Schro¨dinger equation, andGl0k

+ is
defined by the second equality in eq 15. Specifically,

The asymptotic form ofψlk
+(r) (for any r > rmax such that

V(r) ) 0) is

where

With this definition, the (unitary)S matrix, Sl, satisfies

implying that

Here,ηl is the usual phase shift, and

It will also prove necessary to define an additional quantity:

We note that in generalTl
(2) is not a directly measured quantity

nor is it immediately obtainable from measured quantities.
Finally, the differential scattering amplitude,f(θ), is

whereθ is the angle between the incident relative momentum
vector,kB, and the direction of observation,r̂. For mathematical
simplicity, we shall also assume that the interaction has
“compact support” (i.e., it is zero outside the range ofrmax):

In general, however, our results will hold for interactions that
are not too singular atr ) 0 and that tend to zero faster than
1/r 2 as r f ∞. Following Sams and Kouri11 and Kouri and
Vijay,12 we rewrite eq 15 as

〈kB′|V1|kB〉 ) 〈kB′|T|kB〉 (7)

) 1

(2π)3∫ dkBe-i kB′‚ rb˜V1( rb)ei kB‚ rb (8)

) Ṽ1(kB -kB′) (9)

V1(2kB) ) 〈-kB| T|kB〉 (10)

V1( rb) ) 2∫ dkB e-2ikB‚ rbV1(2kB) (11)

〈kB′|T|kB′′〉 ) Ṽ1(2kB) (12)

kB ) 1
2
[k′′ - k′] (13)

V ) V1 - V1G0
+V1 + V1G0

+V1G0
+V1 - ... (14)

ψlk
+(r) ) j l(kr) - 2mk

p2 ∫0

∞
dr′ r′2 hl

+(kr>) j l(kr<) V(r′) ψlk
+(r′)

) j l(kr) + ∫0

∞
dr′ r′Gl0k

+ (r, r′) V(r′) ψlk
+(r′) (15)

ψkB
+
( rb) ) ei kB‚ rb - 1

4π∫ drb′ eik| rb - rb′

| rb - rb′|
V(r′) ψkB

+
( rb′)

(16)

ei kB‚ rb ) ∑
l

∑
m

i lYlm(r̂) Ylm
/ (k̂) j l(kr) (17)

-
1

4π

ei kB‚ rb ′

| rb - rb′|
) -

2mk

p2
∑

l
∑
m

Yl
m(r̂) Yl

m(r̂′)* hl
+(kr>) j l(kr<)

(18)

ψkB
+
( rb) ) ∑

l
∑
m

ilYlm(r̂) Ylm
/ (k̂) ψlk

+(r) (19)

ψlk
+(r) f j l(kr) + Tl

(1) hl
+(kr) (20)

Tl
(1) ≡ - 2mk

p2 ∫0

∞
dr r 2j l(kr) V(r) ψlk

+(r) (21)

Sl ) 1 + 2iTl
(1) (22)

Tl
(1) ) eiηl sin ηl (23)

Sl ) e2iηl (24)

Tl
(2) ≡ - 2mk

p2 ∫0

∞
dr r 2nl(kr) V(r) ψlk

+(r) (25)

f(θ) )
1

k
∑

l

(2l + 1)Pl (cosθ)Tl (26)

V(r) ) 0 r > rmax (27)
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But

so we write eq 28 as

We recognize that the factor [1+ Tl
(2) + iTl

(1)], although
unknown, is simply a constant normalization so that

where

Equation 32 forulk(r) has the tremendous virtue, compared to
the Lippmann-Schwinger equation forψlk

+(r), of being a
Volterra integral equation,8,13 and under iteration, it converges
absolutely and uniformly for all appropriately measurable
interactions because the kernel,G̃l0k(r, r′) V(r′), is triangular,
implying that the Fredholm determinant is identically one.8

Consequently, it has no zeros, and the Fredholm solution
encounters no singular points. This is the best possible
mathematical situation that one can ever have!

However, we still must address the problem of how to make
use of eq 31 becauseTl

(2) is not readily available. Before
dealing with this, we note that by analogy to our earlier work
on acoustic scattering12 we can introduce a partial wave
transition operator,Tl,

and the Volterra-based auxiliary operators

or in the coordinate representation,

Then we defineT̃l such that

We see that

It follows that

We then see that

This relation enables us to express the perturbation expansion
of V in terms ofT̃l

(1) and T̃l
(2) and then ultimately in terms of

T̃l
(1). We stress, however, that from eq 39

which converges absolutely and uniformly independent of the
strength of the interaction. We shall again restrict ourselves to
local (and for this paper, spherically symmetric) interactions,
V(r).

We now consider how to determine theṼj, defined by

We have written the upper limit as∞ rather thanrmax in
anticipation of the fact that, providedṼ1(r) tends to zero faster
than 1/r2, the more general result holds. It is not difficult then
to show that

These results have some extremely interesting features. First,
note that bothṼ1l

(1) andṼ1l
(2) are purely real. Consequently, eq 53

guarantees satisfaction of the optical theorem because

ψlk
+(r) ) j l(kr)[1 - 2mk

p2 ∫0

∞
dr′ r′2hl

+(kr′) V(r′) ψlk
+(r′)]

- 2mk

p2 ∫0

r
dr′ r′2[nl(kr) j l(kr′) -

j l(kr) nl(kr′)]V(r′) ψlk
+(r′) (28)

hl
+(kr′) ) nl(kr) + ij l(kr) (29)

ψlk
+(r) ) j l(kr)[1 + Tl

(2) + iTl
(1)]

- 2mk

p2 ∫0

r
dr′ r′2[nl(kr) j l(kr′) -

j l(kr) nl(kr′)]V(r′) ψlk
+(r′) (30)

ψlk
+(r) ) ulk(r)[1 + Tl

(2) + iTl
(1)] (31)

ulk(r) ) j l(kr) + ∫0

r
dr′ r′2G̃l0k(r, r′) V(r′) ulk(r′) (32)

G̃l0k(r, r′) ) - 2mk

p2
[nl(kr) j l(kr′) - j l(kr) nl(kr′)] (33)

Vψkl
+ ) Tl jl (34)

Tl ) V + VGl0k
+ Tl (35)

G̃l0k ) Gl0k
+ + 2mk

p2
|j l〉 〈hl

+| (36)

G̃l0k(r, r′) ) Gl0k
+ (r<, r>) + 2mk

p2
j l(kr) hl

+(kr′) (37)

Vukl ) T̃l jl (38)

T̃l ) V + VG̃l0k T̃l (39)

Tl ) T̃l(1 - 2mk

p2
|j l〉〈hl

+|Tl) (40)

) T̃l(1 - 2mk

p2
|j l〉〈nl|Tl - 2mik

p2
|j l〉〈j l|Tl) (41)

Tl
(1) ) T̃l

(1)[1 + Tl
(2) + iTl

(1)]

Tl
(2) ) T̃l

(2)[1 + Tl
(2) + iTl

(1)] (42)

Tl
(1) )

T̃l
(1)

1 - T̃l
(2) - iT̃l

(1)
(43)

V ) T̃l - VG̃l0k T̃l (44)

) T̃l - T̃l G̃l0k T̃l + T̃l G̃l0k T̃l G̃l0k T̃l + ... (45)

V ) ∑
j)1

∞

Ṽj (46)

Ṽ1 ) T̃l (47)

Ṽ2 ) -Ṽ1G̃l0kṼ1 (48)

Ṽ3 ) Ṽ1G̃l0kṼ1G̃l0kṼ1 ) -Ṽ2G̃l0kṼ1 (49)

Ṽj ) Ṽj - 1G̃l0kṼ1 (50)

Ṽ1l
(1) ≡ - 2mk

p2 ∫0

∞
dr r 2j l

2(kr) Ṽ1(r) (51)

Ṽ1l
(2) ≡ - 2mk

p2 ∫0

∞
dr r 2nl(kr) Ṽ1(r) j l(kr) (52)

Tl
(1) )

Ṽ1l
(1)

1 - Ṽ1l
(2) - iṼ1l

(1)
(53)

Tl
(2) )

Ṽ2l
(1)

1 - Ṽ1l
(2) - iṼ1l

(1)
(54)
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(This also implies that one cannot eliminateṼ1l
(2) in favor of Ṽ1l

(1)

by using the real and imaginary parts of eq 53). Second, eq 53
is sufficient to enable an inversion, provided thatTl

(1) is
known. Thus, eq 53 is viewed as an equation that is satisfied
by the first-order radial function,Ṽ1(r):

Now, of course, the inversion is not so simple because one no
longer has Cartesian Fourier transforms to invert. One procedure
is to expressṼ1(r) in some basis set (e.g., Bessel functions); an
alternative is to use the distributed approximating functionals.14

In any case, it may be necessary to obtainṼ1(r) on a numerical
grid. We conclude that the fundamental results are eqs 53 and
54, along with12

We now discuss the implementation of this approach in terms
of measurable quantities.

III. Experimental Data Requirements for Implementation
of the Volterra-Based Inverse Series

In quantum mechanical elastic scattering, the optimum
measurements are the differential angular distributions, which
are determined by|f(θ)|2. Because of azimuthal symmetry, we
in fact consider 2π|f(θ)|2 sin θ:

Clearly, if a sufficient number of scattering angles are measured,
then one can (in principle) determine theTl

(1). An alternative
that avoids having to determine the individualTl

(1) is to use eq
56 directly, along with an appropriate representation ofṼ1(r)
to derive a system of inhomogeneous (nonlinear) algebraic
equations that can be solved. For example, if we expandṼ1(r)
in a basis{φp(r)},

it is easily seen that

where

and

In general, eq 60 would be solved by a least-squares method,
using moreθ values than the number of terms in the expansion
overp (eq 59). The redundancy is useful for averaging out noise.
Another alternative is to use angular measurements at a small
number ofθ’s but for a range of collision energies (E ) p2k2/
2m) to obtain an over-determined set of simultaneous nonlinear
algebraic equations to solve.

Another interesting approach can be based on integral cross-
section measurements. Thus, the integral cross section at energy
E is well known to be

leading to the expression

One must evaluateσ(E) at enough energies to generate the
requisite algebraic equations for theṼ1p. In expressions 60 and
64, it is clear that lower-energy measurements will be numeri-
cally less complicated because the partial wave expansion will
converge with fewer angular momentum states. However, we
also expect that (at least for potentials with a repulsive core)
the short-range part of the potential will be less accurate than
the longer range part if one uses low-energy data.

It is important to note that in the case of the integral cross-
section approach one makes no use of phase-dependent effects;
indeed, only the| Tl|2 enter the expression. Neither the basis
set nor DAF approaches necessarily require any knowledge of
the phase of theTl, but one speculates that an inversion based
on angular measurements will be more robust (in terms of
accuracy) than one based on integral cross-section measure-
ments. This remains to be tested. If either the integral or
differential cross-section approach proves to be feasible, then
this will represent an extremely attractive feature compared to
approaches that require a determination of the individual partial-
wave phase shifts8

Finally, we point out that onceṼ1(r) is known all higher-
order Ṽj(r) can be computed in the coordinate representation
using eq 57. We notice that the same radial functions,Ṽj(r),
result no matter which partial wave is considered. This is a
consequence of the assumed spherical symmetry of the original
potential. This provides an internal consistency condition that
must be satisfied.

Of course, the above ideas, although formally correct, still
must be tested on actual experimental data. An important issue
is that of the effects of noise and inaccuracies in the data. In
this regard, DAF-based methods may offer advantages.14,15For
the problem at hand, it is convenient to use the spherical form
of the 3-D non-Cartesian DAF. In doing so, we can represent
a functionf(RB), defined in 3-D, by

Here,

ImTl
(1) ) |Tl

(1)|2 (55)

Tl
(1)(k) )

- 2mk

p2 ∫0

∞
dr r 2 j l

2(kr) Ṽ1(r)

1 + 2mk

p2 ∫0

∞
dr r 2nl(kr) Ṽ1(r) j l(kr) + 2mik

p2 ∫0

∞
dr r 2 j l

2(kr) Ṽ1(r)

(56)

Ṽj+1 ) -ṼjG̃l0kṼ1 j g 1 (57)

dσ(θ)

dθ
) sin θ

2π

k2
|∑

l

(2l + 1)Pl(cosθ)Tl
(1)|2 (58)

Ṽ1(r) ) ∑
p

Ṽ1pφp(r) (59)

dσ(θ)

dθ
) sin θ

2π

k2 |∑l

(2l + 1)Pl(cosθ) ∑
p

Ṽ1pJlp

1 - ∑
p′

Ṽ1p′ H1p′

|2

(60)

Jlp ) - 2mk

π2 ∫0

∞
dr r 2 j l

2(kr) φp(r) (61)

Hlp ) - 2mk

p2 ∫0

∞
dr r 2hl

+(kr) j l(kr) φp(r) (62)

σ(E) )
4π

k2
∑

l

(2l + 1)| Tl|2 (63)

σ(E) )
4π

k2
∑

l

(2l + 1)| ∑
p

Ṽ1pJlp

1 - ∑
p′

Ṽ1p′H1p′

|2

(64)

f(RB) ) ∫ dRB′ Iσ,µ(R′2) f(RB + RB′) (65)

Iσ,µ(R′2) ) e-Rh′
2
Ls

(µ)(Rh ′2) (66)
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where Rh ′ ) (1/x2σ)R′, Ls
(µ) are related to the associated

Laguerre polynomials of degreeµ, and the integral is over all
space. The expansion becomes exact in either the limitσ f 0
or µ f ∞. The gradient of the function is given in similar
approximation by replacingIσ,µ(R′2) with Rh ′e-Rh ′2Lp

(µ)(Rh ′2),
where Lp

(µ) is a different polynomial of degreeµ.14 Similar
equations hold for higher derivatives.

Because for the case at hand we know that the potential is
spherically symmetric about the origin, it is convenient to write
the integral in the form

whereRB′ ) rb - RB. Using spherical polar coordinates, we have

where by the law of cosines

Thus we can writeV(R) in the form

where

is a known function. We now discretize the integral on a grid,
using the trapezoidal rule, to obtain

where∆r is the uniform grid spacing andVj ′ is the value of the
poten-
tial on thej′ grid point. Finally, we combine eq 72, forV1(R),
with eqs 56 and 58 to obtain

where

and

Clearly, one will obtain expressions for dσ/dθ and σ(E) that
are entirely analogous to those resulting from the basis set
expansion approach. Both methods require the solution of
nonlinear algebraic equations, and the same experimental data
is employed.

IV. Simple Example

By far the simplest scattering problem to solve from the point
of view of the Lippmann-Schwinger equation is for a local,

Dirac delta function potential.3,12 In our first study of inverse
acoustic scattering, we found that the Volterra-based series
converged to the exact result in a single term. A simple 3-D
analogue is the spherically symmetric potential

It is easily shown that the exact transition amplitude is

Given such detailed input, we can use eq 56 directly:

Obviously, the solution is (independent of the partial wave
considered)

Next, we must evaluate the higher-order terms in the expansion
of V(r) in terms of theṼj(r). By eq 57,

Clearly, because of the behavior ofG̃l0k(r0, r0), Ṽ2(r) is
identically zero, no matter what the value ofl. Furthermore, by
eq 57, all higherṼj’s are also zero. We conclude that

Thus, the Volterra-based inverse series again converges to the
exact result in a single term.

Of course, in general, one does not know the individualTl’s.
In this model problem, the differential scattering amplitude is

and the cross section is the square of its modulus. The
convergence of this partial wave series results from the property
of the Bessel functions,jl(kr0), thatjl(kr0) f 0 for l > kr0. Again,
one can in principle obtain sufficient equations and obtain the
exact result. The basic conclusion is the same, namely, that the
Volterra inversion converges to the exact result in a single term.

V. Discussion of Results

In this paper, we have presented a new approach to the inverse
scattering problem in quantum mechanics. Although attention

V(RB) ) ∫ drbIσ,µ(R′2) V( rb) (67)

V(R) ) 2π∫0

∞
dr r 2∫π

∞
dθ sin θ I(R′2) V(r) (68)

R′2 ) r2 + R2 - 2rR cosθ (69)

V(R) ) ∫0

∞
dr W(R, r) V(r) (70)

W(R, r) ) 2πr2∫0

∞
dθ sin θ I(R′2) (71)

V(R) ≈ ∆r∑
j ′)1

∞

W(R, rj ′) Vj ′ (72)

dσ

dθ
) sin θ

2π

k2 |∑l

(2l + 1)

Pl(cosθ)∑
j

V1(rj) Jl(rj)

1 - ∑
j

Vj(rj) Hl(rj)
|2

(73)

Jl(rj) ) - 2µk

p2 ∫0

∞
dR R2j l

2(kR) W(R, rj)

Hl (r j) ) - 2µk

p2 ∫0

∞
dR R2j l(kR) hl

+(kR) W(R, r j)

V(r) ) λδ(r - r0) (74)

Tl
(1) )

- 2mk

p2
λr0

2 j l
2(kr0)

1 + 2mk

p2
λr0

2 nl(kr0) j l(kr0) + 2mik

p2
λr0

2 j l
2(kr0)

(75)

λr0
2 j l

2(kr0)

1 + 2mk

p2
λr0

2 nl(kr0) j l(kr0) + 2mik

p2
λr0

2 j l
2(kr0)

)

∫0

∞
dr r2 j l

2(kr) Ṽ1(r)

1 + 2mk

p2 ∫0

∞
dr r2 nl(kr) Ṽ1(r) jl(kr) + 2mik

p2 ∫0

∞
dr r2 j l

2(kr) Ṽ1(r)

(76)

Ṽ1(r) ) λδ(r - r0) (77)

Ṽ2(r) ) -Ṽ1G̃l0kṼ1 (78)

) -λδ(r - r0)∫0

∞
dr′ G̃l0k(r, r′) λδ(r′ - r0) (79)

) -λδ(r - r0) G̃l0k(r0, r0) (80)

V(r) ) ∑
j

Ṽj(r) ≡ λδ(r - r0) (81)

f (θ) ) -
2mk r0

2

p2

∑
l

(2l + 1) Pl(cosθ) j l
2(kr0)

1 +
2mk

p2
λ r0

2 hl
+(kr0) j l(kr0)

(82)
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was focused on purely elastic scattering by a spherically
symmetric potential, the method is quite general. Indeed, it can
be applied not only to quantum scattering but also to many other
types of processes. Any process that can be described by a
Lippmann-Schwinger-type causal (or anticausal) integral equa-
tion should be amenable to the approach. The method is based
on a renormalization transformation of the Lippmann-
Schwinger Fredholm equation to obtain a Volterra integral
equation.11,12 In quantum scattering, such equations are well
known8,10 but principally used to analyze the analytic structure
of the S matrix. An exception is the earlier work of Sams and
Kouri,11 who utilized the renormalization point of view to
develop a noniterative numerical method for directly solving
the coordinate representation of theT matrix. The principal
benefit of the renormalization to a Volterra equation for inverse
scattering is the fact that their noniterative solutions converge
absolutely and (under relatively mild conditions) uniformly
independent of the strength of the interaction. This feature allows
us to utilize the Volterra equations in a manner similar to that
pioneered by Jost and Kohn,1 Moses,2 and most recently
Weglein,5 but with the guarantee that the inverse series always
converges.

In the case of quantum scattering in 3-D, the results are
complicated by the facts that(a) the renormalization factor is
no longer a directly measurable quantity as it is for acoustic
scattering in 1-D,3,5,12 (b) the different partial waves do not
separate in a simple fashion, and(c) the equations that one must
solve to determine the potential are nonlinear because of the
intrinsic nature of quantum mechanics. However, there are no
difficulties in principle with the present method. Furthermore,
the present inverse series does not require the determination of
phases. It can, at least in principle, be applied either to
differential or integral cross-section measurements. If it indeed
is the case that sufficiently accurate results can be obtained
without requiring the determination of phase-sensitive quantities,
then this will provide a major advantage over other inversion
equations for quantum scattering.8

For the case of scattering by a spherically symmetric Dirac
delta function potential, the convergence to the exact result is
obtained with a single term. By contrast, the Born-Neumann
inverse series based on the Lippmann-Schwinger equation
yields the result

for the first-order effective local interaction. It is immediate that
any realV1 obtained from the above will introduce unphysical
behavior because the left side of the equation is real (i.e., eq 80
manifestly violates the optical theorem for realV1(r)). Compar-
ing this to eq 52 and using eq 75 leads to

A solution of this equation is easily seen to be

The second-order correction is

Thus, in this case, the first-order term of the series does not
yield the exact answer in general, and it does not consist of a
single nonzero term. In fact, one easily sees that one must sum
the infinite series analytically to obtain the correct result for
values ofλ that are outside the convergence radius of the series.

Equation 83 corresponds to the first term in the Taylor
expansion of the denominator on the right side of eq 84, which
is analogous to the situation we encountered in our previous
work on 1-D inverse acoustic scattering. Such an expansion
converges only for sufficiently smallλ values (as well as also
depending on the value ofr0). Of course, it does permit one to
sum the infinite series analytically to obtain the result that holds
outside the convergence limits of the series itself.12 As is also
usual for the Born-Neumann expansion in quantum scattering,
the approximation does eventually converge for high enough
energy,E (large enoughk).

We are currently exploring the inversion of quantum 3-D
elastic scattering by a nonspherical target, as well as various
other wave phenomena. Of particular interest are the cases of
acoustic and electromagnetic scattering in full 3-D. In addition,
we shall carry out test calculations to verify that one can use
non-phase-sensitive integral cross sections to carry out an
inversion. These results will be reported as they are obtained.
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