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The work in part 2 of this series (J. Phys. Chem. A2002, 106, 4846) is extended experimentally and theoretically
to include inhomogeneously broadened nitroxide spectra consisting of five hyperfine lines due to coupling to
two equivalent14N nuclei. The nitronyl-nitroxide 1-H-imidazol-1-yloxy-4,5-dihydro-4,4,5,5-tetramethyl-2-
(o-nitrophenyl)-3-oxide, which is severely inhomogeneously broadened by unresolved hyperfine structure in
the absence of spin exchange, is studied under conditions in which the spin-exchange frequency,ωe, varies
from near zero to more than half of the hyperfine spacing. In common with part 2 of this series, asωe

increases we find the following: (a) each line is the sum of one absorption and one spin-exchange-induced
“dispersion” line; no other terms are needed over the entire range; (b) intensity moves from the outer lines
to the central line; (c) the outer lines are broadened slightly faster than predicted by perturbation theory; (d)
the amplitudes of the “dispersion” components lead to a determination ofωe; (e) the experimental line shifts
differ substantially from those predicted theoretically. Items a-e are unaffected theoretically by adding
unresolved hyperfine structure which inhomogeneously broadens the lines. The discrepancy in item e is
addressed by including spin precession during the spin-exchange act and re-encounters of the same spins
during one collision. These additions to the theory yield an additional line shift that is proportional toωe.
From the additional shift, the time between re-encounters is estimated to beτD ∼ 10-10 s which is of the
correct order of magnitude as estimated from a Stokes-Einstein diffusion model. Inclusion of the effect of
re-encounters in the theory may permit a deeper understanding of the collision process as a function of liquid
structure.

Introduction

The possibilities of applying spin exchange between nitroxide
free radicals to problems in chemistry and biology were exciting
indeed during the 1960s and 1970s when the method was
developing.1 In addition to studies of collisions in homogeneous
liquids, diffusion in complex fluids, which could not be studied
by other methods, seemed to be an ideal application of the
method. For summaries of the history and contributors to the
subject, see, for example, ref 1 and the Introduction to ref 2.
The enthusiasm waned after the late 1970s, basically for two
reasons. First, it was learned that spin exchange was almost
invariably strong; that is,JτC . 1 whereJ is minus 2 times the
exchange integral andτC is the mean duration of the collision.
The only exceptions involved liquids of very low viscosity3,4

and perhaps like-charged nitroxides.5 For strong spin exchange,
the spin-exchange frequency,ωe, is independent ofJ so one
cannot learn anything of the exchange integral. Second, although
spin exchange produces many spectral changes, only line
broadening was utilized in applications. A critique of the line
width method appeared6 in 1979 that showed that the separation
of the line broadening effects of spin exchange and of dipolar

interactions was not likely to be successful precisely for the
range of diffusion coefficients of interest in biological mem-
branes. In this paper, we continue a recent program2,7 to show
that much more quantitative information is available from the
electron paramagnetic resonance (EPR) spectra than just the line
widths, perhaps offering a renaissance of the method.

The generally accepted expression1,8 describing the line shape
is given by the real part of eq 1

whereH is the magnetic field,γ is the gyromagnetic ratio of
the electron, andS(H) is given by

In eq 2, i) x-1 and the sum is overj, which denotes the
jth resonance line in the spectrum which appears at resonance
field Hj, with degeneracyFj, and is characterized by spin-spin
relaxation time (T2)j. In the limit of ωe ) 0, eq 1 yields
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Lorentzian lines with peak-to-peak first-derivative line widths
∆Hpp

L (0)j ) 2/x3γ(T2)j. Equation 1 has been derived using
many approaches1 all of which have in common the assumption
of sudden collisions originally proposed by Kivelson.9 See p
56 of ref 1 for a detailed discussion of the assumption. We note
that neither spin precession during the collision act nor
re-encounters of the same spins are properly included in eq 1.

The usual approach1 has been to approximate eq 1 in two
limits. In the slow exchange limit,ωe/Aγ , 1, whereA is the
14N or 15N hyperfine spacing in gauss, the lines broaden, shift,
and change shape. Perturbation theory yields expressions relating
these phenomena toωe. In the opposite limit, the lines merge
into a single line which narrows andωe may be extracted from
the line width.1

Thus, as things stood more than 20 years ago,ωe could be
measured, at least in principle, from

(1) line broadening,
(2) line shifts, or
(3) line narrowing.
All of these approaches have problems in applications, some

of which are delineated on pp 49, 50, and 117-119 of the
monograph.1 In fact, in practice, the vast majority of the
measurements relied on item 1, where the major problem at
the time was the separation of concentration broadening effects
due to spin exchange and dipolar interactions. The other two
items 2 and 3 were thought to be interesting and important
means to verify the theory1 but in most cases impractical in
applications to chemistry and biology. At the time of publication
of the monograph,1 there had not been a single case in which
all three items 1-3 had been studied in the same system, and
only two1,10 cases combining items 1 and 2 and one11 case
combining items 1 and 3 had been studied. A critical review of
the data shows that the quantitative aspects of the line shifts,
item 2, were tested experimentally only twice.1,10One such test10

was with aqueous solutions of peroxylamine disulfonate (Fre-
my’s salt) where the theoretical predictions of a formalism
equivalent to eq 1 but not written in that form were in agreement
with experiment; another1 test was with aqueous solutions of
VOSO4 where again theory and experiment agreed, however,
with an experimental uncertainty of 50% of the shift. Thus, even
though the theory1 was thought to be complete, the experimental
verification was scant indeed for items 2 and 3.

Recently, we decided to revisit the problem2,7 to learn if line
shifts rather than line broadening could be used in applications
to chemistry and biology. Our interest arose because in micelles
one observes a superposition of spectra due to those micelles
containing one, two, and so forth spin probes, and the line width
of this superposition is not very sensitive toωe. Our first effort2

was to again work with aqueous solutions of Fremy’s salt. Using
modern understanding of line shapes,12 computer fitting of
spectra,2,13 and significantly improved magnetic field and field
sweep stabilities, we were able to reconfirm the theoretical
prediction of the line shifts with high precision. In fact,ωe could
be measured from line shifts with a precision rivaling that found
from line broadening. As an unexpected bonus to that work,
we learned2 that the distortions of the line shape from Lorent-
zian, predicted1 from perturbation theory, were due to a spin-
exchange-induced “dispersion”. The sign of the dispersion term
varies throughout the hyperfine multiplet and is zero for the
central line if one exists.2 Thus, each line is composed of an
absorption and a dispersion component. Careful least-squares
fitting of the lines to the two components yielded a new way to
measureωe from

(4) the dispersion component.

Item 4 yielded values ofωe that were also of precision
comparable to the estimates derived from line broadening.2 An
advantage to item 4 is that a spectrum atωe ) 0 is not needed.
As a corollary, the presence of spin exchange may be detected
in a single spectrum.

With three ways to estimate the spin exchange in the slow
exchange limit, items 1, 2, and 4, significant improvement in
the reliability of the measurements could be achieved, and
difficulties with any one method could be mitigated with the
availability of the other two.

We next turned our attention7 to a spin probe whose spectrum
is severely inhomogeneously broadened by unresolved hyperfine
structure, 16-doxylstearic acid methyl ester (16DSE). Our
intention was to work out the details of treating the inhomo-
geneous broadening and to assess the accuracy with whichωe

could be measured using items 1, 2, and 4. This worked well
for items 1 and 4; however, we were surprised7 to find that the
line shifts were no longer described by theory. An example of
the magnitude of the discrepancies encountered is given in
Figure 10, which reproduces some data from the previous work.7

The discrepancies are substantial, and curiously the percent error
increases asωe/Aγ f 0. A search of the literature revealed that
there were earlier indications that something was wrong with
the theory. First Halpern et al.14 and later Robinson et al.15

observed line shifts that appeared to vary linearly with the
concentration of the spin probe rather than quadratically as
predicted by eq 1.

The present work was motivated by the following question:
Why would the experimental shifts be in agreement with theory
for Fremy’s salt2 and not for 16DSE?7 An obvious difference
is the presence of unresolved hyperfine structure in 16DSE and
not in Fremy’s salt; thus, we wondered if eq 1 did not correctly
take into account the statistical factor,Fj. Earlier confirmations
of the theoretical line shifts dealt exclusively with radicals with
the same value ofFj for all of the lines. Perhaps eq 1 was correct
for that case and incorrect if the values ofFj were not the same.
At low values ofωe, due to the superhyperfine interactions with
the protons, 16DSE is a case in which the values ofFj are not
the same. Here we study the nitronyl-nitroxide 1-H-imidazol-
1-yloxy-4,5-dihydro-4,4,5,5-tetramethyl-2-(o-nitrophenyl)-3-
oxide (NN-NP) in which the presence of two equivalent nitrogen
nuclei gives five lines of different degeneraciesFj ) 1/9:2/9:
3/9:2/9:1/9. Ullman and co-workers16 discovered nitronyl-nitrox-
ides and presented EPR spectra confirming the 1:2:3:2:1
expected relative intensities.

The purpose of the present work is threefold. First, we test
eq 1 with inequivalent values ofFj. Second, we evaluate nitrones
as prototypes to carry out spin-exchange applications in
chemistry and biology. Finally, we apply a theory due to
Salikhov17 to explain the line shift results.

Theory

Molin et al.1 applied second-order perturbation theory to eq
1 in the slow exchange limit,ωe/γA , 1. The broadening of
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the hyperfine line labeled with the nuclear quantum numberMI

is given by

where FMI is the statistical weight of theMI line and the
broadening,BMI, is defined to be

The factor (1- FMI) in eq 3 is the well-known probability that
a spin probe will encounter another spin probe having a different
value ofMI. For two equivalent14N nuclei,FMI ) (3 - |MI|)/9,
yielding (1- FMI ) ) (6 + |MI|)/9. The broadening of the central
line has the same numerical value as that found for spin probes
with a single14N nucleus

whereas the inner and outer pairs of lines are predicted to show
the broadenings detailed in Table 1, expressed in terms ofB0.

Previously,2 we showed that the perturbation theory,1 in first-
derivative field-swept form, yielded a spectrum composed of
absorption lines and spin-exchange-induced dispersion lines as
follows:

In eq 6, L′MI(H) is the first derivative of the absorption of
Lorentzian line shape having unit peak-to-peak height given by

whereasVpp is the peak-to-peak amplitude of the first-derivative
presentation.D′MI(H) is the spin-exchange-induced dispersion
of unit maximum amplitude given by

and Vdisp is its maximum amplitude. In eqs 7 and 8,ê′MI is
defined by

whereH(ωe)MI is the resonance field of theMI line under the
influence of spin exchange. To simplify the presentation, we
use the term “dispersion” to mean the spin-exchange-induced
dispersion terms in eq 6 and “instrumental dispersion” to mean
the signal often arising from an incorrectly tuned microwave
bridge.18

The amplitudes of the absorption and dispersion components
in eq 6 calculated from the perturbation theory were shown to
be related by2

where

In eq 11, the sum extends over all of the hyperfine lines other
thanMI, andH(0)MI denotes the resonance field of theMI line
in the absence of spin exchange. Table 1 lists values ofbMI in
the case of a five-line spectrum resulting from hyperfine
coupling to two equivalent14N nuclei as well as the ratios
Vdisp(MI)/Vpp(MI). Note, in particular, that the sign ofbMI and
thus of the ratio in eq 10 changes from positive on the low-
field side of the center of the spectrum to negative on the high-
field side.

There are two shifts of hyperfine lines in the perturbation
theory.1,2 The first, given as eq 22 of ref 2, is directly due to
spin exchange and shifts the resonance frequencies of the lines
toward the center

The superscript “abs” refers to the resonance fields of the
absorption lines. We showed in part 2 of this series7 that
inhomogeneous broadening does not affect the shifts as predicted
by either eq 1 or the perturbation theory, eq 12.

The second shift is due to the overlap of the dispersion
component. When this second shift is added to eq 12, we obtain
the observed shift

TABLE 1: Line Broadenings and Line Shifts Predicted by Perturbation Theory for Two Equivalent 14N Hyperfine Couplingsa

MI ) (2 MI ) (1 MI ) 0 eq

bMI ( 53x3
72

B0

A
( 5x3

9

B0

A
0 11

H(ωe)MI

abs- H(0)MI ( 1
9

53
64

B0
2

A
( 2

9
10
16

B0
2

A
12

H(ωe)MI

obs- H(0)MI
( 53

64[23∆Hpp
L (0)(2 + B0]B0

A
( 10

16[23∆Hpp
L (0)(1 + B0]B0

A
13

BMI

4
3
B0

7
6
B0 B0 3

Vdisp(MI)/Vpp(MI) ( 53
54

B0

A
( 20

27

B0

A
0 10

a All quantities written in terms of the broadening of the central line,B0 ) 4ωe/3x3γ.

BMI
)

2ωe

x3γ
(1 - FMI

) (3)

BMI
) ∆Hpp

L (ωe)MI
- ∆Hpp

L (0)MI
(4)

B0 )
4ωe

3x3γ
(5)

Y′(H, ωe) ) ∑
MI

[Vpp(MI) L′MI
(H) + Vdisp(MI) D′MI

(H)] (6)

L′MI
(H) )

-8ê′MI

[3 + ê′MI

2]2
(7)

D′MI
(H) )

3[3 - ê′MI

2]

[3 + ê′MI

2]2
(8)

ê′MI
) 2

H - H(ωe)MI

∆Hpp
L (ωe)MI

(9)

Vdisp(MI)/Vpp(MI) ) 4
x3bMI

9
(10)

bMI
) -2(ωe/γ) ∑

MI′*MI

FMI
′

H(0)MI
- H(0)MI

′
(11)

H(ωe)MI

abs- H(0)MI
) 1

2
FMI

bMI
ωe/γ (12)

H(ωe)MI

obs- H(0)MI
) 1

2(x3
2

∆Hpp
L (0)MI

+
ωe

γ )bMI
(13)
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The superscript “obs” refers to the resonance fields of the
obserVed lines.

The positionsH(ωe)MI

obs are directly measurable from the
EPR spectrum provided that the lines cross the baseline. The
positionsH(ωe) MI

abs must be found by fitting the experimental
spectrum to eq 6. The spacingsdin

abs(ωe) ) H(ωe)-1
abs- H(ωe) +1

abs

anddout
abs(ωe) ) H(ωe)-2

abs- H(ωe) +2
absare conveniently measured

from the line positions. The subscripts “in” and “out” denote
the spacing between theinner pair of lines flanking the central
line and theouter pair of lines flanking the central line,
respectively. These spacings, which are defined in Figures 1
and 3, computed from eqs 12 and 13, and normalized to the
spacing atωe ) 0, are given by

To simplify the notation, the dependence of the quantities on
the left-hand side of eqs 14-17 on ωe (manifested asB0) is
suppressed. For a single14N nucleus, theobserVedspacing was
predicted (see eqs 25 and 26 of ref 2) to decrease more than 3
times faster than theabsorptionspacing. Here, the effect is
amplified: the outer observed spacing decreases more than 9
times faster and the inner spacing decreases more than 4.5 times
faster than the absorption spacings. Note that atωe ) 0 the
observed and absorption spacings are the same because the
dispersion lines are absent. Thus,din and dout do not require
superscripts.

Equations 14-17 are written in dimensionless form after
having eliminatedωe as a parameter using eq 3. Writing all
results in terms of the broadening has the advantage that
variations in concentration, temperature, or any other parameter
that affectsωe will automatically be accounted for provided that
only spin exchange contributes to the broadening.

The doubly integrated intensity of each absorption line,IMI,
may be calculated from the following equation,2 which is valid
for Lorentzian line shapes:

In part 2 of this series,7 a serendipitous result emerged: even
though eq 6 was derived2 from perturbation theory and is valid
only in the regimeωe/Aγ , 1, the spectra, both simulated and
experimental, could be fit to just two components per line,
absorption and dispersion, to higher spin-exchange frequencies
all the way up to line merger nearωe/Aγ ≈ 1 provided that the
parametersBMI, Vdisp(MI)/Vpp(MI), andIMI are allowed to depart
from the values predicted by perturbation theory. In other words,
the form of eq 6 is valid all the way up toωe/Aγ ≈ 1. One
might have expected that, asωe/Aγ increased, more and more
terms would be needed in eq 6 to describe the spectrum, but
this is not so. This fortunate fact allows us to describe the

behavior of eq 1 in terms of the simple parametersBMI,
Vdisp(MI)/Vpp(MI), andIMI all the way up toωe/Aγ ≈ 1.

Materials and Methods

The nitronyl-nitroxide 1-H-imidazol-1-yloxy-4,5-dihydro-
4,4,5,5-tetramethyl-2-(o-nitrophenyl)-3-oxide (NN-NP) was syn-
thesized and purified essentially as previously described19 with
the exception that pure 2,3-dimethyl-2,3-dihydroxylaminobu-
tane20,21(7.3 g; 41.5 mM) and 2-nitrobenzaldehyde (7.0 g; 46.3
mM) (Aldrich) were reacted in ethanol for 8 h at room
temperature. After the oxidation and purification steps, NN-
NP was obtained in 46% yield. UVλmax (nm) [log ε]: 285 (s),
300 (s), 313 [4.190], 513 (s), 540.3 [3.202] (in water); 292
[3.991], 323 [4.041], 556 [2.948] (in ethanol); 582 [2.812] (in
toluene). Further details are available in the Supporting Informa-
tion.

A stock solution of NN-NP was prepared in distilled water
at a concentration of approximately 5.9 mM. This solution was
diluted to other intermediate concentrations of 5.8, 4.7, 3.5, 3.1,
and 2.2 mM and two dilute solutions at 20 and 10µM. The
solutions, not degassed, were sealed with a gas-oxygen torch
into 50 µL disposable pipets. As is well-known, dissolved
oxygen broadens the EPR lines; however, the broadening due
to spin exchange between NN-NP spin probes is independent
of the presence of oxygen.1 These pipets were housed in a quartz
tube that was placed in the variable-temperature Dewar inside
the microwave cavity. A thermocouple was placed above the
sample in the same manner as that shown in configuration C of
Figure 1 of ref 22. The sample temperature was stable to about
(0.1 °C during a spectrum sweep. Neither the concentration
nor the temperature is a critical parameter in this work because
both are removed as parameters by replacingωe by B0 in eqs
14-17 and in the quantities in Table 1.

EPR spectra were measured with a Bruker 300 ESP X-band
spectrometer interfaced with Bruker’s computer. Spectra were
acquired using a sweep time of 21 s, microwave power of 5
mW, time constant of 5 ms, sweep width of 50 G, and a
modulation amplitude of 0.8 G. The broadening of the Gaussian
component of the lines due to this modulation amplitude was
corrected23 as detailed below. The sweep width was measured
by Bruker’s NMR gaussmeter operating in the 1 mG resolution
mode and was averaged over the entire experiment.

Equation 1 was generated using the equations in the appendix
of part 1 of this series.2

Results

Low Concentration. Figure 1 shows the EPR spectrum of
20 µM NN-NP at 105( 1 °C. Each line was least-squares-
fitted to a Gaussian-Lorentzian sum function,12,13 from which
the line position, overall line width, doubly integrated intensity,
and Gaussian-Lorentzian sum function mixing parameter
(parameterη of eq 13 of ref 12) were determined. The
decomposition into the Gaussian and Lorentzian components
of the approximately Voigt-shaped lines is described in refs 12
and 13. The lower trace is the experimental spectrum minus
the five Gaussian-Lorentzian sum functions. Both the experi-
mental spectrum and the residue hint at a minor impurity
spectrum; however, carrying out the same procedure with 20
such spectra and summing failed to define the spectrum of a
possible impurity. The only experimental parameter likely to
be affected by the presence of a minor impurity spectrum is
Vdisp(MI) because this quantity is rather small and would be
affected the most by an underlying impurity line. Fortunately,

dout
abs/dout ) 1 - 1

9
53
128(B0

A)2

(14)

din
abs/din ) 1 - 2

9
10
16(B0

A )2

(15)

dout
obs/dout ) 1 - 53

128( 2
3B0

∆Hpp
L (0)(2 + 1)(B0

A)2

(16)

din
obs/din ) 1 - 10

16( 2
3B0

∆Hpp
L (0)(2 + 1)(B0

A)2

(17)

Vpp(MI) ) x3IMI
/π[∆Hpp

L (ωe)MI
]2 (18)
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we have some redundancy in the measurements ofVdisp(MI),
because we have five lines andVdisp(MI) ) Vdisp(-MI).

Mean values and standard deviations of hyperfine spacings,

Gaussian line widths, and Lorentzian line widths were found
by fitting five spectra at each temperature for the two dilute
samples. All values in the two samples were within their
respective standard deviations of one another. This means that
the values may be taken to correspond toωe ) 0 within
experimental error. The results are detailed as follows: Table
2 gives the hyperfine spacings between adjacent hyperfine
components. These are mean values of the means from the two
dilute samples weighted by their inverse variances. Clearly, from
Table 2, second-order shifts are easily measurable. These shifts
are of no consequence in the present work; however, they are
detailed in the Supporting Information. Table 3 gives the
spacingsdin anddout and the Gaussian line widths derived from
the 20µM sample. Also included in Table 3 are the Gaussian
line widths corrected for the modulation broadening due to the
modulation amplitude of 0.8 G as detailed in ref 23. Table 4
gives the values of the Lorentzian line widths derived from the
20 µM sample. The data in Tables 3 and 4 are changed
insignificantly if the results from both dilute samples are
properly averaged, weighting by the inverse variance of the
respective mean values. This is because the uncertainties in the
more dilute sample are significantly larger.

Higher Concentrations. The concentrations between 2.2 and
5.9 mM were studied at various temperatures between super-
cooled-7.2 ( 0.2 °C and superheated 105( 1 °C, yielding
too much data to effectively present in the figures, so a
representative selection of data of varying concentration and
temperature are presented.

Figure 2a shows the experimental EPR spectrum of 4.7 mM
NN-NP at 105°C and, overlaid, the best fit of this spectrum to
eq 6. These two curves are indistinguishable on the scale of
Figure 2; the difference in them, multiplied by 10, is shown in
Figure 2d. The absorption part of the best fit to eq 6 is shown
in Figure 2b and the dispersion in Figure 2c. The fitted
absorption curve, Figure 2b, is reproduced in Figure 3a, and
the individual five absorption lines are detailed in Figure 3b-
d. We emphasize that the parameters describing each line are
varied independently in the least-squares fit. The spacingsdin

abs

and dout
abs are defined. See part 2 of this series7 for more

discussion of the fitting of broad spectra.
The best-fit dispersion curve in Figure 2c is reproduced in

Figure 4a whereas the individual dispersion lines are detailed
in Figure 4b-d. The dispersion apparent from the central line,
Figure 4d, is due to a slightly improperly tuned bridge, which
is often observed when employing lossy samples.18 The values

TABLE 2: Hyperfine Spacings in the Absence of Spin Exchange (Gauss)

T, °C H+2 - H+1
a H+1 - H0

a H0 - H-1
a H-1 - H-2

a Ab

-7.2( 0.2 8.096( 0.002 8.106( 0.002 8.084( 0.002 8.096( 0.004 8.0959( 0.0009
24.8( 0.2 8.084( 0.002 8.103( 0.001 8.079( 0.002 8.084( 0.002 8.0865( 0.0013
44.8( 0.4 8.078( 0.002 8.098( 0.002 8.076( 0.002 8.079( 0.002 8.0816( 0.0012
84.8( 0.7 8.060( 0.003 8.086( 0.004 8.064( 0.002 8.065( 0.005 8.0687( 0.0010

105( 1 8.055( 0.004 8.072( 0.004 8.056( 0.002 8.061( 0.002 8.0621( 0.0011

a Estimated error given by the standard deviation in five sweeps added to the manufacturers’ stated accuracy in the NMR gaussmeter ((0.001
G). b Estimated error in the mean from two dilute samples weighted by their inverse variances.

Figure 1. EPR spectrum of 20µM NN-NP at 105°C showing the
definitions of the inner and outer spacings. The lower trace is the
difference between the experimental spectrum and the best fit to five
Gaussian-Lorentzian sum functions.

TABLE 3: Inner and Outer Spacings in the Absence of Spin
Exchange and the Gaussian Line Widths (Gauss)

T, °C dout
a din

a ∆Hpp
G b ∆Hpp

G c

-7.2( 0.2 32.383( 0.004 16.190( 0.002 0.793( 0.003 0.685
24.8( 0.2 32.346( 0.002 16.181( 0.001 0.758( 0.004 0.644
44.8( 0.4 32.326( 0.002 16.174( 0.002 0.746( 0.004 0.630
84.8( 0.7 32.275( 0.004 16.150( 0.002 0.708( 0.004 0.584

105( 1 32.248( 0.003 16.129( 0.003 0.700( 0.009 0.575

a Mean values and estimated errors in the means averaging five
spectra from two dilute samples weighted by their inverse variances.
b Mean values from five spectra for each hyperfine line were determined.
These mean values were averaged, weighted by their inverse variances,
over the five hyperfine lines. Errors are the estimated errors in the
means.c Corrected for a field modulation amplitude of 0.8 G using ref
23.

TABLE 4: Lorentzian Line Widths a in the Absence of Spin Exchange (Gauss)

T, °C ∆Hpp
L (0)+2 ∆Hpp

L (0)+1 ∆Hpp
L (0)0 ∆Hpp

L (0)-1 ∆Hpp
L (0)-2

-7.2( 0.2 0.305( 0.007 0.254( 0.010 0.234( 0.006 0.304( 0.005 0.417( 0.010
24.8( 0.2 0.341( 0.007 0.322( 0.008 0.317( 0.007 0.335( 0.007 0.376( 0.007
44.8( 0.4 0.407( 0.009 0.394( 0.007 0.388( 0.007 0.402( 0.007 0.428( 0.006
84.8( 0.7 0.590( 0.010 0.587( 0.007 0.579( 0.006 0.583( 0.007 0.604( 0.008

105( 1 0.670( 0.010 0.674( 0.010 0.669( 0.010 0.672( 0.010 0.694( 0.010

a From overall line widths using eq 7e of ref 12 employing the Gaussian line widths in Table 3. Errors are propagated in eq 7e using the standard
deviations in overall line widths and the uncertainties in Table 3.
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of Vdisp(MI)/Vpp(MI) for MI * 0 are corrected for instrumental

dispersion by subtractingVdisp(0)/Vpp(0) from each value of
Vdisp(MI)/Vpp(MI) for MI * 0.

To illustrate the quality of the fits, the detailed results for
the spectrum in Figure 2 are presented in Table 5. Quoted
uncertainties for individual results are the standard deviations
in measurements of five spectra, one taken after the other. In
Figures 5-8, each of the five measurements is plotted separately.
From Table 5, it is concluded that all of the parameters are
measured with high precision (reproducibility from five spectra),
yet the accuracy of some parameters is lower, as can be judged
by comparing the results forMI ) (2 and forMI ) (1. Thus,
systematic errors are evident, especially for the quantities
Vdisp/Vpp. Column 4 of Table 5 gives values ofωe/γ computed
from eq 3; theωe/γ values in column 5 of Table 5 are computed
from eq 44 (see the Appendix). The latter yields slightly more
consistent results forωe.

Figure 2 illustrates that one may analyze spectra at signifi-
cantly higher ratios of broadening to line spacing than was
standard practice previously,B/A < 0.3.4 For the outer lines,
B(2/A ) 0.500. Previously,7 for 16DSE, we were able to analyze
spectra to even larger values ofωe, all the way up to spectral
merging.7 Regrettably, the solubility of NN-NP in water limited
the range in this work.

In spectra such as those in Figure 2, where the broadening is
large, the spacingsdout

obs and dout
obs are not defined because the

observed lines do not cross the baseline. In an application to
chemistry or biology, assuming that results in the slow exchange
region were of interest, the observed spacings would yield more
precise results because the observed shifts are a factor of 9
(outside spacing) and 4.5 (inside spacing) larger than the
absorption shifts. Further, they may be obtained without fitting.
However, the observed shifts are less fundamentally related to
the theory than absorption shifts because they include the overlap
of the dispersion lines and involve the line widths atωe ) 0

Figure 2. (a) Experimental EPR spectrum of 4.7 mM NN-NP at 105
°C. The best fit to eq 6 is indistinguishable from the experimental
spectrum. (b) The absorption component of eq 6. (c) The spin-exchange-
induced dispersion component of eq 6. (d) The difference between the
experimental spectrum and the fit to eq 6, multiplied by 10.

Figure 3. (a) The absorption component reproduced from Figure 2b.
(b-d) Separated absorption lines that add to part a. The parameters of
each of the five lines are varied independently to achieve a least-squares
fit; those parameters are given in Table 5. The inner and outer absorption
spacings as well as the peak-to-peak amplitude of one of the absorption
lines are defined.

Figure 4. (a) The spin-exchange-induced dispersion component
reproduced from Figure 2c. (b-d) Separated dispersion lines that add
to part a. The parameters of each of the five lines are varied
independently to achieve a least-squares fit and are listed in Table 5.
The maximum amplitude of one of the dispersion lines is defined. The
minor dispersion line forMI ) 0 (d) is due to instrumental dispersion
which is used to correct the amplitudes of the other lines. See text.
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which can vary withMI. Therefore, in the remainder of this
paper we deal exclusively withdin

abs anddout
abs.

The perturbation theory predicts that the lines broaden
according to eq 3, whereas eq 1 shows that the outer lines
broaden slightly faster than this and the central line slightly
slower. This is shown in Figure 5a where the line broadenings
of theoretically generated lines from eq 1 are plotted versus the
input value of 4ωe/3x3Aγ. These line broadenings are mea-
sured by fitting the theoretically generated spectra to eq 6 and
are plotted asB0/A, 3B(2/4A, and 6B(1/7A to put them on the
same scale according to eq 3. Perturbation theory predicts
horizontal lines in Figure 5a; however, as before,7 the outside
lines broaden slightly faster than the perturbation theory
prediction. The average normalized broadening, indicated by
the ×’s, is defined to be

and is within 0.0009 of unity up to a value of 4ωe/3x3γ )
0.375. Thus, as before,7 the average broadening is very nearly
equal to the perturbation prediction even though the individual
broadenings show departures. These departures were easily
measurable in the case of 16DSE, where the range ofωe/A was
extended to about double the present range; however, in this
work they are relatively minor, as is shown by the differences
in the solid lines versus the dashed lines in Figure 5b. The
dashed lines are the perturbation theory predictions, and the solid
lines are from eq 1. The experimental values in Figure 5b were
measured by fitting the data to an approximate Voigt function,
neglecting dispersion, up to∆Hpp

L ) 2.4 G and to a Lorentzian
function including dispersion for∆Hpp

L > 1.8 G. This two-
sided approach to deal with inhomogeneous broadening was
discussed in detail in part 2 of this series.7 Here, as before, the
two approaches converge in the 1.8-2.4 G region (see Figure
3 of ref 7). The abscissa in Figure 5b is the experimental value
of B0/A whereas the circles correspond to theMI ) (2 lines
and the squares to theMI ) (1 lines. The lower precision in
the present work compared with that in the previous work with
16DSE is apparent when comparing Figure 5b with Figure 7
of ref 7. Nevertheless, it is clear that the difference in broadening
of the hyperfine lines predicted by eq 3 is in accord with
experiment, a result previously shown by Eastman and co-
workers24 for TCNE. By replacingB0 with 〈B0〉 in eqs 14-17,
in Table 1, and in the abscissas of Figures 5-8, one arrives at
a slightly more accurate representation, which is valid to high
values ofωe. In this work, the difference inB0 and〈B0〉 is minor
and is neglected in the abscissas of Figures 5b, 6, 7b, and 8.

Figure 6 displays the values ofVdisp((2)/Vpp((2), circles, and
Vdisp((1)/Vpp((1), squares. Each data point is the average of
the high- and low-field lines. The discrepancies in the values
at high and lowfield are rather large, averaging(6% for MI )
(2 and(4% for MI ) (1. For the spectra in Figure 2, these
discrepancies are(7.5% and(6%, respectively. The discrep-

TABLE 5: Results of Fitting the Spectrum in Figure 2 to Eq 6

MI FMI BMI,
a G ωe/γ,b G ωe/γ,c G Vdisp/Vpp

a ωe/γ,d G IMI
e IMI

f IMI
g

+2 1/9 4.034( 0.018 3.93 3.91 0.423( 0.005 4.05 0.254 0.333 0.260
+1 2/9 3.439( 0.007 3.83 3.82 0.326( 0.003 4.04 0.572 0.667 0.584

0 3/9 2.875( 0.002 3.73 3.81 0.008( 0.002 1.000 1.000 1.000
-1 2/9 3.489( 0.001 3.88 3.88 -0.275( 0.002 3.64 0.605 0.667 0.584
-2 1/9 3.968( 0.009 3.87 3.85 -0.349( 0.002 3.55 0.264 0.333 0.260

mean 3.85( 0.075 3.85( 0.042 3.82( 0.26
a Standard deviation from five spectra.b Equation 3.c Equation 44.d Equations 46 and 47 after correcting for nonzeroMI ) 0 values.e Normalized

to I(0) ) 1.000. Standard deviation in five spectra(0.001.f IMI from perturbation theory, normalized toI(0) ) 1.000.g IMI from eq 45, normalized
to I(0) ) 1.000.

〈B0〉/A ) [2(3B(2/4A) + 2(6B(1/7A) + B0/A]/5 (19)

Figure 5. (a) Percent deviations of the line broadenings from the
predictions of the perturbation theory, Table 1. The abscissa is the input
value to eq 1 to generate a spectrum from which the line broadening
is determined by least-squares fits. ForB0

input ) 4ωe/3x3γ, values of
B0/B0

input - 1 are denoted byb, values of 3B(2/4B0
input - 1 are denoted

by O, and values of 6B(2/7B0
input - 1 are denoted by0. The average of

the broadenings of all lines, calculated from eq 19, are denoted by×.
The outer lines broaden slightly faster than the perturbation theory
prediction, and the central line broadens slightly more slowly. (b)
Experimental values ofB+2/A (O), B-2/A (O), B+1/A (0), andB-1/A
(0) plotted versus the experimental value ofB0/A. The solid lines are
from eq 1 containing no adjustable parameters; the dashed lines are
from from perturbation theory, eq 3 of Table 1.
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ancies are much larger than those encountered with 16DSE,7

as is evident in Figure 8 of ref 7. Perhaps the source of this
systematic error is a minor underlying impurity spectrum. The
dashed lines 2 and 4 are the perturbation theory predictions,
Table 1, and the solid lines 1 and 3 are derived by fitting spectra
generated from eq 1. Nikonov and Nikonova25 noted discrep-
ancies in the line shifts predicted by eq 1 and experiment and
advanced a theory to explain the discrepancies. The dotted lines
5 and 6, lying well above the measurements, are the predictions
due to Nikonov and Nikonova,25 showing that they are not in
accord with experiment.

Figure 7a shows the differences between the theoretical values
of IMI/FMI derived from eq 1 and the perturbation theoretical
result of IMI/FMI ) 1 plotted against the input value of
4ωe/3x3Aγ. The intensity of the central line, solid circles,
grows at the expense of theMI ) (2 lines, open circles, and of
the MI ) (1 lines, open squares. Figure 7b shows the
experimental results for theMI ) (2 and theMI ) (1 lines
normalized to the central line. Each data point is the average of
the high- and low-field lines. The perturbation theory predicts
the horizontal dashed lines at2/3 and 1/3, and eq 1 is used to
predict the solid lines. Equation 45 in the Appendix allows a
corrected value ofωe to be derived from the ratios. In the present
case of five hyperfine lines, we observe, experimentally and
theoretically, that intensity moves from the outer lines to the
central line asωe increases.

We now turn to the first motivation of the present work in
Figure 8, which showsdout

abs/dout, circles, anddin
abs/din, squares,

for data taken at 105( 1 °C. The predictions of perturbation
theory are given by line 1 (eq 14) and line 2 (eq 15) for the
outer and inner spacings, respectively. The small solid dots

falling nearly coincident with lines 1 and 2 are derived from eq
1, showing that the full theory and the perturbation prediction
are very nearly the same. This same result was noted before
for the case of 16DSE7 for three lines over even a larger range
of ωe. Clearly, here as before,7 eq 1 and experiment are not in
accord. Including inhomogeneous broadening in eq 1 or in eqs
14 and 15 by adding unresolved lines has no effect on the
theoretical lines in Figure 8. Lines 3 and 4 are plots of the
perturbation theory predictions each with an additional term
linear in ωe (manifested as〈B0〉/A) as follows:

whereκin ) -0.059( 0.012 andκout ) -0.053( 0.002 are

Figure 6. Experimental values of the average ofVdisp/Vpp for MI )
(2 (O) andMI ) (1 (0). Solid lines 1 and 3 are the from eq 1 forMI

) (2 andMI ) (1, respectively, containing no adjustable parameters.
Dashed lines 2 and 4 are from the perturbation theory, eq 10 of Table
1 for MI ) (2 andMI ) (1, respectively. Dotted lines 5 and 6 are
from eq 5 of ref 25 forMI ) (2 andMI ) (1, respectively.

Figure 7. (a) Deviations of the values of the doubly integrated
intensities of the lines from the perturbation theory predictionIMI/FMI

) 1: line 1 (b), MI ) 0; line 2 (0), MI ) (1; line 3 (O), MI ) (2;
dashed line, perturbation theory. The central line gains intensity at the
expense of the other lines. (b) Experimental values of the average of
IMI/I0 for MI ) (2 (O) andMI ) (1 (0). The solid lines are from eq
1 containing no adjustable parameters; the dashed lines are from
perturbation theory.

dout
abs/dout ) 1 - 1

9
53
128(〈B0〉

A )2

+ κout(〈B0〉
A ) (20)

din
abs/din ) 1 - 2

9
10
16(〈B0〉

A )2

+ κin(〈B0〉
A ) (21)
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constants adjusted to achieve a least-squares minimum between
eqs 20 and 21 and the experimental data. If we plot (not shown)
all of the data in this study, varying both the concentration and
the temperature together, curves very similar to those in Figure
8 result and the fits to eqs 20 and 21 are of similar quality,
yielding κin ) -0.060( 0.002 andκout ) -0.057( 0.002.
Fitting all of the data to eqs 20 and 21 implies thatκin andκout

are assumed to be temperature independent.

Discussion

Despite the disappointing scatter in Figures 5-7, it is evident
that experiment is in accord with eq 1, except for the line shifts.
We emphasize that there are no adjustable parameters in the
plots of eq 1. This confirms the correct dependence of eq 1 on
FMI.

Apart from part 2 of this series7 and the work by Nikonov
and Nikonova,25 we are aware of two previously reported
discrepancies between experimentally observed line shifts and
the predictions of perturbation theory. Halpern et al.14 and later
Robinson et al.15 reported discrepancies in the sense that the
line shifts varied linearly rather than quadratically withωe. Thus,
qualitatively there were problems; however, these latter two
groups did not compare experiment with theory quantitatively.
In all three cases, the authors were dealing withobserVed line
shifts rather than absorption shifts, although in Halpern et al.’s
work,14 there was very little difference between the two shifts
due to small dispersion amplitudes.ObserVedline shifts do have
a term linear inωe due to the overlap of the dispersion
component, eq 13, whereas there is no such term in the

expressions for the absorption shifts, eq 12. It is for this reason
that we focus on the absorption shifts to eliminate the uncertainty
involved in the additional shifts in the observed shifts due to
dispersion overlap.

Note that we interpret the discrepancy between eq 1 and
experiment as an additional linear term added to the predicted
quadratic term rather than the previous suggestion15 that the
shifts are linear rather than quadratic.

Deviation of the Spin-Exchange-Induced Shifts from
Theory. Equations 20 and 21 were introduced empirically in
order to quantify the discrepancy between the perturbation
theory predictions, eqs 14 and 15, and experiment; however,
the existence of such a term had already been suggested in eq
2.142 in the monograph1 and referred to by Robinson et al.15

However, estimates of the parameters in eq 2.1421 showed that
the additional term is likely to be negligible in liquids of low
viscosity. In the monograph,1 eqs 1, 12, and 13 were derived
under the assumption that spin exchange occurs instantaneously
upon collision. This means that spin precession during the
collision encounter is neglected. The problem was revisited by
Salikhov17 in 1985 who showed that, under conditions of strong
exchange, not only spin precession during the collision encounter
but also re-encounters lead to additional terms linear inωe. Thus,
eqs 19 and 20 have the form of the theoretical predictions of
Salikhov17 if either spin precession during encounters, re-
encounters, or both are included in the theory. The final result
for strong exchange is given in eq 40 of ref 17 and involves
bothτC, the duration of one collision, andτD, the time between
re-encounters. In the Appendix, we work out Salikhov’s result17

for NN-NP as well as for two- and three-line nitroxide spectra
for reference. The results are summarized in Table 6. It was
shown by Salikhov17 that τC is most likely less thanτD.
Furthermore, the equations in the Appendix show thatτC would
have to belarger thanτD to achieve the same shift. Thus, we
neglect the terms involvingτC, which yields, after evaluation
of the numerical factors,

and

Inserting the experimental values ofκout andκin into eqs 22
and 23 yields values ofτD. Carrying out the analysis illustrated
in Figure 8 for 105°C at other temperatures yields values of
τD which are plotted in Figure 9 versusη/T whereη is the shear
viscosity of water andT the absolute temperature. Separate
estimates ofτD are available fromκout andκin, and these are in
agreement with one another albeit with large error bars.
Unfortunately, the analysis becomes of lower and lower
precision as the temperature is decreased because the range of
the abscissa of Figure 8 is decreased. Further, the accuracy of

Figure 8. Experimental values ofdout
abs/dout (O) anddin

abs/din (0) at 105
°C: line 1, perturbation theory values ofdout

abs/dout from eq 14; line 2,
din

abs/din from eq 15, with or without unresolved proton hyperfine
structure. The solid dots that are nearly coincident with lines 1 and 2
are derived from eq 1, with or without unresolved proton hyperfine
structure. Lines 3 and 4 are linear least-squares fits to eqs 20 and 21,
respectively.

TABLE 6: Normalized Spacing ) 1 - Γ(〈B〉/A)2 -
K(〈B〉/A) a

spacing Γ κ κb

15N Aabs/A 1.5 0.866(γAτC + xγAτD/2) 0.19
14N 2Aabs/2A 0.281 0.650[γAτC + 0.805xγAτD/2] 0.098
two 14N dout

abs/dout 0.0460 0.650[γAτC + 0.650xγAτD/2] 0.056

din
abs/din 0.139 0.650[γAτC + 0.729xγAτD/2] 0.063

a 〈B〉 is the average broadening of the lines for14N and is〈B0〉 defined
in eq 19 for two equivalent14N nuclei. b Evaluated with nominal values
of A ) 22 G for15N, 16 G for14N, 8 G for NN-NP, neglectingτC and
usingτD ) 2.5 × 10-10 s.

κout ) -0.422xγAτD/2 (22)

κin ) -0.474xγAτD/2 (23)
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the results suffers because small uncertainties in the values of
din anddout become critical in the evaluation ofκout andκin. To
assess this latter uncertainty, we fit the data in two ways: fixing
din and dout to be the values in Table 3 or letting them be
adjustable parameters in the fit to eqs 20 and 21. The two values
of τD obtained fromκout andκin were averaged, and the standard
deviations are presented as the error bars in Figure 9.

We next turn to a crude theoretical estimate of the values of
τD based on hydrodynamic theory. From the continuous diffu-
sion model (see eq 32 of ref 17), the time between re-encounters
between the same two particles in a single collision event is
given by

where b is the interpartner separation of the two colliding
particles, and D is the mutual diffusion coefficient. Estimating
D ) 2D′ with the Stokes-Einstein equation, whereD′ pertains
to one particle, and settingb equal to twice the particle radius
yield

wherek is the Boltzmann constant. We estimateb ) 9.6 Å for
NN-NP by setting the density of the molecule, assumed to be
a sphere, equal to 1 g/cm3. The solid line in Figure 9 is a plot
of eq 25. Although Figure 9 appears to be consistent with a
simple hydrodynamic model at higher temperatures, the large
uncertainties prevent a definite conclusion from being drawn.
In fact, the data in Figure 9 are also consistent with a constant
value ofτD, which explains the fact that all of the data, when
both temperature and concentration are varied, can be fit to
constant values ofκin ) -0.060( 0.001 andκout ) -0.057(
0.001 which yieldτD ) 2.3 × 10-10 and 2.6 × 10-10 s,
respectively. The fact that Salikhov’s theory17 leads to values
of τD similar to those derived from the inner and outer spacings
lends support to the theory.

Figure 10 shows data for 16DSE in ethanol at 25°C taken
from part 2 of this series.7 Line 1 is computed from perturbation

theory,7

whereAabsis one-half the separation between the low- and high-
field lines of the three-line spectra and〈B〉 is the average
broadening from the three lines. The predicted curve from
Nikonov and Nikonova’s theory25 is shown by the dashed line
3, demonstrating that it is an improvement over eq 1 at low
values ofωe but does not yield a satisfactory fit at high values.
Further, the Nikonov and Nikonova25 prediction for the disper-
sion height for 16DSE is 2.5 times too large.

Including re-encounters of the nitroxide moiety of 16DSE
during a collision adds a term linear inωe, manifested as〈B〉/A

Equation 27 yields the solid line 3 in Figure 10, whereκ16DSE

) -0.081 ( 0.001. The predicted linear term, Table 6,
neglectingτC is given by

Setting this equal to the experimental value and employingA
) 14.8 G7 yield τD ) 1.9× 10-10 s, similar to the two estimates
above for NN-NP. At 70°C, the same treatment of the data
yieldsτD ) 1.0× 10-10 s. These two points are shown in Figure
9 as circles.

We resist speculating on the difference in the re-encounter
times of NN-NP in water and 16DSE in ethanol until more data
are available. We note that all of the re-encounter times in Figure
9 are consistent with Salikhov’s estimate17 of τD ∼ 10-10 s.
The fact that the data in Figure 9 depart from simple hydro-
dynamic theory is, in fact, encouraging. IfτD were to simply
follow the Stokes-Einstein equation, only the shear viscosity
would be available, hiding potentially interesting physics that
could distinguish the role of one liquid from another in the
collision process. Perhaps, at last, spin exchange can lead to
interesting insight into the collision process between two
nitroxide spin probes.

Figure 9. Mean time between re-encounters of NN-NP in water derived
from eq 22 from the outer spacing (0) and from eq 23 from the inner
spacing (9). The solid line is the Stokes-Einstein prediction, eq 25,
for particles of radius 4.8 Å. Data for 16DSE in ethanol (O) are also
shown.7

τD ) b2/D (24)

τD ) 3πb3η
kT

(25)

Figure 10. Experimental values ofAabs/A for 16DSE in ethanol at 25
°C taken from ref 7 (O): solid line 1, either from perturbation theory,
eq 26, or from eq 1, with or without unresolved proton hyperfine
structure; solid line 2, eq 27 including re-encounters; dashed line 3, eq
7 of Nikonov and Nikonova.25

Aabs/A ) 1 - 9
32(〈B〉

A )2

(26)

Aabs/A ) 1 - 9
32(〈B〉

A )2

+ κ(14N)(〈B〉
A ) (27)

κ(14N) ) -0.523xγAτD/2 (28)
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The following comments on the uncertainties in Figure 9 may
be helpful in planning future work. First, better spectra are
needed, which probably means that a purer nitrone is needed.
Second, to obtain accurate values ofκin andκout, measurements
need to be extended to rather large values of〈B0〉/A, which
requires that the nitrone be more soluble than NN-NP is in water.
The use of a nitrone has the inherent advantage of the
redundancy in the inner and outer spacings not to mention five
sources of the broadening and four sources of the ratios
Vdisp/Vpp; however, it has the disadvantage that values ofA are
reduced by a factor of about 2 whereas the inhomogeneous
broadening is about the same.

Table 6 shows that a perdeuterated15N spin probe holds, a
priori, the greatest promise to measureτD because the expected
values ofκ are approximately a factor of 3 larger than those
studied here. For these probes, however, one loses the redun-
dancy mentioned in the previous paragraph. Probably the best
approach would be to carry out parallel experiments with14N
and15N isotopes of the same spin probe.

Finally we turn to the mystery of extra linear shifts in eqs
20, 21, and 27 for 16DSE and NN-NP as well as those spin
probes employed by Robinson et al.,15 Halpern et al.,14 and
Nikonov and Nikonova25 and the absence of such shifts2 in
Fremy’s salt. It was not appreciated at first,1 but was clarified
later by Salikhov,17 that the additional linear shifts are very
small, perhaps even negative (lines move away from the spectral
center) in the case of intermediate strength exchange interac-
tions, JτC ≈ 1. Eastman and co-workers5 proposed that an
aqueous solution of Fremy’s salt was just such a case; thus, an
additional linear term would not be expected.17 Therefore, the
puzzle of why Fremy’s salt did not exhibit2,10 an extra linear
shift could be explained by Salikhov’s theory17 as being due to
the difference in the strength of the spin-exchange interaction.
We should point out that Eastman and co-workers’5 interpreta-
tion of JτC ≈ 1 has been questioned (see p 198 of ref 1). Careful
measurement of line shifts might shed light on the strength of
the exchange interaction in other cases in which there is doubt.
For example, consider the data in Figure 4.3 of the monograph.1

Salikhov17 suggested that separation of the contribution of
line shifts due to spin motion during an encounter could be
informative concerning spin dynamics. This work shows that
this separation might be possible, although it may not be easy.
This would be very interesting indeed because spin exchange
in liquids, as studied by line broadening, has turned out to be
less informative about liquid dynamics than had been hoped
because the shear viscosity of the liquid dominates the value
of ωe, making it difficult to learn anything about the collision
act itself. It should be emphasized that access to the rather small
line shifts must be via least-squares fitting to reasonable line
shapes; it is very unlikely that measurements of simple
parameters derived from a few points on the experimental
spectra will be fruitful.

Conclusions

Equation 1 may be represented by the sum of five absorption
and five spin-exchange-induced dispersion lines at all values
of ωe. Equation 1 is in agreement with all aspects of the spectral
changes induced by spin exchange except for the line shifts.
These changes include the following: (1) the central line
broadens slightly more slowly and the other four lines slightly
more rapidly than predicted by perturbation theory (Figure 5);
(2) intensity is transferred to the central line from the other four
lines (Figure 7); (3) the spin-exchange-induced dispersion lines
grow more rapidly than the perturbation result (Figure 7). There

are no adjustable parameters in the comparison of experiment
with eq 1. An alternative perturbation treatment due to Nikonov
and Nikonova25 is found not to be in agreement with experiment.
Including in the theory the effects of re-encounters of the same
spins during collision introduces line shifts that are in addition
to those of eq 1 and vary linearly withωe. These additional
line shifts depend on one additional parameter, the mean time
between re-encounters,τD. The total line shifts are in agreement
with experiment using reasonable values ofτD.
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Appendix

Additional Shifts due to Spin Precession during Encoun-
ters and Re-encounters.The additional field shifts of thekth
line due to spin precession during encounters and re-encounters,
under conditions of strong exchange, are given by eq 40 of
Salikhov17

whereKDC in the orginal publication17 has been set equal to
2ωe and a steric factor has been set equal to unity. The sum in
eq 29 extends over all lines except thekth, andγ converts the
expression to magnetic field units. The prime inδ′k means that
this shift is in addition to the normal shifts, that is, those in eq
1 (or, with negligible error, eq 12). The quantityxnk is given by

Additional Shifts of Outer Lines. See Figure 11 for a
schematic of the spectrum. Takek to be MI ) +2 to get the
additional shift of the low-field line. The sum has four terms
asn assumes the values ofMI ) +1, 0,-1, and-2. For these
values ofMI, (ωk - ωn) assumes values of-γA, -2γA, -3γA,
and -4γA, respectively, and-Fnxnk assumes the values of
2/9[γAτC + xγAτD/2], 3/9[γ2AτC + xγ2AτD/2], 2/9[γ3AτC +
xγ3AτD/2], and 1/9[γ4AτC + xγ4AτD/2], respectively. The
sum of these yield

whereCout ) (2 + 3x2 + 2x3 + 2)/9 ) 1.30. Thus, the low-
field line shifts by

The high-field line shifts an amount equal and opposite, so
the outer line spacing divided by its value atωe ) 0, dout ) 4A
(ignoring small second-order shifts), has the additional term

Figure 11. Stick diagram of the hyperfine pattern of NN-NP showing
the hyperfine spacing in the absence of spin exchange,A, and the
statistical factorsFMI.

δ′k ) - 1
2

ωe

γ ∑Fnxnk (29)

xnk ) (ωk - ωn)τC + sign(ωk - ωn)x|(ωk - ωn)|τD/2 (30)

∑Fnxnk ) -[2γAτC + Cout xγAτD/2] (31)

δ′+2 ) 1
2

ωe

γ
[2γAτC + CoutxγAτD/2] (32)
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Substituting〈B0〉 ) 4ωe/3x3γ and adding to eq 14 yield eq 20
with

Additional Shifts of Inner Lines. Now takek to beMI )
+1 to get the shift of that line. The sum in eq 29 has four terms
asn assumes the values ofMI ) +2, 0,-1, and-2. For these
values ofMI, (ωk - ωn) assumes the values of+γA, -γA,
-2γA, and-3γA, respectively, and-Fnxnk assumes the values
of -1/9[γAτC + xγAτD/2], 3/9[γAτC + xγAτD/2], 2/9[γ2AτC +
xγ2AτD/2], and 1/9[γ3AτC + xγ3AτD/2], respectively. The
sum of these yield

whereCin ) (2 + 2x2 + x3)/9 ) 0.729. Thus, theMI ) +1
line shifts by

The MI ) -1 line shifts by the same amount in the opposite
direction, so, following the same procedure as above, we find

Additional Shifts of Three Lines, 14N. Here, there are two
terms in the sum of eq 29. Carrying out the same calculations
shows that the line spacing divided by its value atωe ) 0, A,
has the additional term

Substituting ωe ) 3x3γ 〈B〉/4, where 〈B〉 is the average
broadening of the three lines, and adding this shift to the
“normal” shift, eq 26, yield eq 27 with

Additional Shifts of Two Lines, 15N. Here, for theMI )
+1/2 line, there is one term in the sum of eq 29. Carrying out
the same calculations shows that the line spacing divided by
its value atωe ) 0, A, has the additional term

The “normal” shift of15N lines computed from eq 12 yields a
spacing of

SubstitutingB ) ωex/x3γ into eq 40 and adding to eq 41 yield

with

Table 6 gives a summary of the total shifts due to spin
exchange for the three cases considered here with the numerical
factors computed for easy comparison. It is clear that the normal
shifts (quadratic inωe, with coefficient Γ) vary considerably
depending on the spin probe employed. The inner versus the
outer shift in NN-NP also varies considerably. The extra shifts,
κ, vary more modestly from probe to probe. The final column
of Table 6 gives the value ofκ employing typical hyperfine
coupling constants, neglectingτC, and using a typical value of
τD ) 2.5 × 10-10 s.

Deviations of Perturbation Theory from Equation 1.
Broadening.Figure 5a shows that the broadening according to
eq 1 is slightly different from that predicted by perturbation
theory, eq 3. The solid lines are approximated with negligible
error by the following:

with λ0 ) -0.147, λ(1 ) +0.015, andλ(2 ) +0.042 from
which a corrected value ofωe may be obtained.

Intensities.Figure 7a shows that the intensities vary substan-
tially from the perturbation theory predictionIMI ) FMI. The
solid lines are given as follows:

with ê0 ) +0.911,ê(1 ) -0.180, andê(2 ) -1.01. It is clear
that, in principle,ωe can be estimated from the variation of the
intensities. Applying eq 45 to the data in column 8 of Table 5
yields ωe/γ ) 3.70 ( 0.38. Because of the large uncertainty,
intensity variations serve more as a consistency check than a
viable method to measureωe.

Dispersion Amplitudes.The solid lines in Figure 6 are given
as follows:

Line Spacing.Amazingly, the values of the line spacings
predicted by eq 1 and by perturbation theory are not significantly
different as shown by Figure 8. For example, the differences in
dout

abs/dout anddin
abs/din from eq 1 versus eqs 14 and 15 are only 2

× 10-4 and 0.8× 10-4, respectively, at 4ωe/3x3Aγ ) 0.375,
a negligible difference compared with the additional linear term
needed in eqs 20 and 21.

Supporting Information Available: Further details on the
synthesis of NN-NP as well as details on the second-order shifts
in the absence of spin exchange are available. This material is
available free of charge via the Internet at http://pubs.acs.org.
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