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A previously established method [J. Chem. Inf. Comput. Sci.2001, 41, 764], called quantum topological
molecular similarity, is applied to obtain an excellent and statistically validated quantitative structure-activity
relationship (QSAR) of base-promoted hydrolysis rate constants for a set of 40 esters. This work is relevant
for environmental exposure and risk analysis and proposes a reliable and cheaper alternative to measuring
infrared group frequencies for that purpose. Our method draws descriptors from modern ab initio wave
functions, which have become affordable by the current abundance of inexpensive computing power. We
acquire a 3D geometry-optimized picture of each molecule and characterize its bonds further with four quantities
defined by the theory of quantum chemical topology. Without molecular superposition we then construct a
variety of models, which all point toward the molecular fragment (OdC)sCsO being most significant to
explain the range of hydrolysis rate constants. This highlighted zone is called the active center, and when the
model is confined to it, a QSAR ofr2 ) 0.930 andq2 ) 0.863 is obtained for all 40 esters.

1. Introduction

Properties and activities of molecules in complex environ-
ments, ranging from pure solvents to active sites of enzymes,
can often be related to their features in the gas phase in a highly
quantitative way. The deeper reason behind this phenomenon
is still obscure, but such quantitative structure-activity and
structure-property relationships (QSARs/QSPRs) continue to
be discovered by the thousands.1-3 These gas-phase properties
may be determined experimentally, such as infrared (IR) group
frequencies, or they may be computed, such as HOMO-LUMO
energy gaps. Regardless of the origin of the gas-phase descrip-
tors, the outcome of their inevitable chemometric treatment
strongly depends on the quality of the descriptors.

A plethora of theoretical descriptors of variable quantum
chemical credibility have been proposed4,5 and used in a wide
variety of contexts. Sometimes these descriptors are defined ad
hoc within an approximate theory, such as superdelocalizabili-
ties6 in the context of frontier orbital theory. Sometimes they
are straightforward properties, such as molecular dipole mo-
ments but then often generated by crude semiempirical models
(CNDO, MNDO, INDO) or even extended Hu¨ckel theory. With
the current availability of very economical computer power one
is in an ideal position to produce more realistic and less
compromising quantum chemical descriptors. Modern ab initio
methods, including the popular density functional theory
(DFT),7,8 can now be used to describe the electronic structure
of gas-phase molecules of sufficiently large size to be practically
important. In this work this approach is combined with a modern
theory described as “quantum chemical topology” (QCT)9,10that
enables the careful extraction of chemical insight from modern
wave functions. In that capacity QCT is widely used11,12in areas
from mineralogy to biochemistry to high-resolution crystal-
lography.

There is an urgent need13 for reliable and low-cost methods
for predicting rate constants of organic compounds. Not only

is this a prerequisite for environmental exposure and risk
analysis,14 but such rate constants (e.g., of hydrolysis) are also
important to industries that try to improve speciality chemicals.15

Esters are among the most common acid derivatives appearing
in nature (e.g., fruity aromas) and medicinal (e.g., methyl
salicylate) and industrial (e.g., adhesives, films, cleaners,
polishes, and plastics) products.16 Some time ago Collette
proposed17 a method for predicting reactivity parameters of
organic chemicals from spectroscopic data to help assess the
environmental fate of pollutants. In particular, he used midin-
frared gas-phase spectra to predict the alkaline hydrolysis rate
constants (kOH) of 41 carboxylic esters, the subject of this paper.
The environmental fate is known to be highly dependent on
the polar and steric nature of the compound, which should hence
be captured by Hammettσ constants and Taft steric parameters.
The advantage of spectroscopically based property-reactivity
correlations is that they can be determined in a rapid, inexpen-
sive, and precise manner. In this work we go one step further
by proving that there is not even a need to measure relevant IR
frequencies. Instead we show that ab initio optimized geometries
of the esters and their corresponding wave functions are
sufficient to predict accurately their base-promoted hydrolysis.

The computational technique used for this purpose is called
quantum topological molecular similarity (QTMS), which is
explained in the next section. QTMS has delivered promising
to superb QSARs before, such as theσp, σm, σI, and σp

0

parameters of mono- and polysubstituted benzoic acids, phe-
nylacetic acids, and bicyclic carboxylic acids,18 the toxicity and
biodegradability ofpara-substituted phenols,13C NMR chemical
shifts inpara- andmeta-substituted benzonitriles,19 antibacterial
activity of nitrofuran derivatives,20 the binding affinity of the
classical21,22 steroid dataset for corticosteroid binding,20 and
many others. The current paper can be regarded as part 6 in
our series on QTMS.

QTMS has also inspired closely related techniques such as
StruQT,23,24while QCT has been used to predict hydrogen bond
donor capacity25 and hydrogen bond basicity.26
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2. QTMS and Computational Details

Since a detailed account of the QTMS method can be found
elsewhere,27 we only review it here. In essence we first optimize
a molecule’s geometry by a spectrum of quantum chemical
methods. If we chose to describe the molecule beyond its
optimized bond lengths, we evaluate given functions (such as
the electron density) in special points in the molecule. We then
obtain a number of localized descriptors, which we confront
with the experimental data (herekOH rate constants) via a
chemometric technique. QTMS does not involve any molecular
superposition despite utilizing 3D information, a feature in
common with comparative molecular moment analysis (CoM-
MA).28 It shares with the benchmark29 technique CoMFA21 the
ability to point out the “active site” of a ligand, namely, the
place where local changes in ligand property (electrostatic
potential, bond length, steric field) influence the compound’s
activity most. To some extent it shares with modern molecular
similarity techniques30 such as QMSM31 the central role of the
electron density.

On the basis of a practical guide32 to the ab initio computer
program we used33 to optimize the molecular geometries, we
selected five “levels of theory” labeled from A to E. This choice
is established by an opportune property-accuracy/computing-
cost ratio. In this paper we sustained the labeling for sake of
consistency with previous18,19,27,34-36 and future publications.
Level A corresponds to the semiempirical model AM1,37 which
yields reasonable bond lengths for nonesoteric (hence, already
parametrized) molecules but fails to provide an electron density
that can be analyzed by QCT. All higher levels (B, C, and E)
used in this work generate the “single-point” wave function at
the optimized geometry. Level B is HF/ 3-21G(d),32 while level
C, still at the Hartree-Fock level, invokes a more complete
basis set, or HF/6-31G(d). Omitting level D, we also obtained
results at the most expensive level, E, B3LYP/6-311+G(2d,p),
where electron correlation is modeled by a popular hybrid
density functional.38 In the current state of affairs ab initio work
still needs to explore several levels of theory because of the
inherent fluctuations in the data it provides, which is why we
report in the next section the QSAR statistics for all four levels.

Now we discuss how a bond can be characterized beyond its
equilibrium (or optimized) valueRe. According to QCT, there
is a so-called bond critical point (BCP) for each bond. This is
a special point in space, roughly between the two bonded nuclei,
where the gradient of the electron density vanishes. It is the
point of lowest density on the topological curve connecting the
two bonded nuclei. Intuitively, the BCP can be seen as a valley
between two mountain peaks where the peaks are the nuclei
and the mountains are the (topological) atoms. As such the BCP
acts as a boundary between two atoms and hence bears a
signature of the bond that links them. Therefore, it makes sense
to evaluate the electron density, denoted byF, at the BCP and
use it as an extra descriptor next toRe. The Laplacian of the
electron density, or∇2F, measures to what extent the electron
density is locally depleted (when∇2F > 0) or locally concen-
trated (when∇2F < 0). When evaluated at a BCP,∇2F
discriminates covalent bonds from ionic and van der Waals
bonds, simply by its sign. If∇2F is negative, then one calls the
bond covalent. Again the Laplacian can be included as an extra
QCT descriptor. Another descriptor to join the list is the so-
called ellipticity “ε”, a rigorous definition of which is given
elsewhere.10 When zero, the ellipticity indicates that the bond
is cylindrically symmetric. On the other hand, an increasingly
nonzero value indicates ovality of the electron density contour
lines, which is an expression ofπ-character in appropriate

circumstances. A final QCT descriptor we considered is a type
of local kinetic energy density, denoted byK. Of course, when
computed for a Kohn-Sham-based density functional (e.g.,
B3LYP), K refers only to a noninteracting reference system. In
summary, at level A, each bond is described by justRe, and at
the three other levels, B, C, and E, it is described by a vector
containing four components (F, ∇2F, ε, K). We used a local
version of the program MORPHY9839 to obtain the latter QCT
descriptors.

Models were constructed by using the partial least-squares
(PLS)40 method, as implemented in the program SIMCA-P.41

This advanced multiple linear regression technique is designed
to find a (linear) relationship between the observedY variables
(kOH) and the 4N X variables or QCT descriptors, whereN is
the number of bonds included in the QTMS analysis. Note that
for level A we only haveN descriptors, namely, the optimized
bond lengths themselves. The PLS technique has been designed
to handle manyX variables, potentially noisy and collinear.
Although we do not involve as manyX variables as a typical
CoMFA analysis would, we still benefit from the latter two
features of PLS. In general, the four descriptorsF, ∇2F, ε, and
K depend onRe in a complex and nonlinear fashion.34 To some
extent, the small deviations the used approximate ab initio
methods introduce in the values of the five descriptors can be
interpreted as noise on the values achieved from exact wave
functions.

The quality of the PLS regression is assessed by a number
of criteria. First, classic measures42 are the correlation coefficient
r2 and the cross-validated correlation coefficientq2. The latter
measures the internal consistency of the model by omitting43

one-seventh of the data (Yvariables) and predicting the missing
data by a model based on the remainingY variables. Second,
we consider the number of latent variables (LVs) the PLS
analysis constructs. SIMCA-P considers an LV to be significant
if q2 corresponding to a newly constructed LV is larger than
0.097. If q2 drops under 0.097, the LV is discarded and the
PLS analysis is completed. Although the debate has not been
settled, we believe that a model with fewer LVs is superior to
one with more. Finally, the model has to validate on the basis
of a so-called randomization test. This test guards against
“correlation by chance” by monitoring the deterioration of the
model (measured byr2 andq2) as theY variables are randomly
permuted. SIMCA-P prescribes default cutoff values beyond
which the model ceases to be valid.

We used the so-called variable importance in the projection
(VIP)43 to detect the active center of the compound. Descriptors
(or X variables) with a VIP value smaller than 1 can be rejected
as unimportant, whereas those with the highest VIP values
constitute the active center. Although there are no rigorous
statistical criteria to pinpoint the active center, we show in the
next section that this course of action is very useful and makes
sense in a practical context.

3. Results and Discussion

Table 1 shows the measured logkOH values for the 40 esters
we selected from Collette’s original17 41 esters. Ethyl iodoac-
etate was not included since basis sets for iodine were not readily
available. The rate constant we construct the QSAR for refers
to the reaction

where the polar nature of R strongly affects the receptivity of
nucleophilic attack by OH-.

RC(dO)OR′ + OH- f RC(dO)O- + R′OH
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The applications of QTMS have hitherto taken advantage of
the straightforward one-to-one mapping of bonds that a con-
generic set of molecules typically offers. In other words, we
have not yet studied sets of widely differing molecules but
confined ourselves to molecules that have a common skeleton.
For example, all esters have the (OdC)sOsC fragment in
common, such that we can sample the QCT descriptors for that
common skeleton from one molecule and map it onto the
corresponding information in another molecule. In the PLS data
matrix each row contains theY variable (kOH) and one or four
QCT descriptors for each bond, for levels A and B and C and
E, respectively. The order in which the descriptors appear is
fixed and depends on the common skeleton one adopts for a
given model.

Figure 1 shows the numbering scheme for the common
skeleton of three possible subsets of esters. The largest subset
of 16 esters is one where the alcohol fragment R′ coincides
with the ethyl group (Figure 1a). The second largest subset
contains 14 acetates where the carboxylic R group is methyl
(Figure 1b). The third largest and final subset we considered
encompasses 11 benzoates (R) phenyl, Figure 1c). There are
many more possible subsets, such as the formates and the
methyl-containing esters, but the small number of esters they
contain would reduce the statistical quality of the ensuing model.
The purpose of studying these subsets is to demonstrate that,

overall, the active center settles for the three bonds of and around
the central (O2dC1)sO3sC4 fragment, where the C1sO3 bond
breaks upon hydrolysis. Then, in a second stage, we focus on
the QCT descriptors in those three bonds with an eye on
extracting chemically relevant information of the active center.

The values of relevant QCT descriptors (“raw data”) of all
esters are given as Supporting Information (Table S1). Table 2
shows the summary of seven PLS analyses of ethyl-containing
esters. These models contain information from nine bonds and
hence entail 9 (level A) or 4× 9 ) 36 (levels B, C, and E)
descriptors. Excellent statistics are obtained for all ab initio
levels of theory (B, C, and E), demonstrating that the extra CPU
time compared to that of the semiempirical level A was worth
investing. All models passed the randomization validation test
and involved a modest two latent variables. The bond length
model at level C turned out to be the best withr2 ) 0.969 and
q2 ) 0.948. The three bond lengths that emerged with the
highest VIP values were C1dO2, C4sC5, and O3sC4, in that
order. One expects to identify the central fragment (O2dC1)s
O3sC4 as the active center because it contains the bond being
broken during the hydrolysis and the two neighboring bonds,
one at either side of C1sO3. Moreover, according to the familiar
base-promoted formal reaction mechanism, the CdO bond is
most affected by the nucleophilic attack of OH- to the carbonyl
carbon. We recover two of the three expected bonds but are
inclined to consider C4sC5 as a “contamination”. Attempts to
eliminate such contaminations have failed so far. One attempt
involved the introduction of an extra conformer for each ester
and doubling the number of descriptors. Another attempt was
to construct a principal component for each bond, consisting

TABLE 1: Alkaline Hydrolysis Rate Constants (kOH, M-1 s-1, 25 °C) of Ethyl-Containing (Left) and Other (Right) Esters

no. compound logkOH
a no. compound logkOH

1 ethyln-butyrate -1.26 17 methyl formate 1.56
2 ethyl isobutyrate -1.49 18 benzyl acetate -0.71
3 ethyl acetate -0.96 19 n-butyl acetate -1.06
4 ethyl benzoate -1.50 20 n-propyl acetate -1.06
5 ethyl bromoacetate 1.70 21 methyl acetate -0.74
6 ethyl formate 1.41 22 isopropyl formate 1.04
7 ethyl chloroacetate 1.56 23 methyl benzoate -1.10
8 ethyl acrylate -1.11 24 methyl methacrylate -1.25
9 ethyl 2-bromopropionate 1.00 25 benzyl benzoate -2.10

10 ethylp-fluorobenzoate -1.41 26 isopropyl acetate -1.52
11 ethyl dibromoacetate 2.31 27 n-butyl formate 1.34
12 ethylp-nitrobenzoate -0.13 28 n-propyl formate 1.36
13 ethylp-aminobenzoate -2.59 29 sec-butyl acetate -1.76
14 ethyl trichloroacetate 3.41 30 2-chloroethyl acetate -0.41
15 ethyl pivalate -2.77 31 2-methoxyethyl acetate -0.69
16 ethyl aminoacetate -0.19 32 methylp-fluorobenzoate -1.15

33 methylp-hydroxybenzoate -1.52
34 methylp-aminobenzoate -2.35
35 isopropyl hydroxybenzoate -2.23
36 methylm-aminobenzoate -1.47
37 isopropylp-aminobenzoate -3.04
38 methyl 2,4-Db 1.06
39 2-butoxy 2,4-Db 1.48
40 n-octyl 2,4-Db 0.57

a Original references containing these data can be found in ref 17.b 2,4-D is a well-known pesticide, also known as (2,4-dichlorophenoxy)acetate.

Figure 1. Numbering schemes for the esters: (a) the ethyl subset (R′
) CH2CH3), (b) the acetates (R) CH3), (c) the benzoates (R) phenyl).

TABLE 2: Survey of the PLS Analyses Obtained for the
Ethyl-Containing Esters

level descriptor LV r2 q2

A bond lengths 2 0.828 0.765
B bond lengths 2 0.935 0.887

BCP properties 2 0.930 0.897
C bond lengths 2 0.969 0.948

BCP properties 2 0.952 0.917
E bond lengths 2 0.935 0.888

BCP properties 2 0.956 0.927
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of its BCP properties at levels B, C, and E. The subsequent
PLS analysis shifted the contamination to another bond. A final
comment regarding Table 2 concerns an alternative model that
includes only the three bonds in (O2dC1)sO3sC4 instead of
all nine bonds. With only three bonds model E with BCP
properties comes out as the best. This is rewarding because it
emphasizes that the more realistic quantum chemical method,
which includes electron correlation, improves the model.
Furthermore, the added value of the QCT descriptors over and
above the mere bond lengths becomes apparent. It is worth
pointing out that model E with the BCP properties of all nine
bonds is the next best model after that at level C with just bond
lengths.

In view of the strong performance of model C it was selected
to investigate the subset of 14 acetates. This model, which
included 6 bonds (and hence 24 descriptors), yielded anr2 value
of 0.940 andq2 of 0.865 with two LVs. In the VIP plot the
four descriptors of highest VIP value stand out significantly
above the others and most importantly involveonly the CdO
bond and the C1sO3 bond. If only bond lengths are allowed as
descriptors, the C1sO3 bond, which is broken upon hydrolysis,
features again the top VIP value, but the statistics deteriorate
somewhat: r2 ) 0.910 andq2 ) 0.781 (with two LVs).
Conclusions remain unaltered if bond and BCP properties are
combined in a model of 30 descriptors.

The same analysis was carried out on the subset of 12
benzoate esters, which contain 14 common bonds. The 56-
descriptor model (again at level C) yields poorer but still
reasonable statistics:r2 ) 0.842 andq2 ) 0.680 with only one
LV. The top four VIPs again refer to C1dO2 and C1sO3. When
only bond lengths are included, the statistics change tor2 )
0.798 andq2 ) 0.772 (with one LV), favoring C1dO2 as the
top VIP. A model combining bond length and BCP properties
again highlights the C1dO2 and C1sO3 bonds as most impor-
tant.

Our analyses of the three largest ester subsets have all pointed
to the (C1dO2)sO3sC4 fragment as the most important to
hydrolysis rate constants. We do not claim that all modelseach
includeall three, but we find thatoVerall these bonds invariably
score higher than any other bonds in the VIP plots. This
observation justifies zooming in on the (C1dO2)sO3sC4

fragment and including only its QCT descriptors in the newly
constructed models.

Table 3 summarizes the statistics of the models associated
with the 12 descriptors of the active center (C1dO2)sO3sC4.
The model at level C with BCP properties is the best withr2 )
0.930,q2 ) 0.863, and three LVs. We observed that the 2,4-D
esters greatly benefit from basis set quality because when left
out level B performs on par with level C. Figure 2 shows the
VIP plot for this model. Clearly, the Laplacian of the electron
density at the BCP of C1dO2 is the most significant descriptor
to explain the total range of rate constants. This is a meaningful
finding in the sense that the Laplacian is a crude measure for
bond ionicity, or in a wider context bond polarity. In the classical

base-promoted formal reaction mechanism the OH- nucleophile
attacks the carbonyl group, which is represented by Cδ+dOδ-.
One would expect the polarity of the C1dO2 bond to affect the
propensity for nucleophilic attack, leading to an anionic
intermediate with a tetracoordinated carbon. By inspection we
confirm the trend that the most positive Laplacian values are
found for compounds with the highest rate constant. So, for
example, the compound that hydrolyzes fastest, ethyl trichlo-
roacetate, exhibits a Laplacian at the C1dO2 BCP with a value
in the upper third. Reassuringly, previous work17 used gas-phase
IR frequencies of exactly the C1dO2 (and C1sO3) bonds to set
up an SAR for hydrolysis constants. In that study it was
recognized that the polar nature of R strongly affects the
receptivity of the nucleophilic attack of OH- and influences
the double-bond character of C1dO2.

Ultimately, Figure 3 shows how well the rate constants are
predicted by our final model (i.e., level C, BCP properties of
only (C1dO2)sO3sC4). We observe that all 40 esters are
predicted within 1 log unit. This result improves the previously
obtained17 infrared QSAR, which was confronted with five
outliers. That study yielded anr2 value of 0.887 and failed to
report aq2 or any randomization validation.

TABLE 3: Survey of the PLS Analyses Obtained for the
Complete Set of 40 Esters

level descriptor LV r2 q2

A bond lengths 1 0.715 0.665
B bond lengths 1 0.737 0.695

BCP properties 1 0.734 0.682
C bond lengths 2 0.916 0.899

BCP properties 3 0.930 0.863
E bond lengths 2 0.889 0.869

BCP properties 2 0.899 0.867

Figure 2. VIP plot for the complete set of 37 esters at level C with
BCP properties (QCT descriptors), using the ester group (C1dO2)s
O3sC4 as the common skeleton. The labels “rho”, “lap”, “ell”, and
“K” refer to the electron density, Laplacian, ellipticity, and kinetic
energy density at the bond critical point, respectively.

Figure 3. Observed versus predicted rate constant (logkOH) for the
complete set of 37 esters at level C with BCP properties (QCT
descriptors), using the ester group (C1dO2)sO3sC4 as the common
skeleton.
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In this work we used QTMS slightly differently than in refs
27 and 36 on two counts. First, for the first time we interpret
an individual QCT descriptor (i.e., the Laplacian) rather than a
principal component, constructed from QCT descriptors, de-
scribing a bond. Second, the flexibility of QTMS is further
underlined by its “hierarchical” use of common skeletons to
highlight an active center.

4. Conclusions

Thanks to the recent abundance of inexpensive computing
power, we are able to construct QSARs based on ab initio wave
functions. We show that optimized bond lengths and QCT
descriptors perform well as novel descriptors in predicting the
rate hydrolysis of a set of 40 esters. Models for three subsets,
each having a different common skeleton, point toward the three
central ester bonds as the active center. A new model that just
includes those three bonds links the Laplacian of the electron
density at the CdO bond critical point to the formal reaction
mechanism of base-promoted ester hydrolysis. This successful
application of the QTMS method demonstrates that there is no
need to measure IR frequencies, which itself has been introduced
as a faster method to avoid the measurement of rate constants.
With an eye on current unpublished results, we are confident
that the applicability of QTMS extends to the successful
prediction of hydrolysis rates of other compounds and reaction
parameters such as pKa.
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