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A recursion procedure for the analytical generation of hyperspherical harmonics for triatomic systems, in
terms of row-orthonormal hyperspherical coordinates, is presented. Using this approach and an algebraic
Mathematicaprogram, these harmonics were obtained for all values of the hyperangular momentum quantum
number up to 40 (about 2.3 million of them). Their properties are presented and discussed. Since they are
regular at the poles of the triatomic kinetic energy operator, are complete, and are not highly oscillatory, they
constitute an excellent basis set for calculating the local hyperspherical surface functions in the strong interaction
region of nuclear configuration space. This basis set is, in addition, numerically very efficient and should
permit benchmark-quality calculations of state-to-state differential and integral cross sections for those systems.

1. Introduction
Substantial progress has been made recently in applying

quantum reactive scattering theory to atom-diatom reactions.
Several totally ab initio quantum-dynamical calculations of
converged state-to-state integral and differential cross sections
have been performed using a propagation approach to solve the
time-independent Schro¨dinger equation. Most of these calcula-
tions have been done with some form of symmetrized body-
fixed hyperspherical coordinates1-12 which have the desirable
property that a single set of such coordinates span the potential
energy surface in all arrangement channels “democratically”
(i.e., equivalently).13-15 This property has been instrumental in
the success of such an approach.

We consider in this paper the body-fixed row-orthonormal
hyperspherical coordinates (ROHC) proposed previously.16 The
Hamilitonian in these coordinates is quite simple, and each of
its terms displays useful invariance properties under kinematic
rotations and symmetry operations. However, as for angular
coordinates in general, the corresponding kinetic energy operator
has poles for two special configurations of the system. One pole
occurs for collinear geometries and can be dealt with analytically
using a simple set of basis functions which behave regularly at
that pole.1 A second pole occurs for bent configurations of the
system. For collinearly-dominated triatomic reactions, these bent
configurations are usually classically forbidden at the energies
of interest and do not require special consideration. However,
for higher energies or for noncollinearly-dominated triatomic
reactions, this noncollinear pole must be handled appropriately.
One possible approach is to expand the three-body wave
function in a basis set of hyperspherical harmonics. These
harmonics are eigenfunctions of the square of the grand-
canonical angular momentum operator, have the same angular
poles as the kinetic energy operator, and behave regularly at
those poles. Several approaches for their calculation have been
used.17-23 However, their complete analytical determination has
not been possible until now. One of the methods23 comes close
to reaching this objective and involves a numerical implementa-
tion of an iterative procedure. The present paper describes a

somewhat different approach, based on the general theory of
harmonic polynomials.24 To perform converged state-to-state
differential reactive scattering calculations for triatomic systems
using these hyperspherical harmonics, a sufficiently large and
complete set of such functions must be used, involving both
the grand-canonical angular momentum quantum numbern and
the total angular momentum quantum numberJ. TheJ ) 0 and
J ) 1 harmonics are nondegenerate. The first degenerate
hyperspherical harmonics appear forJ ) 2 andn ) 4, and the
degeneracy increases with both of theses quantum numbers. For
a contributingJ andn, all these degenerate functions are needed
to obtain such converged results.

Hyperspherical harmonics have been used to calculate energy
levels of few-body systems, including nuclei25,26 and atoms.27

Their use in scattering problems, especially those involving
contributions from highJ partial waves, has been more limited.
The reason is 2-fold. One is the difficulty in their determination
for large values ofJ, but this is overcome using the approaches
described in ref 23 and in the present paper. It should be noticed
that hyperspherical harmonics are appropriate for describing the
strong interaction regions of configuration space encompassed
by the full ranges of definition of the hyperangles. The second
reason is that, for the arrangement channel regions involving
separated collision partners (the weak interaction regions), they
constitute an inefficient basis set, since these parts of config-
uration space are spanned by a small range of the hyperangles.
This difficulty is overcome by using more appropriate coordi-
nates and basis sets in such regions.1,6

Recently, we reported a recursion procedure for the analytical
generation of hyperspherical harmonics for tetraatomic sys-
tems.28 In the present paper we describe an analogous efficient
recursive method to generate, for triatomic systems, analytical
hyperspherical harmonics in the principal-axes-of-inertia frame
which are simultaneous eigenfunctions of the operatorÔÎ

(associated with the inversion I of the system through its center
of mass) and of the four angular momentum operators∧̂2, Ĵ2,
Ĵz

sf, and L̂. ∧̂2 is the grand-canonical angular momentum
operator, Ĵ2 is the square of the total angular momentum
operator, Ĵz

sf is its space-fixedz component, andL̂ is an
internal hyperangular momentum operator associated with one
of the internal hyperangles. In section 2 we describe these
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operators in greater detail and summarize the ROHC used and
the corresponding Hamiltonian,16 and in section 3 we define
the associated hyperspherical harmonics. In section 4 we derive
the recursion relations used to generate these harmonics, and
in section 5 their degeneracies are analyzed. Some representative
results are presented in section 6 and discussed in section 7.
Finally, a summary and conclusions are given in section 8.

2. Coordinates and Kinetic Energy Operator

The ROHC used in this paper, as well as their properties,
have been described previously,12 and we only summarize them
below. We consider a system of three bodies in a space-fixed
frameOxsfysfzsf whose mass-scaledλ-arrangement channel Jacobi
vectors arer λ

(i), i ) 1, 2. The corresponding Jacobi matrix is
defined as

The six ROHC

are defined by the relation

In this expression,aλ ≡ (aλ, bλ, cλ) are the Euler angles that
rotate the space-fixed frameOx1

sfy1
sfz1

sf into the principal-axes-
of-inertia body-fixed frameOxIλyIλzIλ. The quantityF is the usual
hyperradius which, together with the two internal hyperangles
θ, δλ, determines the internal configuration of the system. The
R in (2.4) is the proper 3× 3 rotation matrix associated with
that rotation, andN(θ) is a 3 × 3 diagonal matrix whose
diagonal elements are

Finally, Q(δλ) is the 3× 2 row-orthogonal matrix

The Euler anglesaλ have the usual ranges of definition

To get a one-to-one correspondence betweenFλ
sf and the six

ROHC (except for some special geometries), we limit the range
of the δλ to

and that ofθ to

The latter results in

The hyperangleθ is related to system’s principal moments of
inertia by

and, as a result of (2.10), they are ordered according to

In terms of these ROHC, the kinetic energy operator is given
by

where∇2 is the system’s mass-scaled six-dimensional Laplacian,
∧̂2 is the hyperangular momentum operator

T̂F(F) is the hyperradial kinetic energy operator

and K̂ and L̂ are internal hyperangular momenta defined by

and

The Ĵx
Iλ, Ĵy

Iλ, and Ĵz
Iλ operators in (2.16) are the components

of the nuclear motion angular momentum operatorĴ in the body-
fixed frameOxIλyIλzIλ and are given explicitly by

Under aλ to ν change of Jacobi coordinates, the Jacobi matrix
Fλ

sf changes according to the kinematic rotation

whereNλν is a 2× 2 proper orthogonal square matrix12-14 whose
elements depend only on the masses of the atoms. The
coordinatesF andθ are kinematic-rotation-invariant, as are the
operatorsT̂F(F), ∧̂2, K̂, andL̂. On the other hand,R(aλ), Q(δλ),
and ĴIλ transform according to

I1 ) µF2N33
2 ) µF2 cos2 θ (2.11)

I2 ) µF2 (2.12)

I3 ) µF2N11
2 ) ) µF2 sin2 θ (2.13)

I2 g I1 g I3 g 0 (2.14)

T̂ ) - p2

2µ
∇2 ) T̂F(F) + ∧̂2

2µF2
(2.15)

∧̂2 ) 1

cos2 θ
Ĵx

Iλ
2
+ 1

cos2 θ
Ĵy

Iλ
2
+ 1

sin2 θ
Ĵz

Iλ
2
+ 1

cos2 2θ
L̂2 +

K̂2 + 2
sin 2θ
cos2 2θ

L̂Ĵy
Iλ - 4ip cot 4θK̂ (2.16)

T̂F(F) ) - p2

2µ
1

F5

∂

∂F
F5 ∂

∂F
(2.17)

K̂ ) p
i

∂

∂θ
(2.18)

L̂ ) p
i

∂

∂δλ
(2.19)

(Ĵx
Iλ

Ĵy
Iλ

Ĵz
Iλ

) ) p
i (-cscbλ coscλ sincλ cotbλ coscλ

cscbλ sincλ coscλ -cotbλ sincλ

0 0 1 )(∂/∂aλ

∂/∂bλ

∂/∂cλ
)

(2.20)

Fν
sf ) Fλ

sfNλν (2.21)

Fλ
sf ) (xλ

(2) xλ
(1)

yλ
(2) yλ

(1)

zλ
(2) zλ

(1) ) (2.1)

γλ ≡ (F, Θλ) (2.2)

Θλ ≡ (Rλ, θ, δλ) (2.3)

Fλ
sf ) R̃(aλ) FN(θ) Q(δλ) (2.4)

N11 ) sin θ N22 ) 0 N33 ) cosθ (2.5)

Q(δλ) ) ) (cosδλ sin δλ

0 0
-sin δλ cosδλ

) (2.6)

0 e aλ, cλ < 2π, 0 e bλ e π (2.7)

0 e δλ < π (2.8)

0 e θ e π/4 (2.9)

N22 e N11 e N33 (2.10)
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where

The quantitynλν is either 0 or 1 and depends onδλ. As a result,
Ĵy

Iλ is invariant whereasĴx
Iλ and Ĵz

Iλ either are invariant or both
change signs under kinematic rotations. Furthermore, the axes
of the principal-axes-of-inertia frameOxIλyIλzIλ are invariant
under such rotations, as is the sense ofOyIλ, whereas either none
or both of the senses of the two other axes change. An important
consequence of these properties is that each one of the seven
terms in (2.16) as well as theT̂F(F) of (2.17) are invariant under
kinematic rotations.

The grand-canonical hyperangular momentum operator of
(2.16), and therefore the kinetic energy operator of (2.15), has
singularities at collinear configurations, corresponding toθ )
0, and at configurations for which the two principal moments
of inertia I1 andI3 are equal, corresponding toθ ) π/4, which
is a prolate symmetric top configuration. The collinear config-
uration pole can be taken care of by a simple choice ofθ basis
functions.1 For many collinearly-dominated triatomic systems,
the symmetric top singularity corresponds to high energy regions
of the potential energy surface and does not pose special
problems at low energies. However, for non-collinearly-
dominated triatomic systems, this singularity is, in general, not
located in such regions and can result in convergence difficulties
for the most common quadrature or basis set expansion methods,
including DVR methods, even for low energies. In the present
paper, we develop a set of analytical basis functions which
overcome these problems, both at low and high energies.

3. Hyperspherical Functions and
Principal-Axes-of-Inertia Hyperspherical Harmonics

For triatomic systems, the five operators∧̂2, Ĵ2, Ĵz
sf, L̂, and

ÔÎ commute with each other.Î is the operator which inverts
the system through its center of mass

and ÔÎ is the associated operator which acts as a function of
Fλ

sf. As has been shown previously,7 Î acts on the ROHC of
(2.2) and (2.3) according to

Therefore, bothF and θ are unchanged under inversion. Let
FΠ nΠ LΠ

MJ

J
d
D(Θ) be the simultaneous eigenfunctions of those

five operators:

TheseF functions are furthermore required to be regular at the
poles of∧̂2 (see (2.16)). The quantum numbersnΠ, J, MJ, LΠ,
andΠ appearing in these expression are all integers, satisfying
the constraints

and, as shown Appendix B,nΠ andLΠ have the same parity as
Π

The five operators being considered are all independent of
the choice of arrangement channel coordinatesλ,16 and therefore,
so are the corresponding quantum numbersΠ, nΠ, J, MJ, and
LΠ. The positive integer superscriptD is used to label the
number of linearly-independentF functions having the same
values of these five quantum numbers. ThisD degeneracy stems
from the fact that the system of three free particles in a center
of mass frame has five angular degrees of freedom, as indicated
by (2.3) (and as a result has five simultaneously knowable
angular constants of the motion), butF has been required to be
an eigenfunction of only four differential operators in these
angular variables. It is shown in section 6.2 thatD depends on
the quantum numbersn, J, andL (but not onMJ). The positive
integer subscriptd, which ranges from 1 toD, designates which
one of theF functions is being considered.

As a result of (3.3) through (3.7), the general solution of those
equations can be written as

The presence of the Wigner rotation functionsDMJΩJλ

J (aλ)29

guarantees that (3.12) will satisfy (3.3) through (3.6). As shown
in Appendix A, replacement into (3.3) results in a set of partial
differential equations for the functionsG which do not contain
MJ, and therefore, theG are independent of these quantum
numbers. This independence is a consequence of the fact that
∧̂2 is invariant under both space and kinematic rotations. The
degeneracyD(nΠ,J,LΠ) also represents the number of linearly-
independent sets of functionsGΠ nΠ LΠ

ΩJλ

J
d
D with each set

spanned by the quantum numbersΩJλ, as discussed in sec-
tion 6.2. TheN on the rhs of (3.12) is a normalization constant
that will be discussed in section 6 and is shown to be
independent ofMJ.

According to (3.7), the functionsFΠ nΠ LΠ
MJ

J
d
D(θ) for Π ) 0

andΠ ) 1 are respectively symmetric and antisymmetric with
respect to inversion through the system’s center of mass. If we
restrict ourselves to single electronically-adiabatic states of the
triatomic system being considered, the potential energy function
V(F,θ,δλ) which describes the interaction between those atoms

R(aν) ) Inλν
R(aλ) (2.22)

Q(δν) ) ÑλνQ(δλ) Inλν
(2.23)

ĴIν ) Inλν
ĴIλ (2.24)

Inλν
) ((-1)nλν 0 0

0 1 0
0 0 (-1)nλν

) (2.25)

ÎFλ
sf ) -Fλ

sf (3.1)

Î(aλ,bλ,cλ,F,θ,δλ) )
((π + aλ) mod 2π,π - bλ,(π - cλ) mod 2π,F,θ,δλ) (3.2)

∧̂2FΠ nΠ LΠ
MJ

J
d
D(Θλ) ) nΠ(nΠ + 4)p2FΠ nΠ LΠ

MJ

J
d
D(Θλ) (3.3)

Ĵ2FΠ nΠ LΠ
MJ

J
d
D(Θλ) ) J(J + 1)p2FΠ nΠ LΠ

MJ

J
d
D(Θλ) (3.4)

Ĵz
sfFΠ nΠ LΠ

MJ

J
d
D(Θλ) ) MJpFΠ nΠ LΠ

MJ

J
d
D(Θλ) (3.5)

L̂FΠ nΠ LΠ
MJ

J
d
D(Θλ) ) LpFΠ nΠ LΠ

MJ

J
d
D(Θλ) (3.6)

OÎF
Π nΠ LΠ

MJ

J
d
D(Θλ) ) (-1)ΠFΠ nΠ LΠ

MJ

J
d
D(Θλ) (3.7)

nΠ g 0 0 e J e nΠ (3.8)

-J e MJ e J -nΠ e LΠ e nΠ (3.9)

Π ) 0, 1 (3.10)

(-1)Π ) (-1)nΠ ) (-1)LΠ (3.11)

FΠ nΠ LΠ
MJ

J
d
D(Θλ) )

NΠ nΠ J LΠ ei LΠ δλ ∑
ΩJλ)-J

J

DMJΩJλ

J (aλ) GΠ nΠ LΠ
ΩJλ

J
d
D(θ) (3.12)
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is invariant (i.e., symmetric) under such inversion, and matrix
elements ofV betweenF functions of different parity vanish.
The range of theδλ angle is given by (2.8). However, the eiLΠδλ

functions are only orthonormal over the range

Therefore, it is desirable to permit (3.12) to be valid over this
extended range. This can be accomplished by noticing that the
two sets of ROHC

defined by

and

with theδλ in the ranges defined by (3.13), yield the same Jacobi
matrix of (2.1), that is, correspond to the same configuration of
the system. As a result, the system’s wave function, in the
absence of a conical intersection between the electronically-
adiabatic potential energy function being considered and a
neighboring one (i.e., in the absence of a geometric phase
effect30), should have the same value at these two sets of ROHC.
We therefore impose the same condition on (3.12). Replacement
of (3.15) and (3.16) into (3.12) and use of this condition leads
to the relation

Since theG are independent ofδλ, this relation should be
imposed regardless of whether the ranges defined by (2.8) or
(3.13) are being considered, and therefore, (3.12) is valid in
either of these two ranges. It should be stressed, however, that
(3.17) is valid only in the absence of a geometric phase. If such
a phase is present, a different approach is required, and theF
andG of this paper are not applicable. TheF functions given
by (3.12) are called five-angle principal-axes-of-inertia hyper-
spherical harmonics, and theG functions in those equations are
called principal-axes-of-inertia hyperspherical harmonics, or
simply F hyperspherical harmonics or functions andG hyper-
spherical harmonics or functions, respectively. TheF functions,
which depend on the five hyperanglesΘλ, constitute an
appropriate complete linearly-independent basis set in these
variables, in terms of which the local hyperspherical surface
functions (LHSF), defined in the first paragraph of section 7,
may be expanded. The coefficients of this expansion will depend
only on the hyperradiusF. An important property of theF
functions is that they behave regularly at the poles of the kinetic
energy operatorT̂ of (2.15) and therefore of the system’s
Hamiltonian. They are, in addition,F-independent. If they could
be obtained analytically, they would constitute a very useful
basis set. In the rest of this paper we show how indeed we can
obtain an analytical expression for theG functions and therefore
for the F functions. It should be noted that the matrix
representation ofT̂ in the F basis set is completely diagonal.
All the Coriolis couplings involvingΩJλ are automatically
included in the evaluation of theG functions. The only matrix
elements that must be evaluated numerically are those of the

potential energy function. It should also be noted that if some
of the system’s atoms are equal, it is possible to define modified
F functions that transform according to the irreducible repre-
sentationsΓ of the permutation group of identical atoms. This
will entail a modification of the eiLΠδλ functions in (3.12), but
not of the associatedG functions.

To solve (3.3) through (3.7), an alternative to the expansion
of (3.12) is to use, instead of theDMJΩJλ

J (aλ), D MJΩJλ

JΠ (aλ) parity,
Wigner rotation functions defined by

where

The D MJΩJλ

JΠ (aλ) is orthonormal with respect to all its four
indices and transforms under inversion as

(3.12) is then replaced by

Using the properties of theDMJΩJλ

J (aλ) and D MJΩJλ

JΠ (aλ) func-
tions, the following relations result:

Therefore, forΩJλ > 0, G′ andG are equal, but they differ by
a factor of 1/x2 for ΩJλ ) 0. In addition, the replacement of
DMJΩJλ

J (aλ) by D MJΩJλ

JΠ (aλ) in (3.12) limits the sum overΩJλ to
non-negative values only and changes the normalization con-
stant.

4. Analytical Derivation of Principal-Axes-of-Inertia
Hyperspherical Harmonies G

4.1. General Considerations.Since the kinetic energy
operatorT̂ of (2.15) is the Hamiltonain of three noninteracting
particles (for whichV ) 0), its eigenfunctions can be obtained
analytically, as follows. Letrλ

i , θλ
(i), andφλ

(i) (i ) 1, 2) be the
space-fixed polar coordinates of the mass-scaledλ-arrangement
channel Jacobi coordinatesrλ

(i) introduced in section 2. The
eigenfunctions ofT̂ can be expressed as products of the two
ordinary spherical harmonics ofθλ

(i), φλ
(i) times a function of

rλ
(1), rλ

(2). These latter two variables can be transformed into the
hyperradiusF and the hyperangleηλ, defined by the relations

At a constantF, the partial differential equation inrλ
(1), rλ

(2) is

0 e δλ < 2π (3.13)

(γλ)i ) (F,Θλi
) i ) 0, 1 (3.14)

Θλ0
) (aλ,bλ,cλ,θ,δλ) (3.15)

Θλ1
) ((π + aλ) mod 2π,π - bλ,(π - cλ) mod 2π,

θ,(π + δλ) mod 2π) (3.16)

GΠ nΠ LΠ
-ΩJλ

J
d
D(θ) ) (-1)(J+L+ΩJλ)GΠ nΠ LΠ

ΩJλ

J
d
D(θ) (3.17)

D MJΩJλ

JΠ (aλ) ) N JΩ[DMJΩJλ

J (aλ) + (-1)J+Π+ΩJλDMJΩJλ

J (aλ)]
(3.18)

N JΩ ) [ 2J + 1

16π2(1 + δΩJλ
0)]1/2

(3.19)

ÔÎD MJΩJλ

JΠ (aλ) ) (-1)ΠD MJΩJλ

JΠ (aλ) (3.20)

FΠnΠ LΠ
MJ

J
d
D(Θ) )

N′Π nΠ J LΠei LΠ δλ ∑
ΩJλ)0

J

D MJΩJλ

JΠ (aλ) G′ΠnΠ LΠ
ΩJλ

J
d
D(θ) (3.21)

G′Π nΠ LΠ
ΩJλ

J
d
D(θ) ) (1 + δΩJλ

0)-1/2GΠ nΠ LΠ
ΩJλ

J
d
D(θ)

for ΩJλ
g 0 (3.22)

N′Π nΠ J LΠ ) [2J + 1

16π2 ]1/2
NΠ nΠ J LΠ (3.23)

rλ
(1) ) F sin ηλ (4.1)

rλ
(2) ) F cosηλ (4.2)
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transformed into an ordinary differential equation forηλ whose
solutions are known hypergeometric functions of cos2 ηλ. In
this way the eigenfunctions of∧̂2, for a quantum numbern,
become known functions of the five anglesθλ

(i), φλ
(i) (i ) 1, 2),

andηλ. They are, however, not eigenfunctions of the remaining
operators of (3.3) through (3.7). One can nevertheless transform
them into functions of the five hyperanglesΘλ and expand them
in the basis setF. This procedure will furnish theG functions
analytically. For many triatomic reactions, the values ofJ up
to 30 may be required to obtain state-to-state differential cross
sections of benchmark quality. Since, from (3.8),n g J, G
functions up to at leastnΠ ) 40 may be needed in these
calculations. For this range ofnΠ, (6.7) furnishes approximately
2.3 million G functions, of which, for symmetry reasons, only
1.2 million have to be evaluated. The manual algebra involved
in this kind of approach cannot be used to obtain such a large
number of functions. In the rest of this section we derive a
recursion relation that is simple enough to be implemented
efficiently using theMathematicacomputer algebra program31

and which has generated analytically this large number ofG
functions. This relation is based on the theory of harmonic
polynomials18 and the use of complex coordinates.

4.2. Complex Coordinates and the Corresponding Hamil-
tonian. Complex coordinates were first used in connection with
the four-body problem by Zickendraht.32 He introduced them,
however, in an ad hoc manner. A rationale for their definition
was reported in our previous paper.28 (2.4) describes the defining
relation between the ROHC and the Jacobi mass-scaled space-
fixed Cartesian coordinates. By expressing the elements of the
R matrix on its rhs in terms of Wigner rotation functions, an
intermediate set of complex coordinates suggests itself naturally,
as was the case for the four-body systems. That expression is19

whereR and theDkp
1 values (k, p ) -1, 0, 1) are evaluated at

the same set of Euler angles. Replacement of (4.3) into (2.4)
leads to the six relations

The complex quantitiesTλ j
k(F,Θλ) are defined in view of

(4.10) through (4.14); (4.10) can be rewritten as

where

We can consider the complexTλ k
j as midway variables

between the Cartesian coordinates and the ROHCF, Θλ. With
the help of (4.4) through (4.9) we can express the system’s
Laplacian in terms of these variables as

where the∂/∂Tλ j
k partial derivatives with respect to the com-

plex variablesTλ j
k are defined as in Appendix C of ref 28. This

is a particularly simple expression and will permit us, as seen
in section 4.3, to derive a recursion relation between theF and
G functions for the hyperangular momentum quantum numbers
n andn + 1.

4.3. Recursion Relation for Hyperspherical Harmonics.
Let us now derive recursion relations for theF andG functions
of (3.12) associated with consecutive values of the hyperangular
momentum quantum numbern. We make use of the properties
of harmonic polynomials.18 These properties, for anm-dimen-
sional space, are summarized in Appendix D. We will now set
m ) 6 (for triatomic systems) and from here on omit this index.
Let fn(xλ) be an arbitrary homogeneous polynomial of degreen
in the six real variablesxλ ≡ {xλ

(1), yλ
(1), zλ

(1), xλ
(2), yλ

(2), zλ
(2)}. The

associated functionhn(λ) defined by (D.5) is therefore a har-
monic polynomial satisfying the six-dimensional Laplace
equation

Let us define a set of functionsf jk
n+1(xλ) by

where thexλ(Tλ) are given by (4.4) through (4.9) withTλ )
(Tλ-1

-1, Tλ-1
0 , Tλ-1

1 , Tλ1
-1, Tλ1

0, Tλ1
1). Since the Tλj

k are also
homogeneous polynomials of the first degree in thexλ compo-
nents, thef jk

n+1(xλ) are homogeneous polynomials of degreen
+ 1 in those variables. As a result of (4.14) and (4.15), the
following property can be easily derived:

In this expression,s is a positive integer. It should be noted
that the symbol∂hn/∂Tλ -j

-k implies that althoughhn(xλ) is a
harmonic polynomial in the variablesxλ, it can also be
considered, with the help of (D.5) though (D.13), to be a
harmonic polynomial in the variablesTλ j

k.

R )

(1
2
(D11

1 - D1-1
1 - D-11

1 + D-1-1
1 )

-i
2

(D11
1 - D1-1

1 + D-11
1 + D-1-1

1 )
1

x2
(D01

1 - D0-1
1 )

i
2
(D11

1 + D1-1
1 - D-11

1 - D-1-1
1 )

1
2
(D11

1 + D1-1
1 + D-11

1 + D-1-1
1 )

i

x2
(D01

1 + D0-1
1 )

i

x2
(D10

1 - D-10
1 )

i

x2
(D10

1 + D-10
1 ) D00

1 )
(4.3)

xλ
(1) ) 1

4i
(Tλ1

1 - Tλ1
-1 - Tλ-1

1 + Tλ-1
-1) (4.4)

yλ
(1) ) - 1

4
(Tλ1

1 + Tλ1
-1 - Tλ-1

1 - Tλ-1
-1) (4.5)

zλ
(1) ) 1

i2x2
(Tλ1

0 - Tλ-1
0 ) (4.6)

xλ
(2) ) 1

4
(Tλ1

1 - Tλ1
-1 + Tλ-1

1 - Tλ-1
-1) (4.7)

yλ
(2) ) 1

4i
(Tλ1

1 + Tλ1
-1 + Tλ-1

1 + Tλ-1
-1) (4.8)

zλ
(2) ) 1

2x2
(Tλ1

0 + Tλ-1
0 ) (4.9)

Tλj
k ) Feijδλ ∑

p)-1

1

Dkp
1 (aλ)e

i(p-1)π/2t j
p
(θ) (4.10)

i ) (-1)1/2 (4.11)

k ) -1, 0, 1 j ) -1, 1 (4.12)

tj
(1 ) y ) sin θ (4.13)

tj
0 ) x2jx ) x2j cosθ (4.14)

k ) -1, 0, 1 j ) -1, 1 (4.15)

∇2 ) -4 ∑
k)-1

1

∑
j)-1,1

(-1) j+k ∂
2

∂Tλk
j
∂Tλ-j

-k
(4.16)

∇2hn(xλ) ) 0 (4.17)

f jk
n+1(xλ) ) Tλj

k(xλ)h
n(xλ) (4.18)

∇2sf jk
n+1(xλ) ) {-8(-1)j+k

∂hn/∂Tλ-j
-k for s )1

0 for s >1
(4.19)
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Replacing (4.17) into then + 1 counterpart of (D.5), we get

This is a recursion relation between the harmonic polynomial
hn and each of the six harmonic polynomialshjk

n+1 (k ) -1, 0,
1; j ) -1, 1), all of which are of degreen + 1. Let us consider
the five-angle hyperspherical harmonicsFΠ nΠ LΠ

MJ

J ′
d ′
D ′(Θλ)

given by (3.12) (withJ, D, andd replaced byJ′, D′, andd′,
respectively). Since it satisfies (3.3), we conclude from (D.4)
and (D.10) that the functionhΠ nΠ LΠ

MJ

J ′
d ′
D ′(F,Θλ), defined by

is a solution of the Laplace equation, (4.17), and is therefore a
harmonic polynomial of degreenΠ in the variablesxλ or,
equivalently, thetλ to which the ROHCF, Θλ are related. Let
us use this choice ofhn on the rhs of (4.19). With the help of
(4.10), (3.12), and the multiplication properties of the Wigner
rotation functions,20 but dropping the indexΠ to avoid confusion
(sincenΠ + 1 was a different parity thannΠ), we get

where

and is independent ofF, where

The C in the last three equations are the Clebsch-Gordan
coefficients defined by Rose.33 In addition, the J′ that
appears as subscripts in those equations is related toJ by
the triangle inequalities. On the lhs of (4.21), let us allowj
and k to assume all their possible values, while at the same
time varying MJ so as to maintainMJ + k constant. This
will generate, forJ′ > 0, threehjk

n+1 L+j
MJ+k
J ′

d ′
D ′. Each of them

will be a different linear combination of the same set of three
functions [Fhn+1 L+j

MJ+k
J ]J ′D ′d ′, in which J ) J′ - 1, J′, J′ + 1

(The particular caseJ′ ) 0 can be considered similarly).
These relations can be inverted, so as to express each of the
[Fhn+1 L+j

MJ+k
J ]J ′D ′d ′ as different linear combinations of the

threehjk
n+1 L+j

MJ+k
J ′

d ′
D ′(θ)/Fn+1. Since thehjk

n+1 are all harmonic
polynomials of degreen + 1 in theTλ j

k, we conclude that each

of theseFhn+1 L+j are eigenfunctions of∧̂2 with hyperangular
momentum quantum numbern + 1. In addition, because of the
ei(L+j)δλ and DMJ+kΩJλ

J (aλ) functions that appear on the rhs of
(4.23), the [F n+1 L+j

MJ+k
J ]J ′D ′d ′ are eigenfunctions ofĴ2, Ĵz

sf,
and L̂. Since∇2 commutes withĴ2, Ĵz

sf, and L̂, we conclude,
from (4.21), that so are the [Fhn+1 L+j

MJ+k
J ]J ′D ′d ′, with the

corresponding quantum numbers beingJ, MJ + k, andL + j.
As a result of this important property, we can omit the bar on
theseF, add a parity indexΠ′ ) Π + 1 mod 2 associated with
n + 1 (sinceΠ is associated withn and L), and write them
simply as [FhΠ′ n+1 L+j

MJ+k
J ]J ′D ′d ′, where the indicesJ′, D′, and

d′ indicate that they are expressed, through (4.21), in terms of
the F functions defined by (4.23) and (4.24), which contain
those indices. A superscriptD(n + 1, J, L) will be attached to
these functions, as well as a modifiedd subscript, and the
subscriptsJ′, D′, andd′ will be dropped, after the functions are
required to be linearly independent, as described in section 5.2.
To calculate the∇2{Fn+1[F n+1 L+j

MJ+k
J ]J ′D ′d ′} that appears on

the rhs of (4.21), we use for∇2 the expression

easily derived from (2.15). It is useful to define the functions
[Gn+1 L+j]J′D′d′ as the companions of the [FΠ′ n+1 L+j]J′D′d′ in the
relation

It is now desirable to relate the [Gn+1]J′D′d′ above to the
[G n+1]J′D′d′ of (4.23), since the latter have already, by (4.26),
been expressed in terms of theGn. This will, as a final result,
generate the desired recursion relation between [Gn+1]J′D′d′ and
Gn. To relate the [Gn+1]J′D′d′ to the [G n+1]J′D′d′, it suffices to
replace, in (4.25), its lhs by (4.26) and, on its rhs, use (4.28).
We then express∧̂2 in terms of the differential operatorsĴ2,
Ĵz

Iλ, Ĵ(
Iλ, andL̂, as was done in Appendix A, after (A.6), and use

(A.7) through (A.10) together with the orthogonality of the
Wigner rotation functions to obtain the expression

(4.29) relates the [Gn+1 L+j
ΩJλ

J ]J′D′d(θ) to the Gn L
ΩJλ

J
d
D(θ) and

therefore permits us to get, from a complete set ofGn

hyperspherical harmonics for a fixedn and all possible values

∇2 ) -
2µ

p2
T̂F(F) - ∧̂2

p2F2
(4.27)

[FΠ′ n+1 L+j
MJ+k
J ]J ′D ′d ′ (Θλ) )

∑
ΩJλ)-J

J

DMJ+k
J

ΩJλ
(aλ)[G

n+1 L+j
ΩJλ

J ]J ′D ′d ′ (θ)(4.28)

[Gn+1 L+j
ΩJλ

J (θ)]J ′D ′d ′ ) ∑
p)-1

1

C(J′ 1 J; ΩJλ
- p p ΩJλ

) ×

{[(n + 4)ei(p-1)π/2t j
p -

Lj

cos 2θ
(e-i(p-1)π/2t j

p) +

ΩJλ
- p

sin δ
p2 -

d

dθ
(ei(p-1)π/2t j

p)
d

dθ]Gn L
ΩJλ

-p
J ′

d ′
D ′ +

ij

2
ê-(J′,ΩJλ

- p + 1)( p2

cosθ
+

1

cos 2θ

d

dθ
(ei(p-1)π/2t j

p)) ×

Gn L
ΩJλ

-p+1
J ′

d ′
D ′ +

ij

2
ê+(J′,ΩJλ

- p - 1) ×

( p2

cosθ
-

1

cos 2θ

d

dθ
(ei(p-1)π/2t j

p))Gn L
ΩJλ

-p-1
J ′

d ′
D ′} (4.29)

hjk
n+1 ) T λj

k hn -
F2

4(n + 2)
∇2(Tλj

khn) (4.20)

hΠ nΠ LΠ
MJ

J ′
d ′
D ′(F,Θλ) ) FnFΠ nΠ LΠ

MJ

J ′
d ′
D ′(F,Θλ) (4.21)

hjk
n+1 L+j

MJ+k
J ′

d ′
D ′(F,Θλ) )

Fn+1 ∑
J)|J ′-1|

J ′+1

C(J′ 1 J; MJ k MJ + k)[Fhn+1 L+k
MJ+k
J ]J ′D ′d ′

(4.22)

[Fhn+1 L+j
MJ+k
J ]J ′D ′d ′ )

1

Fn+1[1 - F2

4(n + 2)
∇2]{Fn+1[F n L+j

MJ+k
J ]J ′D ′d ′} (4.23)

|J′ - 1| e J e J′ + 1 (4.24)

[F n+1 L+j
MJ+j
J ]J ′D ′d ′ )

ei(L+j)δλ ∑
ΩJλ)-J

J

DMJ+j ΩJλ

J (aλ)[G
n+1 L+k

ΩJλ

J ]J ′D ′d ′ (4.25)

[G n+1 L+k
ΩJλ

J (θ)]J ′D ′d ′ )

∑
p)-1

1

C(J′ 1 J; ΩJλ
- p p ΩJλ

)ei(p-1)π/2t p
kGn L

ΩJλ
-p

J ′
d ′
D ′ (4.26)
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of the remaining five indices, a similarly complete set ofGn+1

hyperspherical harmonics. Therefore, this equation constitutes
a recursion relation forG functions in the indexn. This recursion
relation has been implemented using theMathematicacomputer
algebra program.31 In utilizing this recursion relation, we employ
(3.17) to decrease theMathematicaalgebraic effort. With the
help of (4.10), it is shown in Appendix C thatGn L

ΩJλ

J
d
D(θ) can

be written as

where gjn L
ΩJλ

J
d
D(θ) is real. The symbolg (without a bar) is

reserved for a normalized version ofgj given by (5.12). As a
result of (3.17), thegj functions forΩJλ < 0 are related to those
for ΩJλ > 0 by

The corresponding recursion relation forgjn+1 L+j is given by

It is therefore more convenient to use this real function recursion
relation and (4.30) rather than (4.29) to determine theG
functions. Equation 4.32 was also programmed inMath-
ematica,31 with (4.31) taken into account. To initiate the iteration
procedure, it suffices to have then ) J ) ΩJλ ) L ) 0 gj
functions. There is only one linearly-independent solution of
(A.21) for this case, and it is a constant, which can be set to
unity. As a result,D ) 1 andd ) 1, and we can write

Alternatively, we may start the iterative procedure from then
) 1 functions. TheTλ j

k (k ) -1, 0, 1; j ) -1, 1) form a
complete set of hyperspherical harmonics forn ) 1. With the
help of (4.10) and (3.12), we can identifyFΠ)1 n)1 L)j

MJ)k
J)1

d)1
D)1/

FNΠ)1 nΠ)1 LΠ)j
MJ)k
J)1

d)1
D)1 with Tλ j

k, and as a result,gj1 j
p
1

1
1 with

t j
p. This results in

In this way, thegj1 L
ΩJλ

J
d
D(θ) for all possibleJ, ΩJλ, L, D, andd

are known, and this start-up procedure gives the same results
as the one defined by (4.33). The iterative procedure based on
(4.32) is started from either then ) 0 or n ) 1 G functions
obtained from (4.33) or (4.34) and (4.35), using (4.29). The
indicesJ′ appearing in the [gjn+1 L+k

ΩJλ

J ]J′D′d′(θ) can, for a given
J, assume the sets of values given by (4.22) (which forJ > 0
is three sets). This generates a branching tree making the number

of gjn+1 functions grow very rapidly withn. However, not all of
the resulting [Gn+1 L+k

ΩJλ

J ]J′D′d′ sets (each set scanned by
varying the values ofΩJλ) are linearly-independent, as described
in section 5.2. Before proceeding to the calculation of thegjn+2,
the gjn+1 must be culled in order to retain only linearly-
independent sets. This is accomplished with the help of a
separate routine, also written inMathematica.31 It should also
be noticed that since thegjn functions generate thegjn+1 ones,
they are associated withFn and Fn+1 functions which have
opposite parity. In solving scattering problems, however, matrix
elements of the system’s potential energy function in theF basis
set will appear. For two suchF functions of different parity,
those matrix elements vanish. As a result, then even andn odd
sets ofF functions do not mix in the scattering equations, even
though they are generated by the recursion relation in the mixed
manner just described.

The recursion relations of (4.29) and (4.32) have been
implemented usingMathematica.31 This calculation involves
differentiations of trigonometric functions ofθ with respect to
this angle. AlthoughMathematicacan perform such differentia-
tions, it is not very nimble in simplifying the results by grouping
appropriately terms interrelated by trigonometric identities. To
overcome this difficulty, we used the intermediate variablesx
andy defined by (4.13) and (4.14). This approach resulted in a
very efficient procedure for generating thegj functions, as
discussed in section 6.1.

5. Normalization and Degeneracy of the
Principal-Axes-of-Inertia Hyperspherical Harmonics F
and g

In this section we describe how complete sets of normalized
linearly-independent hyperspherical harmonicsF andg functions
are obtained.

5.1. Prenormalization of thegj Hyperspherical Harmonics.
Theg functions are homogeneous polynomials in the variables
x andy defined in (4.13) and (4.14). The iterative step described
by (4.32), as implemented by aMathematicaprogram, generates
the functions

where thea coefficients are all integers andA is the product of
a rational number and the square root of another rational number.
Those two rational numbers are generated exactly by that
program. These characteristics ofa and A stem from the
properties of the Clesch-Gordan coefficients that appear in
(4.32). On purpose, the superscriptD and subscriptd do not
yet appear in (5.1), since those indices refer to the degeneracy
and linear independence properties of theFn+1 functions, which
will only be imposed in section 5.2. As thegj functions are
always used in connection with the associatedF functions of
(3.12), together with (4.30) any common multiplicative constant
for a set ofgj functions for fixedn andJ and spanned byΩJλ

can be factored out of the sum in that equation and incorporated
into the associated normalization constantN. As a result, in a
prenormalization of thegj functions, we replace (5.1) by

[gjn+1 L+j
ΩJλ

J ]J ′D ′d ′(θ) )

AJ ′D ′
n+1

d ′
L+j

ΩJλ

J ∑
q,r)1

q+r)n+1

n+1

(aJ ′D ′d ′
n+1 L+j

ΩJλ

J )qrx
qyr (5.1)

[gjn+1 L+j
ΩJλ

J ]J ′L ′d ′(θ) ) BJ ′D ′d ′
n+1 L+j

ΩJλ

J ∑
q,r)1

q+r)n+1

n+1

(aJ ′D ′d ′
n+1 L+j

ΩJλ

J )qrx
qyr

(5.2)

Gn L
ΩJλ

J
d
D(θ) ) ei(ΩJλ-J)π/2gjn L

ΩJλ

J
d
D(θ) (4.30)

gjn L
-ΩJλ

J
d
D(θ) ) (-1)J+L gjn L

ΩJλ

J
d
D(θ) (4.31)

[gjn+1 L+j
ΩJλ

J (θ)]J ′D ′ ) ∑
p)-1

1

C(J′ 1 J; ΩJλ
- p p ΩJλ

) ×

{[(n + 4)t j
p +

Lj

cos 2θ
t j

p -
ΩJλ

- p

sin δ
p -

dt j
p

dθ

d

dθ]gjn L
ΩJλ

-p
J ′

d ′
D′ +

j

2
ê-(J′,ΩJλ

- p + 1)( p

cosθ
-

1

cos 2θ

dt j
p

dθ)gjn L
ΩJλ

-p+1
J ′

d ′
D ′ -

j

2
ê+(J′,ΩJλ

- p -1)( p

cosθ
+

1

cos 2θ

dt j
p

dθ)gjn L
ΩJλ

-p-1
J ′

d ′
D ′}

(4.32)

gj0 0
0
0

1
1 ) 1 (4.33)

gj1 (1
1
1

1
1 ) gj1 (1

-1
1

1
1 ) y (4.34)

gj1 j
0
1

1
1 ) x2jx (4.35)
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where

The B coefficients are smaller than the correspondingA ones
and make the elimination of the linearly-dependent sets ofgjn+1

functions, performed exactly by aMathematicaprogram31 and
described in section 5.2, more efficient. Asn becomes large
(of the order of 40), efficiency becomes important and justifies
this prenormalization.

5.2. Degeneracy of theF Hyperspherical Harmonics. As
discussed in the paragraph following (3.11), it is expected that
for a fixed set of quantum numbersΠ, nΠ, J, MJ, andLΠ there
should be more than oneF function. We label the latter with
the extra degeneracy subscriptd, as FΠ nΠ LΠ

MJ

J
d
D, where D

indicates the total number of these functions and, therefore,
represents their degeneracy. A detailed discussion of this
degeneracy issue was given previously for the tetraatomic
systems.28

Let us now consider the functions [gn+1 L
ΩJλ

J ′ ]J′D′d′(θ) gener-
ated by (4.32) (and expressed in the form of (5.2)) withJ′ and
L′ assuming all sets of values permitted by (4.24) for a givenJ.
Since these functions do not yet satisfy the linear-independence
condition described in the preceding paragraph, the indicesD
and d on gjn+1 L

ΩJλ

J
d
D have been temporarily omitted, as dis-

cussed after (5.1). The indexd has instead been replaced, in
(6.2), by the set of subscriptsJ′, D′, andd′, whered′ refers to
the index in the functiongn L

ΩJ ′λ

J ′
d ′
D ′(θ) that appears on the rhs

of (4.32); this d′ differs to the one that will eventually be
attached togjn+1 L

ΩJλ

J
d
D(θ). Let bJ ′D ′ d ′

n+1 J L be the column vector
whose elements

are spanned by the set of five indicesΩJλ, q, and r such that

with q andr being non-negative integers. For each such vector
we calculate the sum of the absolute values of its elements,
and construct the matrixbn+1 J L, whose columns are those
vectors placed side-by-side in increasing order of that sum. This
ordering is important for optimizing the efficiency of the
procedure that generates the linearly-independent hyperspherical
harmonics. The next step is to contract this matrix to one whose
columns are linearly independent. We adopted the following
contraction procedure:

1. Consider the matrixb1 formed by the first two columns of
b and determine its rankR1. If R1 ) 1, replace the second
column ofb1 by the third column ofb. If R1 ) 2, augmentb1

by the third column ofb. Call the resulting two or three column
matrix b2. Its rankR2 is equal to its number of columns.

2. Augmentb2 by the next column ofb, and proceed as in
step 1 to generate a matrixb3 having four or five columns
depending on whetherR3 is four or five.

3. Continue the augmentation procedure, one column at a
time, until the columns ofb are exhausted.

The resulting final matrixbD will have rankD and be formed
by D linearly-independent columnsbd (d ) 1, 2, ...,D). The
numberD will depend onn + 1, J, and L only. The rank
determination of the matrixesbi is done exactly, with an
availableMathematicaprogram. The elements ofbD are now
designated by the symbol (bn+1 L

ΩJλ

J
d
D)qr. Inserting them into

(5.2) (with obvious changes in notation) and using (5.4) we get

whereD ) D(n + 1, J, L). This constitutes a complete ensemble
of D linearly-independent sets ofg functions forn + 1 (each
set spanned byΩJλ) generated starting with a knowledge of a
complete ensemble ofg functions forn. When used in (4.30)
and (3.12) they yield a complete set of linearly-independentF
functions forn + 1. It should be noticed that, as a consequence
of the ordering of theb vectors described in the paragraph
following (5.7), thebD matrix will have elements that are much
smaller than would be the case if the ordering were random.
This property significantly speeds up the rank-determination
code and generatesgj functions whose coefficients are smaller
and simpler than they would be otherwise.

A check of the correctness of the degeneracy numberD(n, J,
L) obtained by the procedure just described was made as follows.
Avery24 derived a general expression for calculating the total
numberNn of linearly-independent hyperspherical harmonics
F for a givenn:

This number is related toD(n, J, L) by

where the prime in the sum overL indicates thatL is increased
in steps of 2. The largest degeneracy we encountered in our
calculations forn e 40 wasD(40, 20, 0)) 11. We calculated
the values ofD for n e 40 and used (5.8) to obtain the
correspondingNn. Perfect agreement was obtained with (5.7).
As an example, a representative set of values ofD(n, J, L) (for
n ) 40) is given in Table 1. For example, forJ ) 6 andLΠ )
4mwith m ) 0 through 7,D ) 4. For the entire table,D ranges
from 1 through 11. Using these results and (5.8), one getsN40

) 259 161. The same value is obtained from (5.7). Taking into
account thatNn varies from 1 forn ) 0 to 259 161 forn ) 40,
such an agreement is strongly suggestive that the recursion
relations used and the codes written to implement them are
indeed correct. Table 1 is further discussed in section 6.7.

Finally, an ultimate check was performed on the correctness
of all the Gn L

ΩJλ

J
d
D generated by the procedure described. For

each set of values ofn, J, L, D, andd, these functions (for all
ΩJλ) were replaced on both sides of (A.12) and shown to satisfy
it with the help of aMathematicaprogram31 written for this
purpose. This test was done for allG with n up to 40, which,
as mentioned in section 5.1, amounted to about 2.3 million
functions. Thus, with the correctness of the degeneracy param-
eterD(n, J, L) and of theG hyperspherical harmonics verified

BJ ′D ′d ′
n+1 L+j

ΩJλ

J ) AJ ′D ′d ′
n+1 L+j

ΩJλ

J /AJ ′D ′d ′
n+1 L+j

J
J (5.3)

(bJ ′D ′ d ′
n+1 L

ΩJλ

J )qr ) BJ ′D ′ d ′
n+1 L

ΩJλ

J (aJ ′D ′d ′
n+1

ΩJλ

J )qr (5.4)

q + r ) n + 1 (5.5)

TABLE 1: Degeneracy of theF Hyperspherical Harmonics
for nΠ ) 40a

Ja |LΠ| ) 4ma,b D(40,J, LΠ) Ja |LΠ| ) 4m + 2a,b D(40,J, LΠ)

even g40 - 2J 11 - m even g42 - 2J 10 - m
even <40 - 2J 1 + J/2 even <42 - 2J J/2
odd g42 - 2J 10 - m odd g40 - 2J 10 - m
odd <42 - 2J (J - 1)/2 odd <40 - 2J (J + 1)/2

a The ranges ofJ and |LΠ| are from 0 to 40.b The quantitym is a
non-negative integer whose values range from 0 to 10.

gjn+1 L
ΩJλ

J
d
D(θ) ) ∑

q,r)1
q+r)n+1

n+1

(bn+1 L
ΩJλ

J
d
D)qr x

qyr (5.6)

Nn )
(2n + 4)(n + 3)!

n!4!
(5.7)

Nn ) ∑
J)0

n

∑
L)-n

n

′ (2J + 1)D(n, J, L) (5.8)
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independently, it is concluded that they are both free of error.
A similar test was performed forgj functions with the help of
(A.14).

5.3. Normalization and Orthogonality of the F and g
Hyperspherical Harmonics. It is desirable to normalize theF
functions according to

where

The ranges of the angles in the integral above are given by (2.7)
through (2.9). TheNΠ nΠ J LΠ

d
D of (3.12), if chosen to be real

and positive, should be, taking (4.31) into account,

Since the normalization coefficientNΠ nΠ J LΠ
d
D is indepen-

dent ofMJ, we can use it to define the modified functiong by

They satisfy a relation analogous to (4.31):

The magnitudes of these normalizedg functions are considerably
smaller than those of the correspondinggj functions, which is a

convenient property. It is important to stress that the functions
FΠ nΠ LΠ

MJ

J , which are orthogonal with respect toΠ, nΠ, LΠ, J,
and MJ, are not orthogonal with respect tod even after
normalized according to (5.9). If desired, they can be orthogo-
nalized with respect to this quantum number by a Gram-
Schmidt or some other orthogonalization procedure.

6. Representative Results

6.1. General Considerations.We used the procedure de-
scribed in sections 4 and 5 to generate all the hyperspherical

∫|FΠ nΠ LΠ
MJ

J
d
D(Θλ)|2 dΘλ ) 1 (5.9)

dΘλ ) sinbλ daλ dbλ dcλ sin(4θ) dθ dδλ (5.10)

NΠ nΠ J LΠ
d
D )

{ 8π3

2J + 1
∫0

π/4 ∑
ΩJλ)-J

J

[gjΠ nΠ LΠ
ΩJλ

J
d
D(θ)]2 sin(4θ) dθ}-1/2

(5.11)

gΠ nΠ LΠ
ΩJλ

J
d
D(θ) ) NΠ nΠ J LΠ

d
D gjΠ nΠ LΠ

ΩJλ

J
d
D(θ) (5.12)

gΠ nΠ LΠ
-ΩJλ

J
d
D(θ) ) (-1)J+LΠ gΠ nΠ LΠ

ΩJλ

J
d
D(θ) (5.13)

TABLE 2: Principal-Axes-of-Inertia Hyperspherical
Harmonics gj for nΠ ) 1, 2, 3

nΠ J LΠ ΩJλ
a gjn LΠ

ΩJλ

J
d
D b nΠ J LΠ ΩJλ

a gjnΠ LΠ
ΩJλ

J
d
D b

1 1 1 0 x2x 3 1 3 1 y(x2 - y2)
1 1 1 1 y 3 2 -1 0 0
1 1 -1 0 -x2x 3 2 -1 1 x2y
1 1 -1 1 y 3 2 -1 2 xy2

2 0 -2 0 x2 - y2 3 2 1 0 0
2 0 2 0 x2 - y2 3 2 1 1 -x2y
2 1 0 0 0 3 2 1 2 -xy2

2 1 0 1 xy 3 3 -3 0 2x(2x2 + 3y2)/x5
2 2 -2 0 x2/3(2x2 + y2) 3 3 -3 1 x3/5y(4x2 + y2)
2 2 -2 1 2xy 3 3 -3 2 x6xy2

2 2 -2 2 y2 3 3 -3 3 y3

2 2 0 0 -x2/3(2x2 - y2) 3 3 -1 0 -2x(2x2 - y2)/x5
2 2 0 1 0 3 3-1 1 -y(4x2 - 3y2)/x15
2 2 0 2 y2 3 3 -1 2 x2/3xy2

2 2 2 0 x2/3(2x2 + y2) 3 3 -1 3 y3

2 2 2 1 -2xy 3 3 1 0 2x(2x2 - y2)/x5
2 2 2 2 y2 3 3 1 1 -y(4x2 - 3y2)/x15
3 1 -3 0 x2(x3 - xy2) 3 3 1 2 -x2/3xy2

3 1 -3 1 y(x2 - y2) 3 3 1 3 y3

3 1 -1 0 x2(x3 - 3xy2) 3 3 3 0 -2x(2x2 + 3y2)/x5
3 1 -1 1 -3x2y + y3 3 3 3 1 x3/5y(4x2 + y2)
3 1 1 0 -x2(x3 - 3xy2) 3 3 3 2 -x6xy2

3 1 1 1 -3x2y + y3 3 3 3 3 y3

3 1 3 0 -x2(x3 - xy2)

a The ΩJλ < 0 functions are obtained from theΩJλ > 0 functions
using (5.13).b The Π superscript ofgj (0 for nΠ even and 1 fornΠ

odd) was omitted for simplicity.

Figure 1. Normalized hyperspherical harmonicsg4 0
ΩJλ

2
d
2 as a func-

tion of the principal angle of inertiaθ, for ΩJλ from 0 through 2. These
functions are related to the correspondinggj functions of Table 3 through
(5.12), whereN 4 0 2

1
2 ) 0.02022885. The symbolXR indicates that the

values ofg were multiplied byR before being plotted. TheΠ ) 0
superscript was omitted from theg symbol.
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harmonic functionsgjn L
ΩJλ

J
d
D(θ) for n from 0 to 40. For eachn,

the number ofgj functions is approximately half theNn of (6.7).
The reason for this decrease is thatNn is the number of linearly-
independentFΠ n L

MJ

J
d
D (n,J,L) functions. WhereasMJ can assume

all values between-J andJ, the values ofΩJλ, although in the
same range, can be restricted by (3.22) and (4.30) to the range

0 to J; the total number ofgj functions generated for all those
n was about 1.2 million.

The calculation of those 1.2 million functions was performed
on a Dell desktop computer operating with a 450 MHz Pentium
II processor, and it required about 2 weeks of total running time.
Given the independence of these functions on the characteristics

TABLE 3: Principal-Axes-of-Inertia Hyperspherical Harmonics gj for nΠ ) 4

J LΠ ΩJλ
a gj4 LΠ

ΩJλ

J
1
1 b J LΠ ΩJλ

a gj4 LΠ
ΩJλ

J
1
1 b

0 4 0 (x2 - y2)2 3 0 0 0
0 0 0 x4 - 6x2y2 + y4 4 4 4 y4

1 2 1 xy(x2 - y2) 4 4 3 2x2xy3

1 2 0 0 4 4 2 2y2(6x2 + y2)/x7
2 4 2 y2(x2 - y2) 4 4 1 2x2/7xy(4x2 + 3y2)
2 4 1 -2xy(x2 - y2) 4 4 0 x2/35(8x4 + 24x2y2 + 3y4)
2 4 0 -x2/3(-2x4 + x2y2 + y4) 4 2 4 y4

2 2 2 y2(-7x2 + 3y2) 4 2 3 x2xy3

2 2 1 -4xy(x2 + y2) 4 2 2 2y4/x7
2 2 0 x6(2x4 - 7x2y2 + y4) 4 2 1 -x2/7xy(4x2 - 3y2)
3 2 3 xy3 4 2 0 x2/35(-8x4 + 3y4)
3 2 2 2x2/3x2y2 4 0 4 y4

3 2 1 xy(4x2 + y2)/x15 4 0 3 0

3 2 0 0 4 0 2 2y2(-2x2 + y2)
3 0 3 xy3 4 0 1 0
3 0 2 0 4 0 0 x2/35(8x4 - 8x2y2 + 3y4)
3 0 1 -xy(4x2 - y2)x15

J LΠ ΩJλ gj4 LΠ
ΩJλ

J
1
2 J LΠ ΩJλ gj4 LΠ

ΩJλ

J
2
2

2 0 0 x2/3(-2x4 + 9x2y2 + y4) 2 0 0 x2/3(-2x4 + 9x2y2 + y4)
2 0 1 -70/3xy(x2 - y2) 2 0 1 70/3xy(x2 - y2)
2 0 2 y2(- 9x2 + y2) 2 0 2 y2(-9x2 + y2)

a,b See footnotes of Table 2.

TABLE 4: Principal-Axes-of-Inertia Hyperspherical Harmonics gj for nΠ ) 8, J ) 4, LΠ ) 2, and D ) 2

ΩJλ
a gj8 2

ΩJλ

4
1
2 b gj8 2

ΩJλ

4
2
2 b

0 -x10/7x2y4(2x2 - y2) x10/7(112x6y2 - 8x8 - 5x4y4 - 74x2y6 + 3y8)
1 xy(4x6 - 19x4y2 + 16x2y4 - 3y6)/x14 x2/7xy(743x4y2 - 148x6 - 678x2y4 + 111y6)
2 -2x2y2(-2x4 + 2x2y2 + y4)/x7 -2y2(64x6 + 5x4y2 - 102x2y4 + 5y6)/x7
3 -xy3(x4 - 4x2y2 + y4)/x2 x2xy3(69x4 - 134x2y2 + 37y4)
4 x2y4(2x2 - y2) y4(5x4 - 38x2y2 + 5y4)

a ,bSee footnotes of Table 2.

TABLE 5: Principal-Axes-of-Inertia Hyperspherical Harmonics gj for nΠ ) 24, J ) 7, LΠ ) 18, andD ) 2

ΩJλ
a gj24 18

ΩJλ

7
1
2 b gj24 18

ΩJλ

7
2
2 b

0 0 0
1 1/x3003xy(x2 - y2)6(448x10 - 8176x8y2 + 35176x6y4 +

22115x4y6 - 1550x2y8 + 35y10)
1/x3003xy(x2 - y2)6(704x10 - 12848x8y2 + 147848x6y4 +

75895x4y6 - 7450x2y8 + 55y10)
2 -x8/1001x2y2(x2 - y2)6(528x8 - 1328x6y2 -

14251x4y4 - 1130x2y6 + 165y8
-x8/1001x2y2(x2 - y2)6(2544x8 - 12944x6y2 -

55573x4y4 - 2890x2y6 + 795y8)
3 x-3/1001xy3(x2 - y2)6(720x8 - 8580x6y2 -

8957x4y4 + 822x2y6 - 21y8
x-1/3003xy3(x2 - y2)6(15280x8 - 125020x6y2 -

105483x4y4 + 11118x2y6 - 99y8)
4 8x2y4(x2 - y2)6(130x6 + 1211x4y2 + 148x2y4 - 33y6)/x91 -8x2y4(x2 - y2)6(210x6 - 5853x4y2 - 704x2y4 + 159y6)/x91
5 5xy5(x2 - y2)6(660x6 + 991x4y2 - 202x2y4 + 7y6)/x91 5xy5(x2 - y2)6(900x6 + 6003x4y2 - 726x2y4 + 11y6)/x91
6 6x2/7x2y6(x2 - y2)6(117x4 + 6x2y2 - 11y4) 2x2/7x2y6(x2 - y2)6(673x4 + 914x2y2 - 159y4)
7 xy7(x2 - y2)6(199x4 - 94x2y2 + 7y4) xy7(x2 - y2)6(427x4 + 38x2y2 + 11y4)

a,b See footnotes of Table 2.
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of the triatomic system for which they will be used, they will
not have to be calculated again, except for obtaining more of
them when needed. They are expressed in the form of (5.6),
where theb coefficients have been normalized as described by
(5.3). These coefficients are stored as sets of values for fixed
n, J, ΩJλ, L, andd, with the indicesq andr scanning each set.
It should be noted that theseg functions are related to
appropriate Jacobi polynomials. We are currently investigating
the details of these relations for general values ofn, L, andJ.

6.2. Comparison with Previous Results.The gj n L
0
J)0

1
1

functions can be obtained analytically by solving (A.12)

for J ) 0. The result is

wherePm
(R,â)(cos 4θ) is the Jacobi polynomial of degreem34 for

R ) 0 andâ ) LΠ/2. The quantitym is a non-negative integer,
and givenm andLΠ, the values ofnΠ are given by

Furthermore,LΠ (and thereforenΠ) is constrained to be even;

Figure 2. Normalized hyperspherical harmonicsg8 2
ΩJλ

4
d
2 as a function of the principal angle of inertiaθ, for ΩJλ from 0 through 4 andd ) 1, 2.

N 8 2 4
1
2 ) 0.9610238, andN 8 2 4

2
2 ) 0.01451439. See caption of Figure 1 for additional information.

gjnΠ LΠ
0
J)0

1
1 ) cos|LΠ/2|(2θ)Pm

(0,|LΠ/2|)(cos 4θ) (6.1)

nΠ ) 4m + |LΠ| (6.2)
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that is, theΠ ) 1 (odd), J ) 0 gj functions vanish. When
transformed into the variablesx and y defined by (4.13) and
(4.14), (6.1) agreed with the present recursion relation results.

6.3. Hyperspherical Harmonics for nΠ ) 1, 2, 3. The
principal-axes-of-inertia hyperspherical harmonicsgj for nΠ )
1, 2, 3 is given in Table 2 forΩJλ g 0. TheΩJλ < 0 functions
can be obtained from the latter with the help of (5.13). None of
the associatedF functions are degenerate; that is,D ) d ) 1
for all entries of this table. As expectd, they are homogeneous
polynomials of ordernΠ ) 1, 2, and 3 andnΠ and LΠ have the

parity of Π. Furthermore, the coefficients of these polynomials
are the products of rational numbers and the sqare roots of
rational numbers, as discussed after (5.1).

6.4. Hyperspherical Harmonics fornΠ ) 4. Thegj functions
for nΠ ) 4 are presented in Table 3. The value ofD(4, 2, 0) is
equal to 2; that is, the correspondingF functions are doubly
degenerate. This value ofnΠ is the smallest one for which we
encountered degeneracies in theF functions. In view of the
symmetry relation (3.17), only three formulas are given. The
corresponding normalization coefficient is calculated using

Figure 3. Normalized hyperspherical harmonicsg24 18
ΩJλ

7
d
2 as a function of the principal angle of inertiaθ, for ΩJλ from 0 through 3 andd ) 1,

2. N 24 18 7
1
2 ) 0.0911482. See caption of Figure 1 for additional information.
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(5.11). The associatedg functions, defined by (5.12), are plotted
in Figure 1 as a function ofθ. Although theseg are quartic
polynomials in x(θ) and y(θ), the values ofg4 0

ΩJλ

2
d
2 only

display half an oscillation over the allowed range ofθ. In
addition, the ranges of variation of theseg are rather small. It
is interesting to analyze their behavior near the special con-
figurations, namelyθ ) 0 andθ ) 45°, at which the∧̂2 operator
has poles. The shape of all of those five curves is, as expected,
very smooth and regular, with no unusual behavior, although
they sample geometries close to the special configurations

considered, confirming the well-behaved nature of theg
functions. It is important to notice that although theD ) 2, d
) 1 gj functions of the bottom part of Table 3 differ from the
correspondingD ) 2, d ) 2 functions at most by a sign, they
give rise to linearly-independentF functions as a result of
(4.28) and (3.12). This can be seen clearly by noticing that
FΠ)0 nΠ)4 L)0

MJ

J)2
d)1
D)2 ( FΠ)0 nΠ)4 L)0

MJ

J)2
d)2
D)2 are two com-

pletely different linearly-independent functions.
As noted above, the lowest value ofnΠ for which we

encountered degeneracy in theF functions wasnΠ ) 4. Great

Figure 4. Normalized hyperspherical harmonicsg24 18
ΩJλ

7
d
2 as a function of the principal angle of inertiaθ, for ΩJλ from 4 through 7 andd ) 1,

2. N 24 18 7
2
2 ) 0.0410309. See caption of Figure 1 for additional information.
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care has to be taken when using other methods,17-22 as this
degeneracy was not explicitly obtained in the corresponding
publications. Wolniewicz,23 however, does carefully discuss this
issue.

6.5. Hyperspherical Harmonics fornΠ ) 8. As an example
of hyperspherical harmonicg functions for highernΠ, we give
in Table 4 the functionsgj8 2

ΩJλ

4
d
2. The correspondingg func-

tions are plotted in Figure 2. The value ofD(8, 4, 2) is 2, and

Figure 5. Normalized hyperspherical harmonicsg40 12
ΩJλ

9
1
1 as a function of the principal angle of inertiaθ, for ΩJλ from 0 through 9.N 40 12 9

1
4 )

0.00901322. See caption of Figure 1 for additional information.
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therefore,d can assume the values 1 and 2. Each of these two
functions has nine nonvanishing terms that are similar, but their
coefficients are different. This is a pattern followed in general
by degenerate hyperspherical harmonics. As displayed in Figure
2, a full oscillation over the allowed range ofθ is found.

6.6. Hyperspherical Harmonics fornΠ ) 24.Even though
thegΠ nΠ LΠ

ΩJλ

J
d
D are homogeneous polynomials of degreenΠ in

x(θ) andy(θ), asnΠ increases to 24, they do not display pro-
nounced oscillations as a function ofθ. This is due to the limited
range of this angle, given by (2.9). As an example, the functions
gj24 18

ΩJλ

7
d
2 (the superscriptΠ is omitted for simplicity) are

given in Table 5 and depicted in Figure 3 forΩJλ ) 0-3 and
in Figure 4 forΩJλ ) 4-7. SinceJ + LΠ is odd, (3.17) and
(4.31) predict thatg24 18

0
7

d
2 ) 0, which is indeed the case, as

Figure 6. Normalized hyperspherical harmonicsg40 20
ΩJλ

16
1
6 as a function of the principal angle of inertiaθ, for ΩJλ from 0 through 7, where

N 40 20 16
1
6 ) 1.08303. See caption of Figure 1 for additional information.
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seen in panels a and e of Figure 3. Even though we found a
full oscillation for one of thenΠ ) 8 cases, only fewer than
two full oscillations were found fornΠ ) 24, whereas three
full oscillations might have been expected on the basis of the

nΠ ) 8 results. This small number of oscillations is a
consequence not only of the limited range ofθ but also of the
nature of the associated homogeneous polynomials in sinθ and
cosθ.

Figure 7. Normalized hyperspherical harmonicsg40 20
ΩJλ

16
1
6 as a function of the principal angle of inertiaθ, for ΩJλ from 8 through 16, where

N 40 20 16
1
6 ) 1.08303. See caption of Figure 1 for additional information.
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6.7. Hyperspherical Harmonics fornΠ ) 40.The degenera-
ciesD(nΠ ) 40,J, LΠ) of the hypershperical harmonics obtained
for nΠ ) 40 are given in Table 1 and range, as pointed out
after (5.8), from 1 to 11. Theg functions for this value ofnΠ
are displayed in Figure 5 forLΠ ) 12, J ) 9 and in Figures 6
and 7 forLΠ ) 20, J ) 16. The corresponding degeneracies
are D(40, 9, 12)) 4 andD(40, 16, 20)) 6. Since it is not
practical to display the correspondingg functions for all the
values ofd from 1 to 4 or from 1 to 6, respectively, only thed
) 1 harmonics are shown in these figures. Although more
oscillations were found than for lower values ofnΠ, there are
still relatively few such oscillations for a fortieth order
polynomial in cosθ and sinθ. The reason for this behavor was
discussed in section 6.6. For theJ ) 9, LΠ ) 12 case,J + LΠ

is odd, and therefore,g40 12
0
9

d
4 ) 0, as is seen in Figure 5a.

7. Discussion

Once thegjΠ nΠ LΠ
ΩJλ

J
d
D hyperspherical harmonics have been

obtained, replacement into (4.30) and (3.12) (or equivalent-
ly, (A.16), (A.15), and (3.21)) furnishes the corresponding
FΠ nΠ LΠ

MJ

J
d
D(Θλ) hyperspherical harmonics in ROHC. These

can then be used as a basis set for expanding the local
hyperspherical surface functions (LHSF)Φ, which by definition
are the simultaneous eigenfunctions of the surface Hamiltonian

whereV is the potential energy function, and ofĴ2, Ĵz
sf, andÔÎ.

Once that expansion is performed, and the properties of the
Wigner rotation functions appearing in (3.12) or (3.21) are taken
into account, the corresponding coefficients must satisfy, for
eachΠ andJ, a generalized eigenvalue-eigenvector equation
involving matrixes that are independent ofMJ and whose rows
and columns are spanned by the four quantum numbersnΠ, LΠ,
D, andd. The calculation of these matrixes involves quadra-
tures over the two variablesδλ and θ on which V(F,δλ,θ),
gΠ nΠ LΠ

ΩJλ

J
d
D and eiLΠδλ depend. Since all these functions are

now known and since theV andg functions do not vary very
rapidly with δλ and θ, these quadratures can be efficiently
performed using relatively few angular integration points and
for large blocks of integrals simultaneously, so as to minimize
the duplication of numerical operations and thereby optimize
the corresponding computer time.

As all Coriolis terms are incorporated in theg functions, all
the couplings in the equations satisfied by the coefficients of
the LHSF expansion are potential function couplings. Further-
more, the equations forΠ ) 0 (i.e., even values ofnΠ) are
decoupled from those forΠ ) 1 (i.e., odd values ofnΠ). In
addition, as mentioned at the end of the paragraph following
(3.17),F hyperspherical harmonics forΓ irreducible representa-
tions of the permutation group of identical atoms that the system
of interest may contain can easily be generated. Using such
parity and irreducible representationF functions decreases the
numerical effort required to generate the corresponding LHSF.

Due to the first term on the rhs of (7.1) a hypercentrifugal
potential matrix, diagonal innΠ, will appear as an additive term
in the matrix whose generalized eigenvalues and eigenvectors
must be evaluated. The diagonal terms of that hypercentrifugal
matrix arenΠ(nΠ + 4)p2/2µF2. For a givenJ, (3.8) requires
that nΠ g J. On the other hand, due to the highly repulsive
nature of the hypercentrifugal matrix elements, it is expected
that the rate of convergence of the calculation with respect to

nΠ will be high, that is, that values ofnΠ much larger thanJ
will not be needed.

8. Summary and Conclusions

We have described and implemented a recursive procedure
for generating analytical hyperspherical harmonics for triatomic
systems in row-orthonormal hyperspherical coordinates. These
hyperspherical harmonics are regular at the poles of the
corresponding kinetic energy operator. The implementation of
this procedure was performed with aMathematicaalgebraic
program and used to generate all such functions for values of
the grand-canonical hyperangular momentum quantum number
up to 40. About 2.3 million such functions were generated. The
hyperspherical harmonics obtained were shown to be correct
by verifying that they satisfy the appropriate coupled partial
differential equations. The degeneracy of these hyperspherical
harmonics was also calculated, and it achieved a maximum value
of D ) 11 for nΠ ) 40, J ) 20, andLΠ ) 0. These functions
are attractive candidates for benchmark-quality state-to-state
reactive scattering calculations for these systems involving a
ground electronically adiabatic potential energy surface, as long
as this surface does not display a conical intersection with the
neighboring one.

Appendix A. Coupled Partial Differential Equations for
the Principal-Axes-of-Inertia Hyperspherical Harmonics
G

The GΠ n L
ΩJλ

J
d
D(θ) hyperspherical harmonics have been de-

fined by (3.12). The range of theδλ angle in these equations
can be taken to be those given by (2.8). The results will be the
same as long as theFΠ n L

MJ

J
d
D(Θλ) are the same at the two sets

of (Θλ)λ angles defined by (3.15) and (3.16). We will impose
this constraint throughout this paper, and as a result, we are
allowed to use the range of theδλ given by (3.13) whenever
desired. We will do so in this appendix, since then the functions
eiLδλ that appear in (3.18) are orthogonal. Under these conditions,
the coupled partial differential equations satisfied by the
GΠ n L

ΩJλ

J
d
D(θ) can be obtained by standard methods. To that

effect, we remember that

and define the operators

where theĴx
Iλ, Ĵy

Iλ, and Ĵz
Iλ are given explicitly by (2.20). As a

result, we can expressĴx
Iλ and Ĵy

I
λ
2

in terms of theĴ(
Iλ as

We now use (A.1) through (A.6) to express that operator,
and therefore∧̂2, in terms ofĴ2, Ĵ3

Iλ, and Ĵ(
Iλ. We then replace

(3.12) into (3.3), to apply the several angular momentum
operators in the resulting expression to the Wigner rotation

Ĵ2 ) Ĵx
I
λ
2

+ Ĵy
I
λ
2

+ Ĵz
I
λ
2

(A.1)

Ĵ(
Iλ ) Ĵx

Iλ ( iĴ y
Iλ (A.2)

Ĵx
Iλ ) 1

2
(Ĵ+

Iλ + Ĵ-
Iλ) (A.3)

Ĵy
Iλ ) 1

2i
(Ĵ+

Iλ - Ĵ-
Iλ) (A.4)

Ĵx
I
λ
2

) 1
2

(Ĵ2 - Ĵz
I
λ
2

) + 1
4

(Ĵ+
I
λ
2

+ Ĵ-
I
λ
2

) (A.5)

Ĵy
I
λ
2

) 1
2

(Ĵ2 - Ĵz
I
λ
2

) - 1
4

(Ĵ+
I
λ
2

+ Ĵ-
I
λ
2

) (A.6)

ĥ(Θλ;F) )
∧̂2(Θλ)

2µF2
+ V(F,θ,δλ) (7.1)
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functions. The effects of these operators on those Wigner
rotation functions are20

where

with

Using (A.7) through (A.10) together with the orthogonality of
the Wigner rotation functions, we finally get the following
system of 2J + 1 coupled partial differential equations that must
be satisfied by theGΠ nΠ LΠ

ΩJλ

J
d
D

The corresponding differential equations satisfied by the real
ĝΠ nΠ LΠ

ΩJλ

J
d
D functions defined by (4.30) are

whereΩJλ spans the values given by (A.13). The differential
equations satisfied by theG′ functions defined by (3.21) can
be obtained directly by substituting (3.22) into (A.12). The main
difference will be that the range ofΩJλ is now 0 toJ, meaning
that the G′ satisfy a system ofJ + 1 coupled differential
equations instead of the 2J + 1 equations satisfied by theG. In

analogy to (4.30), we define the real functionsgj′ by

From (3.22), (4.30), and (A.15) we get

Substitution of this expression into (A.14) leads to a system of
J + 1 differential equations for thegj′ that bear the same relation
to the 2J + 1 equations [(A.14)] satisfied by thegj as the one
between theG′ andG equations.

It should be noticed that, in (A.12) and (A.14),Π, nΠ, andJ
are fixed, whereas theΩJλ span the range indicated in (A.13).
The only differential operator appearing in (A.12) and (A.14)
acts on theGΠ nΠ LΠ

ΩJλ

J
d
D(θ) and ĝΠ nΠ LΠ

ΩJλ

J
d
D(θ), respectively.

A similar statement is applicable to theG′ andgj′ counterparts
of these equations. The entire coupling betweenG functions or
their gj counterparts or between theG′ and theirgj′ counterparts
is completely due to the Coriolis coupling terms associated with
the products ofê coefficients. TheFΠ nΠ LΠ

MJ

J
d
D(Θλ) functions

of (3.12) or (3.21) will be used used to expand the local
hyperspherical surface functions (LHSF), which are, as men-
tioned in section 7, the eigenfunctions of the local hyperspherical
surface operatorĥ defined by (7.1), as well as ofĴ2, Ĵz

sf, and
ÔÎ. ĥ depends onF only parametrically; that is, it does not
contain differential operators in this variable. The resulting
algebraic equations in the coefficients of this expansion will
not contain any Coriolis coupling terms. The coupling between
these equations is entirely due to the potential energy function.

Finally, we remark that we do not attempt in this paper to
solve either (A.12) or (A.14) or theirG′ or gj′ equivalents.
Instead, we derive a recursion relation among theG or gj
functions for consecutive values ofnΠ, based on the general
properties of harmonic polynomials. We then use this recursion
relation to generate analytically theG or gj functions and then
the correspondingG′ or gj′ functions. TheG or gj recursion
relations are slightly simpler than theirG′ or gj′ counterparts,
which justifies this procedure. (A.12) and (A.14) are however
used to check the correctness of the functions thus obtained.

Appendix B. Relation between the Quantum NumbersΠ,
nΠ, and LΠ

Let us show that the parity quantum numberΠ, the grand
canonical angular momentum quantum quantum numbernΠ, and
the internal angular momentum quantum numberLΠ all have
the same parity. The hyperspherical harmonicF of ordern is
related to the harmonic polynomial of the same order by18

whereHn is expressed in terms of the space-fixed Cartesian
coordinates of the mass-scaled Jacobi vectorsrλ

(1) and rλ
(2) as

with W ) (V1, ..., V6) and where∑V indicates a sum over all
possible values of the six non-negative integersVs constrained
by the condition

Ĵ2DMJΩJλ

J (aλ) ) J(J + 1)p2DMJΩJλ

J (aλ) (A.7)

Ĵ3
IλDMJΩJλ

J (aλ) ) ΩJJ
pDMJΩJλ

J (aλ) (A.8)

Ĵ(
IλDMJΩJλ

J (aλ) ) pê-(J,ΩJλ
)DMJΩJλ

-1
J (aλ) (A.9)

ê((j,Ω) ) [j(j + 1) - Ω(Ω ( 1)]1/2 )

[(j - Ω)(j ( Ω + 1)]1/2 (A.10)

-j e Ω e j j g 0, integer (A.11)

[J(J + 1) - ΩJλ

2

2 cos2θ
+

J(J + 1) + 2LΠ
2 - ΩJλ

2

2 cos2 2θ
+

ΩJλ

2

sin2 θ
-

d2

dθ2
- 4 cot 4θ d

dθ
- n(n + 4)]GΠ nΠ LΠ

ΩJλ

J
d
Dθ + 1

4( 1

cos2θ
-

1

cos2 2θ)[ê+(J,ΩJλ
- 2)ê+(J,ΩJλ

- 1)GΠ nΠ LΠ
ΩJλ

-2
J

d
D(θ) +

ê-(J,ΩJλ
+ 2)ê-(J,ΩJλ

+ 1)GΠ nΠ LΠ
ΩJλ

+2
J

d
D (θ)] -

iLΠ
sin 2θ
cos2 2θ

[ê-(J,ΩJλ
+ 1)GΠ nΠ LΠ

ΩJλ
+1

J
d
D(θ) -

ê+(J,ΩJλ
- 1)GΠ nΠ LΠ

ΩJλ
-1

J
d
D(θ)] ) 0 (A.12)

ΩJλ
) -J, -J + 1, ...,J (A.13)

[J(J + 1) - ΩJλ

2

2 cos2 θ
+

J(J + 1) + 2LΠ
2 - ΩJλ

2

2 cos2 2θ
+

ΩJλ

2

sin2 θ
-

d2

dθ2
- 4 cot 4θ d

dθ
- n(n + 4)]gjΠ nΠ LΠ

ΩJλ

J
d
Dθ - 1

4( 1

cos2 θ
-

1

cos2 2θ)[ê+(J,ΩJλ
- 2)ê+(J,ΩJλ

- 1)gjΠ nΠ LΠ
ΩJλ

-2
J

d
D(θ) +

ê-(J,ΩJλ
+ 2)ê-(J,ΩJλ

+ 1)gjΠ nΠ LΠ
ΩJλ

+2
J

d
D(θ)] +

LΠ
sin 2θ
cos2 2θ

[ê-(J,ΩJλ
+ 1)gjΠ nΠ LΠ

ΩJλ
+1

J
d
D(θ) +

ê+(J,ΩJλ
- 1)gjnΠ LΠ

ΩJλ
-1

J
d
D(θ)] ) 0 (A.14)

G′Π nΠ LΠ
-ΩJλ

J
d
D(θ) ) (-1)i(ΩJλ-J)π/2gj′Π nΠ LΠ

ΩJλ

J
d
D(θ)

(A.15)

gj′Π nΠ LΠ
-ΩJλ

J
d
D(θ) ) (1 + δΩJλ

0)
-1/2gjΠ nΠ LΠ

ΩJλ

J
d
D(θ)

(A.16)

Fn(Θλ) ) Hn/F
n (B.1)

HnΠ
(x) ) ∑

V
aVxλ

(1)V1yλ
(1)V2zλ

(1)V3xλ
(2)V4yλ

(2)V5zλ
(2)V6 (B.2)

∑
s)1

6

Vs ) nΠ (B.3)
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The polynomial coefficientsaV in general are complex numbers.
The inversion operator acts onxλ according to

As a result,

From (B.1) and (B.5) and the fact thatF is invariant under the
inversion operation, we have

and, in view of (3.7), we get

Therefore,nΠ andΠ have the same parity.
Let us now relate the parity ofΠ andLΠ. Applying ÔÎ on

both sides of (3.12) and using (3.2), we get

However,

Replacing this expression into (B.7) and changing the summa-
tion index fromΩJλ to -ΩJλ, we get

With the use of (3.17) this expression becomes

and, in view of (3.7) and (B.6)

that is,Π, nΠ, andLΠ indeed have the same parity, Q.E.D.

Appendix C. G Hyperspherical Harmonics as
Homogeneous Polynomials

Once theF hyperspherical harmonics are explicitly defined
by (3.3) through (3.7), theG hyperspherical harmonics are
implicitly defined by (3.12) and (3.17). We now wish to prove
that theseG functions are homogeneous polynomials of degree
n in the variablesx and y defined by (4.13) and (4.14). This
property will be very useful in obtaining theG analytically.

Let us consider the functionh defined by (4.21). We already
know that it is a harmonic polynomial of degreen in the
variablesTλ j

k and can therefore be written (omitting the primes
in the indices) as

where theC are constant coefficients that may be complex and
each of thejs (s ) 1, ...,n) in the first sum assumes the value
-1 or 1 only. Replacing this relation, as well as (4.10), in (4.21)
permits us to write the correspondingFΠ nΠ LΠ as

The products of the Wigner rotation functionsDkipi

1 (aλ) can be
expressed, by successive application of the Clebsch-Gordan
series,29 in terms of theDMJ ΩJλ

J (aλ) functions and appropriate
Clebsch-Gordan coefficients. As a result, we get

where

andGh Π nΠ LΠ
ΩJλ

J
d
D(θ) is a linear combination of the products of

nΠ t js

ps(θ) functions. In other words, thisGh is a homogeneous
polynomial of degreenΠ in the six variablest j

p(θ) (p )
-1, 0, 1; j ) -1, 1) and therefore of the two real variablesx
andy defined by (4.13) and (4.15). In view of (3.12) and (C.3),
the GΠ nΠ LΠ

ΩJλ

J
d
D(θ) are proportional toGh Π nΠ LΠ

ΩJλ

J
d
D(θ) and,

as a result, are also homogeneous polynomials of degreenΠ in
x andy, Q.E.D.

Let us now prove that thegjΠ nΠ LΠ
ΩJλ

J
d
D(θ) defined by (4.30)

are real. Indeed, we have shown that, forn ) 1, all six gj1 j
p
1

1
1

(j ) -1, 1; p ) -1, 0, 1), given by (4.34) and (4.35), are real.
Furthermore, all the coefficients on the rhs of (4.32), that relates
thegjn+1 to thegjn, are real. Therefore, by induction from then
) 1 case, thegjn are real, Q.E.D.

Appendix D. Harmonic Polynomials and Hyperspherical
Harmonics

The general theory of harmonic polynomials and hyperspheri-
cal harmonics is of central importance for this paper. We
summarize here the properties that were used in deriving the
basic recursion relations for the principal-axes-of-inertia hy-
perspherical harmonicG functions, defined by (3.18) and given
by (4.27) and (4.34).

D.1. Harmonic Polynomials in m-Dimensional Space.
Consider theRm space spanned byx ) (x1, x2,...,xm) where the
xi are real variables each spanning the full-∞ to +∞ domain.

hΠ n L
MJ

J
d
D(F,Θλ) ) ∑

j1,...,jn
∑

k1,...,kn)-1

1

Cj1k1...jnkn
Tλ j1

k1...Tλ jn

kn (C.1)

FΠ nΠ LΠ
MJ

J
d
D(F,Θλ) ) 1

Fn
hΠ nΠ LΠ

MJ

J
d
D(Θλ)

) ei(j1+...+jn)δλ ∑
j1,...,jn

∑
k1,...,kn)-1

1

×

Cj1k1...jnkn∏
s)1

n

Dksps

1 (aλ)t js

ps(θ) (C.2)

FΠ nΠ LΠ
MJ

J
d
D(Θλ) ) eiLΠδλ ∑

ΩJλ)-J

J

DMJΩJλ

J (aλ)Gh
Π nΠ LΠ

ΩJλ

J
d
D(θ)

(C.3)

ΩJλ
) ∑

s)1

nΠ

ps L ) ∑
s)1

nΠ

js (C.4)

Îxλ ) (-xλ
(1), -yλ

(1), -zλ
(1), -xλ

(2), -yλ
(2), -zλ

(2)) (B.4)

ÔÎHnΠ
(xλ) ) ∑

V
aV(-xλ

(1))V1(-yλ
(1))V2(-zλ

(1))V3(-xλ
(2))V4 ×

(-yλ
(2))V5(-zλ

(2))V6

) (-1)nΠHnΠ
(xλ) (B.5)

ÔÎ F
nΠ(Θλ) ) (-1)nΠFnΠ(Θλ) (B.6)

(-1)Π ) (-1)nΠ (B.7)

ÔÎF
Π nΠ Lλ

MJ

J
d
D(Θλ) ) NΠ nΠ J LΠeiLΠδλ ∑

ΩJλ)-J

J

×

DMJΩJλ

J (π + aλ, π - bλ, π - cλ)G
Π nΠ LΠ

ΩJλ

J
d
D(θ) (B.8)

DMJΩJλ

J (π + aλ, π - bλ, π - cλ) )

(-1)J+ΩJλDMJ-ΩJλ

J (aλ, bλ, cλ) (B.9)

ÔÎ F
Π nΠ LΠ

MJ

J
d
D(Θλ) ) NΠ nΠ J LΠeiLΠδλ ∑

ΩJλ)-J

J

×

(-1)J-ΩJλDMJΩJλ

J (aλ) GΠ nΠ LΠ
ΩJλ

J
d
D(θ) (B.10)

ÔÎ F
Π nΠ LΠ

MJ

J
d
D(Θλ) ) (-1)LΠFΠ nΠ LΠ

MJ

J
d
D(Θλ) (11)

(-1)Π ) (-1)nΠ ) (-1)LΠ (B.12)
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A general homogeneous polynomial of non-negative integer
degreen in Rm is defined as

where theni (i ) 1 throughm) are non-negative integers. The
sum extends over all such integers subject to the constraint

and theA are complex dimensionless constants. A harmonic
polynomial h(m)

n (x) in Rm is a homogeneous polynomial of
degreen in that space which, in addition, satisfies the Laplace
equation

where∇ (m)
2 is them-dimensional Laplacian defined by

Given an arbitrary homogeneous polynomialf (m)
n (x), the as-

sociated functionh(m)
n (x), defined by

is a harmonic polynomial,35 where [n/2] denotes the integer part
of n/2 andFm is the hyperradius, defined by

D.2. Dimensionless Grand-Canonical Generalized Angular
Momentum Operators. This operator is defined by24

where

From this definition one can easily derive the relation

The dimensionless∧ĥ (m)
2 is related to the usual hyperangular

momentum operator∧̂(m)
2 for a system of particles withm-

spatial degrees of freedom by the proportionality constantp2.
Let F (m)

n be the function defined by

where

and

In view of (D.6)

and therefore onlym - 1 of them dimensionless variablesyi

are independent. On the rhs of (D.11) we chose them arbitrarily
to be the firstm - 1 of these quantities, but any set ofm - 1
of them could have been selected. It can easily be shown24 that
the F (m)

n satisfy the partial differential equation

They are eigenfunctions of∧ĥ (m)
2 with eigenvaluen(n + m - 2).

These functions are called hyperspherical harmonics.
D.3. Generalized Hyperspherical Coordinates.Let R ≡ (R1,

R2, ..., Rm-1) be a set ofm - 1 angles andgi(R) (i ) 1, 2, ...,
m) be a set of real functions of these angles subject to the
constraint

In addition, let the hyperradiusFm andR be related tox by

The anglesR are labeled hyperangles, and them variablesFm

andR are called a set of generalized hyperspherical coordinates
associated withx. As a result of (D.12) and (D.16), we have

which permits us to change from the independent variablesy
given by (D.11) to the hyperanglesR. Similarly, upon thex to
theFm andy variable transformation, the∧ĥ (m)

2 operator defined
by (D.7) and (D.8) is seen to be completely independent ofFm.
As a result, (D.14) can be rewritten (changing from∧ĥ (m)

2 to
∧̂(m)

2 ) p2∧̂(m)
2 ) as

and the hyperspherical harmonicsF (m)
n (R) are functions of the

hyperangles only. The important property they satisfy is that
they can be generated from hyperspherical polynomials by
multiplication by (Fm)-n. In the present paper involving tetra-
atomic systems we consider the particular casem ) 6 only.
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