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A local-time algorithm (LTA) is developed for designing electric fields to guide a quantum system toward a
desired observable. The LTA is a noniterative forward marching procedure based on making a choice for the
control field over the next immediate small time incrementti+1 - ti ) ∆ solely on the ability of the local
field valueεi in that increment to take the system closer to the target goal. Each locally optimal field value
εi, i ) 1, 2,... is chosen from a fixed toolkit of discretized members{εj} that sample the dynamic rangeεmin

e ε e εmax of the control. Despite the strictly local myopic design process, the LTA is shown to be capable
of achieving good quality control results in model systems. The LTA has no fixed time to reach the target,
and the time it takes to produce good quality control primarily depends on the “distance” between the initial
and target states, as measured by the number of intermediate state linkages connecting them and their strength.
A comparison is made between the behavior of optimal control theory (OCT) and the LTA; each has different
characteristics, and it is shown that the LTA can be computationally very efficient. LTA and traditional OCT
methods can be viewed as extreme cases of a larger class of time-windowed approaches to control.

I. Introduction

Optimal control theory (OCT) provides a general framework
for designing controls to manipulate quantum systems.1-9 OCT
operates by considering the initial state and desired final target
observable value at target timeT and searches for the optimal
field ε(t) in an iterative manner over the time interval 0e t e
T.3,4 Importantly, OCT methods employ knowledge of the full
dynamics of the system, including its future behavior, by
exploring the entire time domain with simultaneous forward and
backward time integration.

Such global approaches to field design have been demon-
strated to generally give excellent results.10-17 Previous work
has been conducted to study the effectiveness of local optimiza-
tion where the demand is often made that each step in time
take the system closer to the objective.5,18-22 Model predictive
control breaks the full time interval 0e t e T into a few or
more time windows and seeks optimal performance in each
window.23-25 The extreme limit of the latter concept would be
a local-time algorithm (LTA), which optimizes the system
dynamics exclusively on the basis of the immediate local
behavior over each successive small time step in the integration.
This paper introduces a LTA where the field is developed
through local decisions in time without considering any dynamic
information beyond the present time step. The LTA is facilitated
by discretizing the electric field amplitudeεmin e ε e εmax into
a typically small set of 2m + 1 toolkit values{εj}, j ) 1, 2, ...,
2m + 1, from which the field is constructed. The field valueεi

over theith time intervalti+1 - ti is selected to minimize the
deviation of the observable〈O(ti)〉 and the target valueO*. The
best choice among the 2m + 1 possibilities is made at each
time step with no hard demand of a monotonic approach to the
target valueO* or that an imposed track be followed. The LTA
benefits from its simplicity and avoidance of iteratively propa-
gating the wave function. However, it is not a priori clear that

strictly local control decisions can eventually lead to successful
control possibly at some distant time in the future. However,
this paper shows that the LTA can be effective under suitable
conditions.

In this work, the LTA is developed for finite dimensional
systems and illustrated for cases of dimensions 4 and 8. The
issues that impact LTA behavior are discussed. Comparison to
traditional OCT methods is also considered. Section II presents
the LTA concept with illustrations given in Section III and
concluding remarks given in section IV.

II. Formulation of the Local-Time Control Algorithm

The dynamical system is described by the time-dependent
Schrödinger equation

whereH0 is the free Hamiltonian of the system,µ is the dipole
moment, andε(t) is an external electric field. The propagtion
of the system over theith time step (all taken as uniformly
spaced) on the intervalti+1 - ti ) ∆ is given by a unitary
operatorUi

with

where∆ is small enough to treatH(t) = H(ti) over the interval.
The LTA operates by making the best possible local choice for
the propagatorUi with an eye only on the value〈O(ti)〉 )
〈ψ(ti+1)|O|ψ(ti+1)〉 compared to the desired resultO* for the
observable operatorO.

Restricting the electric field in any time intervalti+1 - ti )
∆, i ) 1, 2, ... to be chosen from a small set of toolkit values
facilitates the operation of the LTA. The toolkit is formed by
discretizing the amplitude rangeεmin e ε e εmax into 2m + 1
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i|ψ̇〉 ) H(t)|ψ〉 ≡ (H0 - µε(t))|ψ〉 |ψ(0)〉 ) |ψ0〉 (1)

|ψ(ti+1)〉 ) Ui|ψ(ti)〉 (2)

Ui ≡ U(ti+1,ti) = exp[-iH(ti)∆] (3)
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equally spaced field values, defining the set

where the integerm determines the level of resolution in the
set{εj} that is constructed to be symmetric aboutεm+1 ) 0. In
practice, the set of field values is utilized to form a toolkit of
propagation operators{Ωj} where thejth member isΩj ) exp[-
iH(tj)∆].26,27 Simple physical considerations can be employed
to ensure that the field amplitude rangeεmin e ε e εmax is
adequate for the control problem; the toolkit can easily be
expanded if the dynamics warrants. Further requirements can
be imposed on the decision at each time step to consider only
particular field values from{εj} based on the desired degree of
smoothness for the evolving field. The field valueεi(or its
associated propagatorΩi) in the ith time step is chosen to move
the system as close as possible to the target observableO*,

To carry out this optimization, the matrix element
〈Ωjψ(ti)|O|Ωjψ(ti)〉 is evaluated for the toolkit members{Ωj}
and the results scored in comparison toO*. The winnerΩi and
its associated field valueεi are recorded, and the process is then
repeated at the text time stepti+2 - ti+1 ) ∆, etc., until the
system is driven as close as possible toward the targetO*. No
target time is specified, and the evolution is pursued as long as
necessary. Given the local nature of the decision process, longer
time evolution than for traditional OCT can be anticipated.
However, no iteration is involved with just the added expense
of testing the effectiveness of the toolkit members (typically a
small set) at each time step. There is no guarantee thatεi on
the ith step will necessarily take the evolution closer toO*;
this possible nonmonotonic behavior is natural for quantum
dynamics, including that found with OCT. The LTA can be
viewed as seeking out the best of all possible local options,
even when a particular choice may be negative in the sense
that it can only take the system a bit further fromO* to
cooperate with the dynamical capabilities of the system.

Unlike traditional OCT field design,3-5 including methods
that utilize the toolkit of propagators over the global time
period,26 the LTA operates withno certain knowledgeof the
future. All of the LTA decisions for field design are madelocally
at each time step with respect to the target observable.
Nevertheles, the illustrations in section III show that despite
the rather myopic view within the LTA it can still steer the
dynamics step-by-step toward the target when given sufficient
control time. The LTA examples below are chosen to demon-
strate the general behavior of the method under different
circumstances. A comparison will also be made between
solutions from the LTA and those produced from traditional
OCT and tracking.27-30.

III. Illustrations

A. Local-Time Control for a 4-Level System.The model
system considered has four nondegenerate levels and distinct
transition frequencies with all of the initial population in the
ground state|1〉.31 The target goal is to occupy state|4〉 with a
population of 0.95. All transitions, except the direct one|1〉 f
|4〉, were allowed. Arbitrary units will be used in all of the
following examples. The electric field amplitude is fixed to lie
betweenεmin ) -1 and εmax ) 1. This amplitude range is

discretized into 21 equally spaced increments of 0.1 between
adjacent field values within{εj}. The temporal step size is∆
) 0.1. The final time is not fixed except through the criteria
that it end when reaching the target population.

Figure 1A displays the controlled population evolution under
the LTA when the local optimization in eq 5 is over all possible
21 toolkit values{εj} at each time step. The primary mechanism
for reaching the target state is evidently the pathway|1〉 f |2〉
f |4〉 over the time interval of 93.5 (i.e., 935 time steps). The
controlled behavior in Figure 1A is quite normal along with
population of|4〉 rising a monotonic fashion. The field displayed
a sinusoidal temporal structure (not shown here) including
intervals when the field spanned the full allowed amplitude range
available in the toolkit{εj}. The power spectrum of this field
is shown in Figure 1B. The most significant frequency structure
appears betweenω ) 3 andω ) 4, which includes the|1〉 f
|2〉 transition atω ) 3.0 and the|2〉 f |4〉 transition atω )
3.8. In the LTA an analysis of the field frequency structure to
assess mechanism is complicated by the local nature of the
algorithm. The notion of frequency is a well-defined concept
over a global time frame, and the local control decisions within
the LTA will likely have difficulty clearly recognizing resonant
absorption behavior. The LTA introduced some power at
frequencies that do not correspond to the field-free transitions
available to the system. This is reasonable because the local
construction prevents the inclusion of a cost to minimize the
field fluence, and dynamic power broadening can also permit
deviations from resonant conditions. Because of the piecewise,
discontinuous construction of the field from the toolkit, high-
frequency structure is also present. Postfiltering the field to
remove frequencies aboveω ) 6.0 yields a field that is
continuous and differentiable.32 When this filtered field is
integrated, the control shown in Figure 1A is reproduced.

A more restrictive approach to local-time design requires the
field value εi+1 at the timeti+1 to be close to the preceding

{εj} ) {ε1, ε2, ...,ε2m, ε2m+1} (4)

min
εi∈{εj}

|〈ψ(ti+1)| O|ψ(ti+1)〉 - O* | ≡
min

Ωi∈{Ωj}
|〈Ωiψ(ti)| O|Ωiψ(ti)〉 - O* | (5)

Figure 1. Local-time control with all 21 field values in{εj} considered.
The amplitude was restricted to [-1, 1] with a separation of 0.1 between
neighboring field values. (A) Population oscillates primarily between
|1〉 and |2〉 with diminishing amplitude as state|4〉 is populated
monotonically over the control time. (B) The power spectrum of the
field reveals a large cluster of frequencies near the|1〉 f |2〉 and |2〉
f |4〉 transitions atω ) 3 andω ) 3.8, respectively.
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field valueεi at timeti to prevent large amplitude jumps within
small time frames. For example, ifεi ) εk, whereεk is the
optimally chosen value from the toolkit{εj}, thenεi+1 may be
restricted to lie among the nearest-neighbor valuesεk+1, εk, or
εk-1. This nearest-neighbor condition was imposed on the 4-level
system. The dynamics for this example are shown in Figure
2A. The target was achieved in 18 830 steps. The much longer
required time for the dynamics in this case compared to the
last one is consistent with the imposition of restrictions on the
local field decisions (see section III.B below). The mechanism
is again dominated by the|1〉 f |2〉 f |4〉 transition. Although
the overall population of|4〉 appears to rise monotonically, many
intermediate steps took small increments away from the target.
This behavior is indicative of an “intelligent” algorithm that
recognizes that reaching the target also requires working
cooperatively with the dynamical capabilities of the system. The
field produced by the LTA is shown in Figure 2B. Figure 2C
displays the corresponding power spectrum. A more intense and
complex frequency structure is present in this case than in the
previous example, including significant low-frequency compo-
nents.

B. Influence of Toolkit {Ej} Resolution Decision Con-
straints in the Algorithm. The examples in Figures 1 and 2
illustrate how constraints on the local field decisions can affect
the dynamics and especially the number of time steps needed
to reach the target. This point will be explained further here
through consideration of transition rules that restrict the field
choices (e.g., nearest-neighbors, next-nearest-neighbors, etc.) at
each time step. The level of vertical resolution (i.e., the
amplitude separation between adjacent field values) of{εj} also
can impact the amount of time required to reach the target goal.
To consider these matters, Table 1 displays the number of time
steps required to reach the target under various conditions. In
the table the full range of the field amplitude is-1 e ε e 1.
For cases where the number of field values to choose from is
restricted at each time step, the time required to reach the control
objective increases as the spacing between the toolkit members
|εj - εj-1| decreases. Furthermore, as the subset of field values
at each time step becomes less restrictive, the time necessary
to achieve the target decreases. For the fully flexible cases where
the entire set of amplitude values{εj} can be considered (i.e.,
see the last row in Table 1 ), the time required for control was
similar and relatively invariant to the amplitude resolution (i.e.,
different m values). All of the observations in Table 1 are
consistent with the simple consideration that added freedom in
choosing the field at each time step tends to decrease the effort
in reaching the target.

C. Local-Time Control for an 8-Level System.The four-
level system was expanded to include a total of eight nonde-
generate levels33 with unique transition frequencies. Single
transitions beyond three energy levels were forbidden. The target
in this case was to move population from|1〉 to |8〉. The electric
field amplitude and discretization were the same as described
in section III.A. The control results will be described here
without figures, as the qualitative behavior was similar to that
indicated in Figures 1 and 2. For the restrictive case where only
nearest-neighboring electric field values were considered at each
time step, the population in state|8〉 was 0.09 after 50 000 steps
with only slow change in the dynamics beyond that point.
Allowing the algorithm to consider the entire toolkit{εj} of 21
field values to choose from at each time step increased the
population of|8〉 to 0.76 after 50 000 steps, with the remaining
population mostly in|2〉 and |4〉. The field showed significant
low-frequency structure, and postfiltering this low frequency
severely reduced the level of control. From the results in Table
1, the performance would improve by permitting more flexibility
through a larger dynamic range in the toolkit{εj}.

Permitting a very weak direct transition between|1〉 and|8〉
allowed for population of greater than 0.9 to be reached in|8〉

Figure 2. Local-time control with only nearest-neighboring field values
considered at each time step. The amplitude was restriced to [-1, 1]
with a separation of 0.1 between neighboring field values. (A)
Population moves from|1〉 to |2〉 and oscillates between these states.
The population of state|4〉 is not monotonic in its fine detailed
evolution. The electric field (B) and corresponding power spectrum
(C) show complex oscillating structure. A band-pass filter with a cutoff
beyond the system transition frequencies was used to smooth the digital
nature of the toolkit field variation; the controlled dynamics was
invariant to this operation.

TABLE 1: Time Steps Required To Achieve Controla

field resolution

subset of fields for
control decisions

m ) 5,
|εj - εj(1| ) 0.2

m ) 10,
|εj - εj(1| ) 0.1

m ) 20,
|εj - εj(1| ) 0.05

{εj-1, εj, εj+1} 1719 18830 66532
{εj-2, ...,εj+2} 1093 1887 15685
{εj-3, ...,εj+3} 1109 1800 10016
{εj}, j ) 1, 2, 986 935 989

..., 2m + 1

a Number of time steps required to achieve the target population of
|4〉 with the LTA. The amplitude range is fixed betweenεmin ) -1
and εmax ) 1. When the subset is restricted to less than the full set
{εj}, j ) 1, 2, ..., 2m + 1, the algorithm requires a longer time to
achieve the target as the amplitude spacing decreases. The last row
shows that total freedom in choosing a field value, regardless of the
field resolution, allows the algorithm to achieve the target with
essentially the same effort.
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for each of the cases above. Again, population reached the target
state in less time when the algorithm was given more flexibility
in choosing a field value. The dominant frequency in the fields
occurred for the|1〉 f |8〉 transition. Thus, the LTA was able
to populate a distant state most efficiently when a direct path
was available. This behavior is consistent with the operation of
the LTA, which is best suited for situations where the local
control decisions can have a clear, direct impact on the target.
This is a restriction in the use of the LTA, but even in this
example, it was able to significantly populate a distant state
when sufficient freedom was allowed at each local time step.

D. Comparison of Local-Time Control with OCT. Because
OCT is a benchmark for achieving control designs for arbitrary
controllable quantum systems, it is instructive to compare the
control performance of the LTA with that of OCT. The test
conditions are carried out for the 4-level system described in
section III.A.

For the OCT case, the cost functional included a modest
fluence term3,4 and the time domain was fixed to 10 000 time
steps of size∆ ) 0.1 (i.e., the target time wasT ) 1000). The
initial field introduced into the OCT algorithm wasε(tk) ) 0,
for all k ) values. After 141 iterations, the target of 0.95
population in |4〉 was achieved. The population dynamics
indicate a mechanism of|1〉 f |2〉 f |4〉 similar to the LTA
dynamics. However, the detailed dynamics in the OCT and the
two LTA cases was quite different. The LTA dynamics show
some small population in|3〉 and more complex frequency
structure within the control fields.

To compare the relative cost of the LTA versus the OCT
algorithms for these examples, we will compute the ratior of
the number of mathematical operations needed to reach the
target for the OCT algorithm to that of the LTA (i.e.,r ) OCT/
LTA operational costs). For the example in Figure 1 the ratio
wasr ) 64 and for the case in Figure 2,r ) 11, showing good
efficiency for the LTA. The restricted choices available to the
LTA in Figure 2 alone would decrease the number of LTA
operations; however, the added time to reach the target more
than compensated for that savings to give a net increase in the
LTA cost in that case. The main source of the LTA efficiency
is its operation without costly iteration whereas OCT generally
cycles through repeated calculations many times before con-
vergence is achieved. Similar behavior was also found in other
cases where OCT and LTA both reached the target value.
Although the results are interesting, it must be stressed that a
direct comparison between OCT and LTA calls for considerable
caution. Each method operates under fundamentally different
conditions, often producing qualitatively different control fields
and mechanisms. OCT produces temporally optimal solutions
(i.e., after even the first iteration the new field at any timeti is
influenced by controlled dynamics over the full time interval 0
e t e T) by evaluating global considerations that are not
possible to implement in the LTA. The results in this paper are
not presented to intimate that LTA can replace tradtional OCT
methods. Rather, the comparison with OCT illustrates that the
LTA operates in a unique fashion with different consequences
for the controlled dynamics, yet with some efficiency and
capabilities despite the very limited information included in the
local learning algorithm.

IV. Concluding Remarks

Fully local-time design by the LTA is appealing because of
the simplicity of the algorithm and the minimal amount of
information required for its operation. This paper shows that
such a simple procedure operating with a very myopic decision

process often still can find successful controls. Unlike OCT,3-5,8

the LTA fields are not explicitly tailored by cost functionals
that include global temporal information. Rather, the LTA
technique constructs fields at each time step without knowledge
of the system’s future dynamics. An example of this distinction
is the way each method minimizes the energy of the field. OCT
often requires minimum input energy by placing appropriate
costs on the fluence of the field. The LTA, however, simply
requires that the field amplitude remains within some modest
bound. The computational costs associated with the LTA benefit
from the lack of iteration while achieving control. The degree
of control flexibility arising from discretization of the electric
field amplitudeεmin e ε e εmaxaffects the operation of the LTA.
The LTA will operate best when the target is near the initial
state in the sense of there being a relatively small number of
strongly coupled intermediate states linking them.

Although LTA and OCT methods differ fundamentally in the
scope and nature of information used to design the control field,
the LTA is closely related to tracking methods in optimal
control.27-30 Tracking problems involve searching for a control
field that produces dynamics that follow a prescribed path. A
central issue in tracking is the avoidance of singularities that
may occur while attempting to adhere to the track. Utilizing a
local-time construction with the toolkit of field values is
appealing for tracking because it can completely avoid singu-
larities while attempting to stay as close as possible to the
imposed track.

The LTA determines a field that drives the system toward
the target, although not likely in a global temporal sense as with
OCT. The LTA is an optimal control procedure where the field
is chosen as optimal separately over each small time window
for its (future) impact on reaching the target. The LTA and
traditional OCT can be considered as optimal control procedures
operating at the two extreme time window limits. In the same
manner, by extending the time window for consideration the
LTA may be morphed to become OCT in the global limit. A
full family of time-windowed local approaches21-23 lies between
these limits. Tradeoffs likely exist in considering the simplicity
of the local methods to the increasing globality of the windowed
methods. This paper shows that control may be achieved even
when operating at the smallest time steps (windows) to make
field choices.
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