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A model for deducing dipole moments of solute molecules from the electric polarization of dilute solutions
is revised. The treatment represents a modified Onsager model extended toward arbitrary-shaped molecules.
A simplified approach for data evaluation is suggested and compared with the analytical solution for an
ellipsoidal cavity and with a numerical solution for two spherical ions.

Introduction

Onsager’s semicontinuum model1 is widely used for treating
solvent effects in various situations2 ranging from the calculation
of reorganization and solvation energies to evaluation of
dielectric properties of solutions. In this model, a molecule is
represented as a point dipole that is placed in the center of a
spherical cavity of radiusa (representing the molecule) and
surrounded by a dielectric continuum with the dielectric constant
of a solvent,ε. Solvent polarization by the dipole leads to a
reaction field,R

that in turn polarizes the molecule. This results in an enhanced
molecular dipole moment,µ′

whereµg is the molecule’s gas-phase dipole moment andR is
its polarizability. The electric polarization of a solution can be
calculated using the orientational distribution functions,W(θ),
for the solute and solvent dipole moments. The functionsW(θ)
(for each type of dipoles) are related to a Boltzman distribution
of the dipole energy,U(θ), in the external field

where the angleθ is given with respect to the field. In the
Onsager model, the dipole energy is equal to the interaction
energy of the molecules’ point dipole moment with the field
inside the cavity,Ec

For a spherical cavity,Ec is equal to

In the Onsager model, interaction of the dipole with other
surrounding dipoles is neglected apart from the effect of
changing the cavity field. The average dipole moment will have
a nonzero projection along the external field, which, in the limit
of small external fields, can be calculated as a sum of an
orientational part

and a polarizability part,r′Ec. The total electric polarization,
P, which is a measure of the average dipole moment per unit
volume of the solution, is equal to

where no and ns are solvent and solute number densities,
respectively. Imposing a constraint that the total volume is a
sum of the volumes of the components leads to the derivation4-6

of an expression for the electric polarization of a dilute solution
in the external electric field,E0

whereP′o is the polarization of the neat solvent scaled for the
change in volume due to the dissolved solutes. The factoræs

depends not only on the solvent dielectric constant but also on
its refractive index,nD. The summation in eq 8 is extended over
all types of solutes.

Since the reaction field (eq 1) is much stronger than typical
external fields, the dipole momentµ′ in eq 2 can be interpreted
as the dipole moment of the solute in a particular solvent. With
such an interpretation, the measurement of the solution’s
dielectric constant provides a straightforward method for
obtaining an ‘unambiguous’ dipole moment value for the solute.
Moreover, when measuring the dipole moment change due to
photoexcitation (as is in the photoinduced transient displacement* To whom correspondence should be addressed. E-mail: snsm@nmsu.edu.
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current technique4-6), the change of the electric polarization
shows no dependence on the molecular radius,a. This makes
the technique attractive for analyses of photoinduced electron-
transfer processes as a ‘direct’ method for measuring the dipole
moment change.

Following Böttcher,2 we previously tried to extend this
analysis to a broader class of nonspherical molecules by treating
them as ellipsoids and scaling appropriately the local field factor
inside a nonspherical cavity.4-6 As discussed below, this
extension did not take into account the effect of solvent
polarization. Here we correct this shortcoming and suggest an
approximate method for treating generic molecular shapes.

Theory

Onsager’s model prescribes that the potential energyU(θ)
in eq 3 can be reduced to that of a point dipole interaction with
the external field modified by surface charges on the interface
between the cavity and the surrounding solvent. The resulting
description can be simplified to introducing a new cavity field,
Ec, on the solute’s point dipole inside the cavity, with the total
energy of that dipole in the external field given by the same eq
4. Kirkwood7 pointed out that the assumption of treating the
solvent as a continuum in the vicinity of the cavity surface is
oversimplifying and could fail when correlations similar to
hydrogen bonding exist between molecules. Nevertheless, in
many cases, especially when solutes are larger than solvent
molecules and no specific interactions are present, this correla-
tion can probably be neglected. One should note that in the case
of a spherical cavity, Onsager’s assumption of zero contribution
of the solute-solvent interaction to the distribution function in
eq 4 is consistent with a zero net polarization induced in the
solvent by the solute. Indeed, the integral of the field from a
point dipole,Eµ, over the region outside a spherical cavity is
exactly zero due to the spherical symmetry

The situation changes when the cavity is nonspherical. First of
all, the field inside the cavity is different. For example, in an
ellipsoidal cavity with its axis “a” oriented parallel to the
external field, the field inside equals

where the ‘depolarization factor’,Aa, is given by the integral2-4

Obviously, eqs 11 and 12 reduce to the spherical case, given
by eq 5, when the three semiaxes,a, b, andc, become equal
and whenAa ) 1/3.

Böttcher attempted to extend Onsager’s model to a non-
spherical case2 via substituting the cavity field in eq 7 by its
nonspherical analogue given in eq 11. We followed the same
approach in our treatment of the transient displacement current
data.4-6 There is an intrinsic inconsistency in such an approach.
Because of a nonspherical geometry, the integral in eq 10 is no
longer zero, i.e. one cannot presume that a dipole moment in
an ellipsoidal cavity has zero effect on the orientation of
surrounding solvent dipoles.

We will try to resolve this problem by enclosing the solute
molecule in a spherical cavity in which the remaining part of

the cavity is filled with a continuum dielectric matching
properties of the solvent. This approach is similar to the
Kirkwood model7 but is much simpler since any short-range-
specific interactions in the vicinity of the solute molecule are
neglected. This should be an acceptable simplification for large
solutes and can be cautiously applied to small molecules as well.
We will consider exact solutions to simple molecular cavity
shapes and then propose a simplified treatment for arbitrary
shaped molecules.

In our model, we describe a total dipole moment from a solute
molecule as a superposition of its own dipole moment,µ′cs, and
the induced dipole moment in the solvent,Ms

where µ′cs has the same meaning as in eq 2, i.e., the dipole
moment in a particular solution (not the gas-phase value). In
this new interpretation, eq 8 for the electric polarization of the
solution becomes

whereæs is given by eq 9 and the polarizability term is omitted.
Note that eq 9 was obtained with the assumption that both solute
and solvent molecules were spheres. For simplicity, we will
continue treating solvent molecules as spheres while nonspher-
icity of solutes will be incorporated through the solvent
contribution toMcs in eq 13.

To calculate the solvent contribution,Ms, the molecule is
enclosed in a spherical cavity of a larger size, as in Figure 1.
This divides the solvent into two regions: one external to the
cavity and one internal to the cavity yet outside the solute cavity
(the shaded regions in Figure 1). The radius of the spherical
cavity,R, should be large enough that, from the external solvent
perspective, the charge distribution is well represented as a point

∫
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Figure 1. Illustration of solvent-induced dipole moment for different
molecular cavity shapes. The molecular cavity is identified by the white
region, while the gray area outside it shows solvent enclosed into a
larger sized spherical cavity together with the molecule. In the case,
A, of a spherical molecular cavity, the solute dipole moment,µcs, shown
by the large plus and minus signs and thick arrow, polarizes solvent in
such a way that net dipole moment induced in the solvent,Ms, is zero.
Cases B and C represent the prolate and oblate cavity shapes,
respectively. Solute dipole of a prolate shape induces dipole moment
in the surrounding solvent,Ms (small pluses and minuses and thin
arrows), that partially cancels the solute dipole moment, while in the
oblate case the solvent induced complements the solute dipole. In a
concave molecule (case D) the dipole moment induced in the solvent,
Ms, might counteract the solute dipole to an even greater extent than
in the prolate case B.
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dipole. In this limit, the integral over the external volume,VR,
equals zero

as it was in eq 10. The solvent contribution,Ms, to the total
dipole moment,Mcs, can then be calculated through integration
of the electric polarization,PB(rb), outside the molecular cavity

where the integration takes place over the interior solvent region.
The electric polarization can be found by solving Poisson’s

equation for the electric field

with appropriate boundary conditions for potential at the
molecular surface,Se. These are

whereæi is the electric potential inside the molecular cavity,
æo is the potential exterior to the molecule, andnSe is a unit
vector normal to the surface. Knowing the electric field
distribution, one can calculate the electric polarization via

and use eq 16 to calculateMs. An effective solute cavity can
be constructed by ‘rolling’ a sphere with hydrogen’s van der
Waals radius over the molecular surface. The molecule is
represented by a superposition of overlapping spheres with
appropriate atomic van der Waals radii. This is a standard
procedure used in molecular modeling software packages for
calculation of such properties as molecular volume; it also
eliminates singularities in Poisson’s equation.

The procedure described here allows for calculation of the
electric polarization,P, of a dilute solution of molecules with
known shape and charge distribution. In reality, we usually solve
the inverse problem, i.e., extracting information about the charge
distribution in a molecule from the measurements ofP (or its
change as in the dipole technique) in solutions of that molecule.
In Onsager’s formulation, this inversion is unambiguous because
the charge distribution is represented by a point dipole placed
in the center of a spherical cavity. When attempting to determine
a distribution of charges within a molecule, however, there is
inevitably a greater degree of both complexity and ambiguity
in the data interpretation process. Indeed, the polarization,P,
only contains information about the first moment of the charge
distribution. Given this situation, an appropriate goal is to mimic
a charge distribution for the solute and then calculate consecu-
tively µ′cs, Ms, and Mcs, comparing the last quantity with the
experimentally determined value. While the unique solution to
this problem is not always possible, it should work well in cases
with 100% charge transfer between well recognizable moieties.

In the following, we consider the procedure in detail and
evaluate possible approximations. The procedure starts by
distributing charges inside a molecular cavity and surrounding
that cavity by a continuous dielectric representing the solvent.
On the basis of the charge distribution, Poisson’s equation can

be solved numerically. This is quite a demanding approach for
an arbitrarily-shaped molecule. The first simplification can be
achieved by reducing the charge distribution on the molecule
to a simpler representation by placing a few point charges at
appropriate locations. Calculations show that results of this
approximation are sensitive mostly to where the centers of
positive and negative charges are placed; the contribution of
finer details is insignificant. A second simplification is imposed
on how Poisson’s equation is solved. It is based on the fact
that the electric field from a point charge in a continuum
dielectric differs from the field calculated in a vacuum only by
a factor ofε. The electric field in a vacuum,Evac, from a set of
point chargesqi located at the pointsr i, is easily calculated
without integration

Approximating the electric field in a dielectric continuum by
Evac/ε leads to a relatively simple equation for calculating the
solvent contribution to the dipole moment,Ms, that can be
realized without numerical solution of Poisson’s equation

HereEvac(rb) is calculated according to eq 20 and the integration
excludes the molecule’s cavity volume,Vs. The integration in
eq 21 can be limited from above by a spherical cavity of a large
enough radius.

In the following part we will compare analytically and
numerically solvable cases with this approximation. If both sides
of eq 21 are multiplied by (1- 1/E)-1 the resulting relationship

not only reflects the accuracy of the described approximation
but also provides a simple mechanism for evaluating the
applicability of the concept. According to this equation, the exact
value ofMs multiplied by (1- 1/ε)-1, should be equal toMs in
a vacuum, independent ofε.

Examples. (1) Ellipsoidal CaVity. An ellipsoidal cavity
represents a first complication beyond the spherical cavity
model. This cavity can be characterized by three semiaxes:a,
b, and c. Poisson’s equation, in this case, can be solved
analytically, which is also useful here because it allows for
evaluation of the approximations in eq 22. Figure 2 represents
plots of equipotential surfaces obtained by numerical solution
of Poisson’s equation using the FEMLAB program.9 The
comparison illustrates that the exact solution looks very similar
to the ‘vacuum solution’ of eq 20 normalized by the dielectric
constant. Quantitative assessment of the accuracy of our
approximations is given in Figure 3, where the exact solution
for Ms is shown as a function of the dielectric constant for the
ellipsoid of Figure 2. The numerical solutions, given by points,
are in essentially exact agreement with the analytical solution

where the depolarization factor,Aa, is given by eq 12. From
the analytic solution in eq 23 it is apparent that the solvent
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contribution is negative for prolate molecules (Aa < 1/3) and
becomes positive for oblates (Aa > 1/3). As Figure 3 indicates,
theEvac/ε approximation works well for a prolate ellipsoid. The
maximum error can be characterized by the spread between the
maximum and minimum values in Figure 3. Taking advantage
of the analytic solution, we can evaluate that error as

which is negative for oblate spheroids (or any ellipsoid with
dipole moment oriented along short axis) and can be quite large.
For prolate spheroids the error is positive (overestimate in the
resultingµcs) and quite smallsthe largest error forAa < 1/3 is
less than 3.4% and is realized forAa ) 0.1835. A negative and
plausibly large error for molecules with dipole moment oriented
along a short axis, such as oblate spheroids, has to be noted
too. However, molecules of this type are rare and using an
ellipsoidal approximation for them would be a better choice,
as compared with the use of approximation 21.

Combination of eqs 13, 14, and 23 simplifies to a more
compact form

with a new factor,æc

This compact form offers a more straightforward interpreta-
tionsthe dipole momentêaµ′cs is the ‘external dipole moment’
introduced by Onsager and now extended for a nonspherical
cavity. Alternatively, one may relate the two dipole moments,
µ′cs andMcs, as a measure of solute nonsphericity,ηa, given by

(2) Two Spheres.This model is a natural approximation for
intermolecular charge separation. The two-sphere case is
relatively easy to solve numerically using the FEMLAB
program.9 In Figure 4, isopotential surfaces normalized by the
dielectric constant,ε, for two point charges of opposite sign
placed inside two spheres of equal radii in contact are shown.
The dielectric constant outside the spheres isε )1 and 10 for
cases A and B, respectively, but inside the spheres is unity in
both cases. Visually it is difficult to recognize a difference
between the two graphs. Qualitative comparison is given in
Figure 5 for spheres in contact, while Figure 6 illustrates
it for two identical spheres separated by one radius. As before

Figure 2. Two-dimensional projection of the 3-D isopotential surfaces
normalized by the dielectric constant,ε, for two point charges of
opposite sign placed at the foci of a spheroid with the aspect ratioa/b
) 3.5. The dielectric constant outside the ellipse isε ) 1 and 10 for
cases A and B, respectively, but inside the spheres is unity in both
cases. Note that if scaled byε, the two solutions are very similar.
Regions with potentials 0.05, 0.1, and 0.15 (in units charge/distance)
are shown in three different colors.

Figure 3. Integrated solvent-induced dipole moment dependence on
the dielectric constantε for the case of Figure 2. Points are calculated
numerically using Femlab program (see text for details). Solid line
represents the analytic solution of eq 23 withAa ) 0.08965.

Figure 4. Two-dimensional projection of the 3-D isopotential surfaces
normalized by the dielectric constant,ε, for two point charges of
opposite sign placed inside the two spheres of equal radii that are
positioned at close contact. The dielectric constant outside the spheres
is ε ) 1 and 10 for cases A and B, respectively, but inside the spheres
is unity in both cases. Note that if scaled byε, the two solutions are
very similar. Regions with potentials 0.05, 0.1, and 0.15 (in units charge/
distance) are shown in three different colors.

Figure 5. Integrated solvent-induced dipole moment dependence on
the dielectric constantε for the case of Figure 4. Points are calculated
numerically using Femlab program (see text for details).
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for a spheroid, a weak dependence onε in Figures 5 and 6
supports the validity of the estimate in eq 21. The spread ofMs

is smaller when the ions are further separated, as expected from
the model, but even for close contact the spread is less than
2.6%.

Thus, we see that in cases where analytic and numeric
solutions allow comparison of exact values for solvent contribu-
tion, Ms, to the dipole moment with that approximated using
eq 21, the agreement is acceptable given the enormous sim-
plification of numeric solution. Prolate molecules are treated
exceptionally well in this model, while oblate molecules and
molecules where dipole moments oriented along short axes have
to be approached more cautiously. It helps to realize that the
latter cases are very rare or typically of low interest. It is also
worth noting that extremely prolate molecules (Aa ∼ 0) or any
other case where the distance between separated charges defines
a sphere with the volume much larger than molecule’s volume,
eqs 25 and 26 reduce to a much simpler form for the coefficient
æc

This simplification might be very useful for large molecules
where ellipsoidal approximation is difficult to apply.

Experimental Examples

This paper is dedicated primarily to establishing an improved
theoretical treatment for analysis of dielectric polarization data
and the transient displacement current data in particular. Below
we give a few examples as a demonstration of consequence for
the revised treatment. The measurements were performed using
our standard setup for the transient displacement current
measurement, the details of which can be found elsewhere.6

Almost Spherical Molecules.Bianthryl is an interesting
symmetric molecule, which gains a dipole moment upon
photoexcitation by ‘breaking’ its ground-stateD2d symmetry.
Nevertheless, the excited-stateD2 distortion is not very dramatic.
The excited state of this molecule possesses a dipole moment
even in nonpolar solvents such as toluene. Even though the
spherical model was used to evaluate its dipole moment,12

neither a spherical nor an ellipsoidal approximation describes
well the molecule’s shape. As a result, the approximate method
of eqs 20 and 21 is appropriate. For this purpose, a program

was written in FORTRAN 90 which calculates the solvent
contribution to the dipole moment,Ms, from eq 21. Charges in
the dipolar state of bianthryl were distributed according to charge
densities in the cation and anion radicals of the two anthracene
moieties, respectively. This distribution corresponds to the dipole
momentµ′cs ) 20.6 D. Using van der Waals radii from Bondi8

we calculatedMs ) -3.86(1-1/ε) D. This leads to a 10-20%
reduction of the dipole moment, depending on the solvent
polarity.

Almost Ellipsoidal Molecules.DMANS, 4-dimethylamino-
4′-nitrostilbene, is a molecule that has been frequently used for
calibration and comparison using different methods.4,6,11Previ-
ously we reported that in the spherical approximation, DMANS’
dipole moment in toluene equalsMcs ) 31.0( 1.5 D.6 Due to
the elongated and rigid shape of this molecule, the ellipsoidal
approximation seems appropriate for DMANS. Using the
ground-state geometry obtained by semiempirical AM1 opti-
mization, the following semiaxes were calculated:10 a ) 11.8
Å, b ) 4.1 Å,c ) 4.1 Å with the dipole moment oriented along
the a axis. The depolarization factor along this axis equalsAa

) 0.092, and the dipole calculated from eq 27 isµ′cs ) 36.4(
1.7 D.

Two ‘new’ molecules, PANT (p-amino-nitroterphenyl) and
PANB (p-amino-nitrobiphenyl) sketched in Figure 7 along with
their dipole signals, also have elongated and rigid shapes,
justifying the use of the ellipsoidal approximation for them. The
dipole signals shown were measured in the displacement charge
mode and have a fast and a slow component: the former being

Figure 6. Integrated solvent-induced dipole moment dependence on
the dielectric constantε for the case when two point charges of opposite
sign are placed inside the two spheres of equal radii that are positioned
at a distance three times their radii. Points are calculated numerically
using Femlab program (see text for details). Note that the dependence
is weaker than that in Figure 5 for charges in close proximity.

Figure 7. Transient displacement current signals for two molecules
in toluene solution observed after absorbing 38µJ at 396 nm in a cell
with a 0.56 mm gap and using a 1 MΩ load resistor. The experimental
traces are shown by solid lines and the fitting curves by points; dashed
lines depict laser pulse. (A) PANB. Simulation was done with the
following parameters:Mcs ) 18.5 D, the lifetime of a singlet charge-
transfer excited stateτCRS ) 0.7 ns, and the intersystem crossing to a
long-lived triplet charge transfer stateτisc ) 0.6 ns. (B) PANT.
Simulation parameters:Mcs ) 29.3 D,τCRS ) 1.7 ns,τisc ) 8.3 ns.
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3(2ε2 + nD
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from the short-lived singlet charge-transfer state and the latter
from the triplet charge-transfer state populated via intersystem
crossing from the singlet state. Dipole moments and the rates
of recombination and intersystem crossing were obtained from
independently measured fluorescence lifetimes of the singlet
states and by presuming that the dipole moments are the same
for the singlet and triplet states. The scaling factors for the dipole
moments were calculated from eq 27 treating molecules as
ellipsoids with semiaxes given in Table 1.

Very Large Molecules.Two triad molecules for which we
have measured dipole moments in their photoexcited states can
be described as very large molecules. They are methoxyaniline-
aminonaphthalimide-dimethylphenyl-naphthalenediimide-oc-
tyl (MA-ANI-NI), 5 synthesized by the M. Wasielewski group,
now at Northwesten Univeristy, and carotene-porhyrin-
fullerene triad,13,14synthesized at Arizona State University. The
former was reported5 to have 16.3 Å charge separation if the
spherical approximation was used. Reevaluation of its dipole
moment can be done by using the ellipsoidal approximation10

since the molecule is fairly straight and rigid. Using values of
V ) 679 Å3 and 2a ) 32.1 Å, we findb ) 3.2 Å andAa )
0.068. This results in a value ofµ′cs ) 93 ( 7 D or 19.4 Å of
charge separation, which is in remarkable agreement with the
expected charge-separation distance based on the center to center
distances for the donor (MA) and acceptor (NI) moieties.
Another triad, from ASU, has the largest dipole moment ever
experimentally measured.14 The distance between the centers
of the donor and acceptor (carotenoid and fullerene), based on
molecular modeling, is 34 Å, which corresponds to a dipole
moment of 163 D. This would be in poor agreement with the
experimental value in the spherical approximationMcs ) 110
( 5 D. The ellipsoidal model is inappropriate in this case due
to a bow-like contour of the molecule, but because of its
extended shape, the reduced form for the scaling factor given
in eq 28 can be applied. The resulting value of the dipole
momentµ′cs ) 154( 6 D is in good agreement with the value
obtained by direct numerical approximation for solvent contri-
bution using eqs 20 and 21,µ′cs )156 ( 6 D. The latter was
calculated using van der Waals radii from ref 8, yieldingMs )
-46 ( 1 D, and the total dipole moment of the charge transfer
state: µ′cs ) Mcs - Ms ) 110 + 46 ) 156 ( 6 D. In either
approach, the dipole moment demonstrates a remarkable agree-
ment with the value estimated from the expected positions of
charges in the charge transfer state of this triad.

Conclusions
The problem of dielectric polarization for dilute polar

solutions was revisited, and a new treatment based on calculating
the solvent contribution to the total dipole moment for solute
molecules has been suggested. An analytic solution for el-
lipsoidal molecular cavities and a simplified approximation for
arbitrary-shaped molecules, based on mimicking the electric field
as a solution in a vacuum normalized by the dielectric constant
(eq 20), have been derived and analyzed. Experimental examples
with photoinduced electron transfer show remarkable agreement
between the measured dipole moments and those expected from
the distance between donor/acceptor moieties.
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TABLE 1: Parameters for Scaling Using Ellipsoidal
Approximation and the Dipole Moments

molecule ellipsoidal parameters10 Mcs, D Aa
a ηa

b
µcs )

ηaMcs,D

DMANS a ) 8.8 Å,b ) 3.4 Å,c ) 2.0 Å 31.0 0.092 1.174 36.4
PANB a ) 6.9 Å,b ) 3.4 Å,c ) 2.0 Å 17.8 0.124 1.151 20.5
PANT a ) 9.1 Å,b ) 3.4 Å,c ) 2.0 Å 29.3 0.088 1.176 34.5

a Values are calculated for toluene solvent,ε ) 2.38. b From eq 27.
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