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Nöthnitzer Straâe 38, D-01187 Dresden, Germany

ReceiVed: February 14, 2003; In Final Form: April 28, 2003

High-order harmonic generation spectra of atoms and molecules in intense laser fields show a wide plateau
of odd harmonics, with photon energies high up to the soft X-ray regime. The mechanism leading to the
absence of other frequencies, so-called hyper-Raman lines or sidebands, is still unclear. By the use of non-
Hermitian quantum mechanics for the many-electron atomic/molecular Hamiltonian system, we derive closed-
form expressions for the high-order harmonic generation spectra. The analysis of these expressions provides
the (already known) conditions for which the hyper-Raman lines are missing and also the conditions for
which they are observable. The new information obtained here is proof that in order to observe sidebands it
is not sufficient to populate two different Floquet states. When the duration of the laser pulse is sufficiently
long, the two resonance Floquet states should have similar widths (inverse lifetimes). For short pulses, the
condition for observable sidebands is more complicated, and it does not depend directly on the lifetime of the
resonance states. By numerical integration of the conventional time-dependent Schro¨dinger equation, we provide
illustrative examples that confirm our conclusions. Our results can be used to design new experiments that
will show the fingerprints of the hyper-Raman lines.

1. Introduction

Since L’Huillier et al. have shown in a series of experiments
that atoms of a low-pressure gas exposed to an intense laser
pulse diffuse electromagnetic radiation consisting of odd
harmonics,1 many more experiments have been carried out.2

Recently, it has been shown that high-order harmonic generation
(HG) spectra can be controlled through the shape and the phase
of the laser pulse.3 In this experiment, the dominant high
harmonic was in the soft X-ray regime. Therefore, atoms driven
by linearly polarized light can perhaps be used as a source of
coherent X-ray radiation. Theoretical calculations show that
carbon nanotubes driven by circularly polarized light may also
be used as a source of coherent X-rays.4

The HG process can be understood such that the system first
absorbsN laser photons of frequencyω and then emits the
absorbed energy in the form of one high-energy photon with
frequencyΩ ) Nω. An unanswered question, however, is the
absence of hyper-Raman lines (so-called sidebands) in the HG
spectra. These lines are expected to be emitted in a process
where the emission of the high-energy photon leads to a final
state that is different from the initial state. The frequency of
the emitted photon would then beΩ ) Nω - ∆E/p where∆E
is the energy difference between final and initial states. Several
explanations have been proposed for the failure to detect the
hyper-Raman lines (ref 5 and references therein). Di Piazza and
Fiordilino have shown for a one-electron, 1D model Hamiltonian
that the hyper-Raman lines have not been observed because they
are emitted during a short time interval and therefore are small
when compared with harmonic lines that are instead emitted
during the entire laser pulse.5 There is no general explanation,

however, for the difficulty in observing the hyper-Raman lines
for real many-electron systems where the electron correlations
are taken into consideration.

Part of the mechanism that may lead to the generation of
sidebands is known. A decade ago, Bavli and Metiu proved
that shifted even harmonics might be generated if two Floquet
quasi-energy (QE) states with different parity are populated by
the laser pulse.6 The fact that no sidebands have been observed
in the experimental HG spectra, even when short pulses were
used and therefore most probably different QE states were
populated, suggests the following question: Is the Bavli-Metiu
condition for sidebands in the HG spectra a necessary condition
but not a sufficient one? If the answer to this question is yes,
then the next question is naturally, What are the sufficient
conditions under which the sidebands in the HG spectra may
be observed? If the answer to the first question is no (i.e., if the
Bavli-Metui condition is a sufficient one) one should (a) show
that the absence of sidebands in the HG spectra is indeed due
to the lack of a proper phase-matching condition in the
experiment (i.e., due to destructive interference of the radiation
emitted from different atoms in the “cloud” of atoms that are
embedded in the focus of the laser beam) and (b) determine
the maximum number of atoms that can be exposed to the laser
pulse without destroying the sidebands.

Our explanation is based on a general derivation of the
probability of emission of high-energy photons for arbitrary
many-electron atomic/molecular systems. Note that in this paper
the harmonic generation of molecules is discussed within the
framework of the Born-Oppenheimer approximation. The
nonadiabatic effects on the HG spectra are not discussed here,
although the equations we derive for the HG spectra also hold
for the most general molecular case.

Because the use of non-Hermitian quantum mechanics is a
crucial point in our derivation, we first wish to explain the
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motivation and the need to use non-Hermitian quantum mechan-
ics. In conventional (i.e., Hermitian) quantum mechanics, a
resonance is associated with a wave packet.7 In non-Hermitian
quantum mechanics, however, each one of the resonances is
associated with a single square-integrable QE eigenstate of the
complex-scaled Floquet operator.8,9 The resonance eigenstates
can be counted by their nodes and are eigenstates of the
symmetry operators that commute with the complex-scaled
Floquet operator. On the basis of dynamical symmetry analysis,
it has been proven that when the photoinduced dynamics is
controlled by a single resonance QE state

(1) The atomic HG spectra consist of odd harmonics only
when a linearly or elliptically polarized cw laser is used.10,11

No high-order harmonics are obtained when a circularly
polarized cw laser is applied.

(2) The HG spectra of fixed-in-space molecules consist only
of odd harmonics if the molecules are inversion symmetric.
Oriented asymmetric molecules also emit even-order harmon-
ics.12,13 In the case of the HD molecule, for example, this
happens as a consequence of dynamics beyond the Born-
Oppenheimer approximation, yet in the plateau region of the
spectra, the even-order harmonics in HD are smaller than the
odd harmonics by more than an order of magnitude.13

(3) The molecular HG spectra have different selection rules
when a circularly polarized laser beam is used.11 For example,
it was shown that when carbon nanotubes are exposed to
circularly polarized light the energy of the first high harmonic
can be in the X-ray regime.4

Here, by the use of non-Hermitian quantum mechanics, we
derive novel closed-form expressions for the HG spectra when
the system is initially prepared in a linear combination of several
QE resonance states. The analysis of the expressions obtained
within non-Hermitian quantum mechanics shows that the Bavli-
Metiu conditions for the generation of even-order and shifted
even/odd-order harmonics (i.e., sidebands) have to be extended
by another crucial condition: the two interfering resonance
Floquet QE states should have similar lifetimes unless ultrashort
pulses are used. Using conventional (i.e., Hermitian) quantum
mechanics, it is difficult to compare in a precise way the height
of the peaks in the HG spectra. Non-Hermitian quantum
mechanics enables us to associate the height of the peaks with
the lifetimes of the resonance Floquet QE states that control
the photoinduced dynamics.

In this paper, we will show how the approach via non-
Hermitian quantum mechanics leads to the following conclu-
sions:

(a) There are different series of hyper-Raman lines. Each one
of the hyper-Raman series is an even or odd harmonic spectrum
that is shifted by the difference between the energies of two
resonance metastable QE states that are populated during the
time when the laser is turned on. The shifted even-order
harmonics are obtained when the two QE resonance states have
different parity (i.e., they are nondegenerate eigenstates of the
dynamical symmetry operator). These results are in complete
agreement with those obtained by the use of the conventional
quantum mechanics.6

(b) The dominant hyper-Raman spectrum results from the
interference between long-lived QE resonance states that are
populated during the time when the laser pulse is switched on.
The hyper-Raman lines show up when two QE states with
similar lifetimes are populated. If the lifetimes of the populated
QE states are very different, then the hyper-Raman lines are
small compared to the odd harmonics generated by the longest-
lived QE state unless ultrashort pulses are used.

Non-Hermitian quantum mechanics enables us to find the
conditions under which sidebands appear in the spectra. Of
course, Hermitian and non-Hermitian quantum mechanics are
physically equivalent and should lead to the same results. Our
results should therefore be confirmed by carrying out simulations
within conventional (Hermitian) quantum mechanics. To that
end, we have also studied illustrative numerical examples within
the framework of Hermitian quantum mechanics. The numerical
results are obtained by integrating the conventional time-
dependent Schro¨dinger equation. They fully confirm our conclu-
sions about the conditions under which hyper-Raman lines are
generated.

Because in the experiments the dominant QE state is usually
the longest-lived resonance state, which is associated with the
field-free ground state, it is very hard to observe hyper-Raman
lines in the measured spectra. Using the same optimal control
technique used by Bartels and co-workers in their experiments3

or by using the stimulated Raman adiabatic passage (STIRAP)
scheme,14 one can design a laser pulse such that two QE
resonance states are populated. These can have very different
energies, but if they have similar widths, hyper-Raman lines
should be observed.

2. Floquet Theory of Harmonic Generation

In this section, we give a brief introduction to the application
of Floquet theory15 to harmonic generation (see also ref 6 for a
previous discussion). Let us consider the case of a laser pulse
with a turn-on time of less than 20 optical cycles and a
subsequent constant profile of more than 20-50 cycles. An
optical cycle is equal toT ) 2π/ω whereω is the laser frequency.
If the photoinduced dynamics is controlled by a single Floquet
QE state, then we can use the single-Floquet-state approxima-
tion16,17 where we do not take into consideration the possible
appearance of hyper-Raman lines in the high-order harmonic
generation spectra. In this paper, we consider the case where
during the time when the laser pulse is switched on several QE
states are populated. As the laser-pulse profile becomes stable,
the system is described by a wave packet given by

wheret ) 0 is a reference time when the laser-pulse envelope
reaches its maximum valueF0. We assume that no relevant high
harmonics are produced during the turn-on time. This approxi-
mation becomes exact for the highest harmonics because it
follows from the derivation of the HG cutoff law18 that the
highest frequencies are generated only at the peak intensity.

For the sake of simplicity and without loss of generality, we
use here box quantization. The continuum spectrum is discrete
and becomes denser as the box size is increased. As we will
discuss later, the use of box quantization plays an important
role in our derivation of time-independent expressions for the
probability of observing high-order harmonics.

The time-periodic QE states|Φk(t)〉 ) |Φk(t + nT)〉 are
eigenstates of the Floquet operatorĤ F, which has a continu-
ous energy spectrum (quasi-continuous because of the use of
box quantization),

where

|Ψ0(t ) 0)〉 ) ∑
k

Ck|Φk(t ) 0)〉 (1)

Ĥ F|Φk(t)〉 ) Ek|Φk(t)〉 (2)
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Here, Ĥ 0 is the many-electron 3D Hamiltonian of the field-
free atom/molecule. The dipole operatoreF0ẑj acts on thejth
electron of the atom/molecule. The quasi-energyEk is defined
modulo pω (i.e., Ek + Npω with an integerN is also an
eigenvalue of the Floquet operator). The electric field points
along thez direction, and the laser propagates along a line in
thexyplane. The interaction with the laser is treated in the dipole
approximation. The power spectrum emitted by the atom/
molecule is obtained by taking the Fourier transform of the
electron accelerationa(t)19

where the time-dependent many-electron state|Ψ0(t)〉 is given
by

The Fourier components of|Φk(t)〉 are time-independent many-
electron wave functions (i.e.,|Φk(t)〉 ) ∑n)-∞

+∞ exp(iωnt)|φn,k〉).
Because the field-free potential is real,{|φn,k〉} can be taken as
real functions of the electronic coordinates, even when the
spectrum is degenerate. By substituting eq 5 into eq 4, one finds
that the emitted power spectrum is given by

The time integration in eq 6 starts fromt ) 0 on the basis of
the assumption that no relevant harmonics are emitted before
the laser profile becomes stable. The equation can be simpli-
fied by using the dynamical symmetry properties of the Floquet
operator. The dynamical symmetry of the Floquet operator
{r j f -r j; t f t + T/2} holds for atoms and for inversion-
symmetric molecules. For example, it does not hold for oriented
heteronuclear diatomics. Because of the dynamical symmetry
of the Floquet operator, whenever it applies, the Fourier
components of the QE Floquet state obey the ruleφn,k(r ) )
((-1)nφn,k(-r ).11 There are two possibilities:

(a) When the quantum numbersn are odd then the Fourier
componentsφn, k(r ) are odd functions, whereas for even values
of n the Fourier components are even functions. The QE states
associated with this possibility are members of QE group 1.

(b) When the quantum numbersn are even, then the Fourier
components are odd functions, whereas for odd values ofn the
Fourier components are even functions. The QE states associated
with the second possibility are members of QE group 2.

Whenk ) k′, then regardless of the group to which the QE
resonances belong,〈φn′,k|∑j ẑj|φn,k〉 * 0 only if n - n′ is an odd
number. This is proof that atoms (and homonuclear diatomic
molecules) in monochromatic laser fields and within the

framework of the dipole approximation emit only odd-order
harmonics when only one QE state is populated. Whenk′ * k,
we should distinguish between two options. One option is that
the QE states|Φk〉, |Φk′〉 belong to the same symmetry group.
In such a case,〈φn′,k′| ∑j ẑj|φn,k〉 * 0 only if n - n′ is odd.
However, the corresponding lines in the HG spectra are shifted
with respect to the lines obtained when only one QE state
controls the dynamics. The second option is that|Φk〉 and|Φk′〉
belong to different symmetry groups. Then, the dipole transition
integrals do not vanish for even values ofn - n′. In this case,
the hyper-Raman lines would be even-order harmonics shifted
by the difference between the energy positions of the two
considered QE resonance states. Here we have shown that if
indeed the poles in eq 6 control the emission spectra then the
termsk ) k′ in eq 6 provide the probability of generating odd
high-order harmonics atΩ ) ω(2m + 1) wherem ) 0, 1,..,
whereas the termsk * k′ provide the probability of obtaining
the hyper-Raman lines in the emission spectra.

3. Harmonic Generation Spectra in Non-Hermitian
Quantum Mechanics

Previous work on HG within the framework of non-Hermitian
quantum mechanics16,17did not take into account the interference
between different Floquet states. In this section, we give a brief
description of the non-Hermitian approach, and in particular,
we discuss a modification of the inner product, which is
necessary to obtain the correct physical results for the case of
several Floquet states.

Using conventional quantum mechanics requires an integra-
tion over continuum states, and the convergence of the box-
quantization series expansion ofσ(Ω) must be studied carefully.
In non-Hermitian quantum mechanics, the electron coordinates
{xj, yj, zj} are replaced by{exp(iθ)xj, exp(iθ)yj, exp(iθ)zj}. The
quasi-energies become complex, and we obtain resonance QE
states|Φkres〉 with quasi-energies

such thatEkres is defined modulopω andΓkres is the resonance
width (i.e., the decay rate of photoionization when the dynamics
is controlled by a single resonance state).

Then, the integration over energy (or the summation over
the discretized continuum energy terms) is replaced by the
summation over the resonance poles of the Floquet operator,
which upon complex scaling are associated with square-
integrable nodal functions. The interference effects with the
rotated continuum states can be neglected because the photo-
induced dynamics is dominated by the narrow QE resonances.
This possibility of distinguishing between resonances and
“white” continuum states does not exist in the conventional
(Hermitian) quantum mechanics. Unlike the situation in non-
Hermitian quantum mechanics, in conventional quantum
mechanics, a resonance state is not associated with a single
eigenstate of the Hamiltonian, so we cannot distinguish between
the contribution of resonance states and the contribution of other
states in the continuum to the photoemission cross section.
Another important point is that when non-Hermitian quantum
mechanics is applied we do not use the scalar product but instead
should use the c product as discussed in refs 9 and 20. Let us
briefly discuss the situation where we should not take the
complex conjugate of the “bra” state when we calculate
expectation values in non-Hermitian quantum mechanics and
so-called left eigenstates are equal to the right eigenstates of
the Floquet matrix. The QE states|Φk(t)〉 are time-periodic

Ĥ F ) -ip
∂

∂t
+ Ĥ 0 + eF0∑

j

ẑj cos(ωt) (3)

a(t) )
d2

dt2
〈Ψ0(t)|∑

j

ẑj|Ψ0(t)〉 (4)

|Ψ0(t)〉 ) ∑
k

Ck exp(-iEkt/p)|Φk(t)〉 (5)

σ(Ω) ) |∫0

∞
dt exp(-iΩt) a(t)|2

) | limεf0+
∑
k′,k

Ck′
* Ck

× ∑
n)-∞

+∞

∑
n′)-∞

+∞

((Ek - Ek′)/p + ω(n′ - n))2

Ω - [(Ek - Ek′)/p + ω(n′ - n)] + iε
〈φn′,k′|∑j

ẑj|φn,k〉|2 (6)

Ekres
) Ekres

- i
2

Γkres
(7)

Non-Hermitian Quantum Mechanics for Harmonic Generation Spectra J. Phys. Chem. A, Vol. 107, No. 37, 20037183



functions. We expand them in the Fourier basis setfn(t) ≡
exp(iωnt), wheren ) 0, (1, (2,... (i.e.,|Φk(t)〉 ) ∑n fn(t)|φn,k〉).
The Fourier components are spatial functions. They are the
components of the right eigenvector of the Floquet Hamiltonian
matrix

Here,Ĥ (r̂ jexp(iθ),t) ) Ĥ 0(complex-scaled)+ eF0 exp(+iθ)
∑j ẑj cos(ωt). Note that in the calculation of the Floquet matrix
elements we used the usual scalar product. From linear algebra,
we know that the most general representation of a matrix is a
complex and symmetric one. Therefore, without loss of general-
ity, we consider the case where the Floquet matrix is equal to
its transpose (i.e.,H is a complex symmetric matrix). In such
a case, the “left” eigenvectors ofH are equal to the “right”
eigenvectors. Therefore, we shouldnot take the complex
conjugate of the spatial Fourier components when we calculate
expectation values. This means that the inner product is defined
such that, for example, (φn′,k′|∑j ẑj|φn,k) ) 〈φn′,k′

* |∑j ẑj|φn,k〉,
where〈...〉 stands for the usual definition of the scalar product.
This inner product is known as the c product.9 Consequently,
the Floquet eigenstates are orthonormal functions under the
definition

The time period isT ) 2π/ω. In other words, we calculate the
inner product as an integral over the spatial coordinates and
over time where we do not take the complex conjugate of
quantities that are complex merely because of complex scaling.
This means that we conjugate the time-dependent functionsfn
but not the spatial functionsφn,k. From eq 9, it follows that
∑n〈φn,k′

* |φn,k〉 ) δk′,k. Furthermore, when we take into account
that states|Φk〉 and exp(iNωt)|Φk〉 are orthogonal eigenstates
of the Floquet operator forN * 0, we find that∑n〈φn+N,k

* |φn,k〉
) δN,0 and finally 〈∑n′ fn′(t) φn′,k

* |∑n fn(t) φn,k〉 ) 1 for all times.
The probability of detecting an electron somewhere in space

is equal to 1 at any given time because the number of particles
in the entire space is conserved. However, high-energy photons
are generated only because of the interaction of the electrons
with the nuclei. Free electrons oscillating in the presence of
the electromagnetic field do not emit high-energy photons.
Therefore, the high harmonics are generated only within the
lifetime of the resonance state. On the basis of this physical
argument, we conclude that the number of electrons should not
be conserved inside a finite box where the electrons interact
with the nuclei. As time passes, the electrons escape from the
finite box. Outside the box, we assume that the electron-nuclei
interaction is equal to zero. The size of the box can be as large
as one wishes. Within the framework of this box-quantization
formalism, the number of electrons inside the box decays
exponentially to zero as time passes. A similar approach has
been taken before by Cederbaum and Tarantelli in their time-
dependent formulation of the nuclear dynamics of decaying
states.21 The norm of the decaying wave packet is reduced in
time because of the “loss” of electrons. We impose this time-
dependent normalization on the quasi-energy resonance solutions
by introducing the following complex phase factors:
exp(-iEkrest/p) ) exp(-iEkrest/p) exp(-1/2Γkrest/p) for the “ket”
Floquet states and exp(+iE*

krest/p) ) exp(+iEkrest/p)
exp(-1/2Γkrest/p) for the “bra” states. Thus, within the framework
of the box quantization, we obtain for the state|Ψ(t)〉 )

exp(-iEkrest/p)|Φkres(t)〉 the normalization

This means that the probability of detecting the system in a
given atomic/molecular quasi-energy resonance (metastable)
state decays exponentially in time with the decay rateΓkres. To
obtain this result, we used norm conservation for the states
|Φkres(t)〉.

In conclusion, time-dependent expectation values are calcu-
lated as

whereΨR(r j, t) ) Ψ(r j, t) andΨL(r j, t) is obtained by taking
the complex conjugate ofΨR(r j, t) except where quantities are
complex merely because of the complex scaling of spatial
coordinates.

Following our discussion, in non-Hermitian quantum me-
chanics, eq 6 is replaced by the following expression:

The resonance contribution to the photoemission cross section
is given by

where the resonance Fourier componentsφn,kres areθ-dependent
spatial functions, whereas the resonance complex quasi-energies
are invariant with respect toθ.

An important point in the derivation of eq 13 is the time
integration over 0< t < ∞. Physically, this is reasonable for
laser pulses that are switched on att ) 0 and last longer than
the lifetimes of the QE states. The correction for short pulses
will be given below.

A more detailed derivation of eq 13 based on the time-
independent scattering theory for time-dependent Hamilto-
nians22,23 is beyond the scope of the present paper and will be
given elsewhere.

To calculate the complex coefficientsCk
R and Ck

L in the
expansions of the right and left wave functions

we should first explain how the complex-scaled initial state is
obtained. Here we consider the general case in which the atom,
before being exposed to the external laser field, is not in an
eigenstate but in a linear combination of the field-free eigen-
states. The unscaled initial wave packet is denotedΦ0

FF(r j). If

(Ψ(t)|Ψ(t)) )
〈exp(-iEkres

t/p)∑
n′

fn′(t) φ
*
n′,kres

|exp(-iEkres
t/p) ∑

n

fn(t) φn,kres
〉

) exp(-Γkres
t/p) (10)

(Ψ(t)| Â(t)|Ψ(t)) ) ∫ΨL(r j, t) Â(t) ΨR(r j, t) ∏ d3rj (11)

σ(Ω) ) |tres(Ω) + tnon-res(Ω)|2 (12)

tres(Ω) ) ∑
k ′res,kres

Ck′res

L Ckres

R

× ∑
n)-∞

+∞

∑
n′)-∞

+∞

((Ekres
- Ek′res

/ ) /p + ω(n′ - n))2

Ω - [(Ekres
- Ek′res

/ ) /p + ω(n′ - n)]
〈φn′,k′res

/ |∑
j

ẑj|φn,kres
〉 (13)

Ψ0
R(t ) 0) ) ∑

n,k

Ck
R
φn,k (14)

Ψ0
L(t ) 0) ) ∑

n,k

Ck
L
φn,k (15)

Hn′,n ) 1/T∫0

T
dt (fn′(t))

*[-ip
∂

∂t
+ Ĥ(r̂ j exp(iθ), t)]fn(t) (8)

(1/T)∫0

T
dt〈∑

n′
fn′(t) φn′,k′

* |∑
n

fn(t) φn,k
〉 ) δk′,k

(9)

7184 J. Phys. Chem. A, Vol. 107, No. 37, 2003 Moiseyev and Lein



the field is suddenly turned on to its maximal field amplitude
(the envelope of the laser field amplitude is a Heavyside
function), then

whereΦ0
FF,θ(r j) ) Φ0

FF(r j exp(iθ)). The other possibility is to
turn the field on for several optical cycles. We choose this time
equal toMT, whereM is an integer andT ) 2π/ω is an optical
cycle. The wave packet is propagated by solving the conven-
tional time-dependent Schro¨dinger equation fromt ) -MT to
t ) 0, yielding Φ0(r j, t ) 0), which is different fromΦ0

FF(r j).
The coefficients follow by projecting the complex-scaled wave
functionΦ0

θ(r j, t ) 0) onto the complex QE Floquet solutions:

If the laser is turned on adiabatically, then the coefficients are
given by

where the coefficientsCkres
FF are obtained by the projection of

Φ0
FF onto the field-free eigenstates andEad

kres are the adiabatic
quasi-energies. Note that despite the adiabatic switching we
assume that no relevant high harmonics are generated during
the turn on. Clearly, this approach is valid only as long as there
is no significant ionization during turn on (i.e., as long as the
peak intensity is below the saturation intensity).

By substituting these coefficients into eq 13, we obtain the
emission spectra. When the interference between different
populated QE states is ignored, the double summation overk′res
and kres in eq 13 is replaced by a single sum overkres. Then,
following the dynamical symmetry properties of the Floquet
Hamiltonian for atoms,〈φ*

n′,kres|∑j ẑj|φn,kres〉 ) 0 if n′ - n * 2m
+ 1, where m is an integer (i.e., only odd harmonics are
generated). The intensity of the high-order harmonic lines is
then given by

Equation 22 suggests that the odd high-order harmonic genera-
tion spectrum is controlled by the narrowest populated QE
resonance state. Let us explain this important result for the
simple case where only one resonance QE state is populated
(i.e., we have no summation overkres in eq 22). In such a case,
if pΩ . Γkres, then

Consequently, the signal from statekres,

is proportional to 1/(Γkres).2 The assumption that only the
narrowest (i.e, longest-lived) QE resonance state controls the
photoinduced dynamics probably holds when one QE resonance
state (usually associated with the field-free ground state) is
narrower than all other resonance states by several orders of
magnitude. Perhaps this is the reason that the experimental
high-order harmonic generation spectra of helium fit so well
with the results obtained from complex-scaling calculations17

where it has been assumed thatσ(Ω ) (2m +1)ω) ∼
|∑n)-∞

∞ Ω2〈φn+2m+1,k0

/ |∑jẑj|φn,k0
〉|2, although the short high-

intensity laser pulses used in the experiments should populate
more than one QE state. However, one should be aware of the
fact that the value ofσ(Ω) when Ω ) ω(2m + 1) does not
only depend on the resonance width but also on the matrix
elements〈φ*

n+2m+1,kres|∑j ẑj|φn, kres〉. Because of this dependence,
althoughΓkres < Γk′res, the contribution of statekrescan be smaller
than the contribution of statek′res. This is possible when the
difference between the resonance widths is not too large and
when the two resonance wave functions have very different
“lengths of localization” in Fourier space. Let us explain the
last statement more carefully. The Fourier components satisfy
the normalization condition∑n〈φ*

n,kres|φn,kres〉 ) 1. The localiza-
tion length measures the number of dominant components in
the Fourier expansion of the resonance QE Floquet complex-
scaled wave function. By plotting the value of〈φ*

n,kres|φn, kres〉
versusn, the localization length in Fourier space can be obtained.
It is clear that higher harmonic orders are obtained for QE
resonance states with a longer localization length. We note in
passing that QE states that are associated with classical chaotic
dynamics are less localized in Fourier space than the QE states
that are associated with a quasi-periodic regular classical
photoinduced dynamics.24 Without getting too deep into this
subject, we can conclude that a QE state with a short lifetime
may more efficiently generate high-order harmonics than another
longer-lived resonance QE state, yet we still may expect
that if a populated resonance QE state is narrower than the
other resonances by several orders of magnitude then this
narrow-resonance QE state will control the photoinduced
dynamics.

So far we have discussed the HG spectra for cw lasers or for
the case where the duration of the laser pulse supports many
optical cycles, which justifies the use of Floquet theory. Before
proceeding to the discussion of the conditions where sidebands
are observable, let us generalize the derivation of eqs 22 and
24 to the cases where the laser pulses are very short. Using the
(t, t′) formalism, we find that the derivation of eq 5 and the
expansion of|Φk〉 also holds for nonperiodic time-dependent
Hamiltonians.25 In such a case,ω is not the cw laser frequency
but is equal toω ) 2π/τ whereτ is any finite time that is larger
than the duration time of the pulse. However, when the dominant
Fourier component of the laser pulse is the fundamental
frequency of the laser, we may use the Floquet QE states as a
basis set in our calculations of the time-dependent dipole
moment,dres(t). In such a case,ω in our expansion is the laser

Ckres

R ) ∑
n

〈φ
n,kres

/ |Φ0
FF,θ〉 (16)

Ckres

L ) ∑
n

〈Φ0
FF,-θ|φn,k〉 (17)

Ckres

R ) ∑
n

〈φn,k
* |Φ0

θ(t ) 0)〉 (18)

Ckres

R ) ∑
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〈Φ0
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0
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0
(Ekres
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L Ckres

R
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Γkres
/p

× ∑
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|∑
j

ẑj|φn,kres
〉|2 (22)
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frequency as before. However, the Fourier transform ofdres(t)
should be taken from 0 toτp rather than from 0 to∞, whereτp

is the duration of the laser pulse. Therefore, when short laser
pulses are applied, the term 1/Γkres in eqs 22 and 24 should be
replaced by (1- exp(-Γkresτp/p))/Γkres. For sufficiently short
pulses, (1- exp(-Γkresτp/p))/Γkres = τp/p. This shows that for
ultrashort pulses the generation of high-order harmonics does
not depend directly on the resonance width but rather on the
matrix elements∑n)-∞

+∞ 〈φ*
n+2m+1, kres|∑j ẑj|φn,kres〉, which appear

in eqs 22 and 24. Thus, when short laser pulses are applied, the
resonance QE state making the dominant contribution to the
HG spectrum will not necessarily be the longest-lived one.
Clearly, in this case, the matrix elements must be evaluated for
the system of interest in order to predict which QE states are
dominant. In this respect, our general analysis is only the first
step.

We return now to a discussion of the conditions that are
required for the observation of sidebands (hyper-Raman lines).
From eq 13, it follows that the hyper-Raman lines in the
emission spectra are obtained atΩ ) R [(Ekres - E*

k′res)/p] +
ω(n′ - n) ) (εkres - εk′res)/p + ω(n′ - n), wheren′ - n ) 2m
+ 1 (i.e., odd values) orn′ - n ) 2m (i.e., even values) and
kres * k′res. The result of even or odd values ofn′ - n depends
on the dynamical symmetry properties of the complex-scaled
QE resonance states as discussed above. Note that even orders
are allowed when the parity symmetry of the two resonances is
different. Here we proved that the hyper-Raman lines in the
emission spectra are constructed of series of shifted odd and
even high-order harmonics. The intensity of the hyper-Raman
lines, resulting from the interference between two different
resonance QE stateskres * k′res, is given by

We now apply the dynamical symmetry properties of the
Floquet operator for atoms to eq 25. When the two QE states
are degenerate eigenstates of the dynamical symmetry operator
(even when they are nondegenerate eigenstates of the Floquet
operator), the matrix elements vanish unlessN ) 2m + 1 with
integerm. This means that the hyper-Raman lines are shifted
odd harmonics. When the two QE states have different general-
ized parity (i.e., they are nondegenerate eigenstates of the
dynamical symmetry operator), the matrix elements vanish
unlessN ) 2m. If these two resonance QE states are degenerate
eigenstates of the Floquet operator, even high-order harmonics
will be obtained. If they are nondegenerate eigenstates of
the Floquet operator, shifted even harmonics will be gene-
rated.

As one can see from eq 25, the intensity of the hyper-Raman
lines in the emission spectra depends on the probability of
populating two QE resonance states that can have different
energies but should be associated with similar narrow
widths.

This is a crucial point in our propositions for possible future
experiments that should show the fingerprints of the hyper-
Raman lines in the emission spectra: ifΓk′res . Γkres, then the
cross terms in eq 25 are negligible compared to the direct term

in eq 22 that is associated with statekres, and only odd harmonics
will be observed. The hyper-Raman lines will be obtained only
whenΓk′res ≈ Γkres.

As discussed above for the direct terms, the situation changes
for very short pulses. Then, the harmonic intensities are not
directly controlled by the widths of the resonance states. In this
case, hyper-Raman lines may even be obtained when the
populated QE states have significantly different lifetimes.

4. Illustrative Numerical Examples

In this section, we present numerical examples that cor-
roborate the results of our discussion. These results are obtained
by solving the time-dependent Schro¨dinger equation within the
framework of conventional quantum mechanics. Hence, they
serve as an independent check of the conclusions derived from
non-Hermitian quantum mechanics. The Schro¨dinger equation
is integrated numerically by means of the split-operator method26

for laser-driven 1D model systems. In all cases, we employ
trapezoidally shaped pulses where the field is switched on and
off linearly. The HG spectra are calculated by taking the Fourier
transform of the time-dependent dipole acceleration.19 Here, the
time integration is taken over the flat part of the pulse where
the field amplitude is constant. First, we give two examples
that demonstrate how the lifetimes determine the observability
of the hyper-Raman lines. In another example, we show the
effect of the laser pulse duration.

Our first example corresponds to typical HG experiments.
We use an 800-nm laser pulse with an intensity of 1.5× 1014

W/cm2 and a model atom that reproduces the ionization potential
of an Ar rare-gas atom (15.8 eV). The binding potential

is a soft-core Coulomb potential. We consider (10-20-10)
pulses (i.e., the duration of the constant-intensity part is 20
optical cycles, and the total pulse duration is 40 optical cycles).
We consider three possibilities for the initial state of the
system: (a) the field-free ground state|Φg〉, (b) the field-free
first excited state|Φe〉, and (c) a superposition of the ground
state and first excited state, (|Φg〉 + |Φe〉)/x2. The two
eigenstates have different parity (i.e., sidebands that may be
generated from the interference between the two states are
expected to be shifted even harmonics). The resulting HG
spectra for the three cases are shown in Figure 1. The dashed
lines mark the odd harmonic orders. We see that case a leads
to an HG spectrum with only odd harmonics, as expected. In
case b, the harmonic peaks are not as well defined because the
first excited state is 8.8 eV higher in energy and therefore decays
much faster than the ground state: the survival probabilities at
the end of the pulse are 43% for the ground state and 2% for
the excited state. The additional peaks in spectrum b indicate
that more than one QE state is populated after the laser is turned
on. Most interesting for us is case c, where we certainly have
a superposition of several resonance QE states including the
lowest-lying state that is associated with the field-free ground
state. The interference between different QE states allows for
the generation of sidebands. However, the sidebands are found
only in a small part of the spectrum (orders below 20), and
they are weaker than the odd harmonics. This agrees perfectly
with our statement that the sidebands should be weak when the
lifetimes of the interfering QE states differ greatly from each
other.

σ(Ω ) (εkres
- εk ′res

) /p + Nω)

= |Ck ′res

L Ck ′res

R
[Ω -

i

2p
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)]2
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∑
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/ |∑
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V(x) ) - e2
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In our second example, the conditions are made more
favorable for the generation of sidebands. We employ an H2

+

model potential

with an internuclear distance ofR ) 15 au. The precise value
of the soft-core parameter is not very important for our purposes.
It is here set to 2, which reproduces the ionization potential of
an isolated H atom (13.6 eV) forR f ∞. The crucial difference
to the model atom used in our first example is that, because of
the large internuclear distance, the lowest two states are almost
degenerate (8× 10-4 eV difference). Therefore, these states
have almost identical lifetimes. An 800-nm pulse with an
intensity of 8× 1013 W/cm2 and a (10-20-10) envelope is
used in the calculation. Again, we consider cases a-c as defined
above. Figure 2 shows the resulting HG spectra. We find that
both the ground state and the first excited state give a series of
well-defined odd harmonics. Only in the cutoff region in panel
a are some hyper-Raman lines found. The superposition state,
however, gives a full series of hyper-Raman lines over the full
range of the spectrum. In fact, the hyper-Raman lines are even-
order harmonics. This agrees with our proof that the interference
of degenerate QE states with different parity yields even
harmonics.

In our third example, we demonstrate the effect of the laser
pulse duration on the generation of hyper-Raman lines. In
section 3, we have shown that for ultrashort pulses hyper-Raman
lines may be generated even when the lifetimes of the populated
QE states are very different. This happens when the pulse
duration is shorter than the relevant lifetimes. We consider the
model atom described by eq 26 in a 700-nm pulse with a
relatively low intensity of 5× 1013 W/cm2. As a consequence,
the lifetimes are much longer than in the first two examples.
As the initial state, we take the superposition of the ground and
first excited states. Figure 3 displays the HG spectra for two
different pulse durations. The upper spectrum results from a
(20-20-20) pulse, whereas the lower spectrum results from a

(20-160-20) pulse. The sidebands are present although the
lifetimes of the ground and first excited states differ consider-
ably. In the case of the shorter pulse, for example, the survival
probabilities at the end of the pulse are 99 and 27%, respectively.
Using the shorter pulse, the sidebands are stronger than the odd
harmonics. By increasing the pulse duration, the odd harmonics
become more dominant so that in the second spectrum the
sidebands and the odd harmonics are equally important. Again,
this shows that the odd harmonics generated by the longest-
lived state become dominant for sufficiently long pulses.
Furthermore, it is obvious that the odd harmonics are much
sharper than the hyper-Raman lines as a consequence of the
different lifetimes.

5. Proposition of Possible Experiments Revealing the
Hyper-Raman Lines

Let us propose a scheme for an experiment where the hyper-
Raman lines in the emission spectra will be shifted even high-
order harmonic lines. We need to prepare as an initial state a
linear combination of two QE narrow resonances with different
parity but similar lifetimes (inverse widths). Let us discuss the
possibilities of preparing such a situation in a one-electron atom.

Figure 1. HG spectra for the Ar model atom in an 800-nm laser pulse
with 1.5× 1014 W/cm2 intensity starting (a) from the ground state, (b)
from the first excited state, and (c) from the superposition of the ground
and first excited states.

V(x) ) - e2

x(x - R
2)2

+ 2

- e2

x(x + R
2)2

+ 2

(27)

Figure 2. Same as Figure 1 for the H2
+ model system atR ) 15 au in

an 800-nm pulse with an intensity of 8× 1013 W/cm2.

Figure 3. HG spectra for the Ar model atom in a 700-nm pulse with
an intensity of 5× 1013 W/cm2 starting from a superposition of the
ground and first excited states. (a) (20-20-20) pulse; (b) (20-160-
20) pulse.
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It has been seen in previous numerical studies for the photo-
induced dynamics of helium17 that each one of the narrow quasi-
energy resonance states is dominated by a single ground or
excited state of the field-free system. Therefore, it is also
expected that the narrow QE states of the hydrogen atom are
dominated by the ground state or one of the low excited states
of the field-free atomic/molecular system. The QE stateΦ1s

QE

that is dominated by the 1s hydrogen orbital is the longest-
lived state. The QE stateΦ2p

QE that is dominated by the 2p
hydrogen orbital is expected to have a shorter lifetime. If one
prepares an initial state that equally populates the 1s and the
2p field-free hydrogen orbitals, then the sidebands may be
observed, depending on the ratio between the two resonance
widths. Following our discussion of eq 13, ifΦ1s

QE and Φ2p
QE

have very different resonance widths, then the sidebands will
not be observable unless ultrashort pulses are used. TheΦ2p

QE

andΦ2s
QE states, however, are expected to have similar widths

and thus similar lifetimes. Consequently, by preparing an initial
state where the 2s and the 2p hydrogen levels are equally
populated, the photoinduced dynamics of the hydrogen atom
in a strong cw laser field will be controlled by theΦ2p

QE and
Φ2s

QE states, and besides the odd harmonics, hyper-Raman lines
should be observed.

Another example is helium. If theΦQE
1s2 andΦQE

1s2pstates
have similar widths, then sidebands in the HG spectra might
be observed. If, however, these two resonance QE states are
very different in their widths, then one should look for another
linear combination of field-free states that may provide two QE
states such that these are nondegenerate eigenfunctions of the
dynamical symmetry operator and have similar resonance
widths. Similar widths are expected for two states that are almost
degenerate eigenstates of the complex-scaled Floquet operator.
For example, such QE states can beΦ1s2s

QE andΦQE
1s2p. On the

basis of our analysis, hyper-Raman lines are expected to be
observed in the HG spectra by preparing the system in these
two QE states.

To get a mixture of the two excited states, one should use
one or two laser pulses with lower intensity to control the
population of the two relevant states. Following Holthaus, one
can use a single laser to control the population of two states by
optimizing the shape and duration of the laser pulse.27 Another
possibility is to use the stimulated Raman adiabatic passage
(STIRAP) scheme, which was proposed by Bergmann and co-
workers.14,28

Acknowledgment. This paper is dedicated to Professor Don
Kouri, a colleague and a friend, on his 65th birthday. He
possesses that rare combination of genuine love for science and
people, which is a model to follow. This work was supported

in part by the US-Israel Binational Science Foundation, by the
Basic Research Foundation administered by the Israeli Academy
of Sciences and Humanities, and by the Fund for the Promotion
of Research at the Technion. Dr. Ofir Alon is acknowledged
for most enlightening discussions. N.M. thanks Professor Jan
Michael Rost and the other members of the Finite Systems
Division for many fruitful discussions and for their warm
hospitality during the stay of N.M. at the Max Planck Institute
for the Physics of Complex Systems in Dresden.

References and Notes

(1) Ferray, M.; L’Huillier, A.; Li, X. F.; Lompre, L. A.; Mainfray,
G.; Manus, C.J. Phys. B1988, 21, L31. Li, X. F.; L’Huillier, A.; Ferray,
M.; Lompre, L. A.; Mainfray, G.Phys. ReV. A 1989, 39, 5751.

(2) See, for example, Protopapas, M.; Keitel, C. H.; Knight, P. L.Rep.
Prog. Phys.1997, 60, 389. Salie´res, P.; L’Huillier, A.; Antoine, P.;
Lewenstein, M.AdV. At., Mol., Opt. Phys.1999, 41, 83.

(3) Bartels, R.; Backus, S.; Zeek, E.; Misoguti, L.; Vdovin, G.;
Christov, I. P.; Murnane, M. M.; Kapteyn, H. C.Nature2000, 406, 164.

(4) Alon, O. E.; Averbukh, V.; Moiseyev, N.Phys. ReV. Lett. 2000,
85, 5218.

(5) Di Piazza, A.; Fiordilino, E.Phys. ReV. A 2001, 64, 013802.
(6) Bavli, R.; Metiu, H.Phys. ReV. A 1993, 47, 3299.
(7) Taylor, J. R. Scattering Theory: The Quantum Theory of

NonrelatiVistic Collisions; Wiley & Sons: New York, 1972.
(8) Reinhardt, W. P.Annu. ReV. Phys. Chem.1982, 33, 223.
(9) Moiseyev, N.Phys. Rep.1998, 302, 211.

(10) Ben-Tal, N.; Moiseyev, N.; Beswick, A.J. Phys. B1993, 26, 3017.
(11) Alon, O. E.; Averbukh, V.; Moiseyev, N.Phys. ReV. Lett. 1998,

80, 3743.
(12) Moiseyev, N.; Chrysos, M.; Atabek, O.; Lefebvre, R.J. Phys. B

1995, 28, 2007.
(13) Kreibich, T.; Lein, M.; Engel, V.; U Gross, E. K.Phys. ReV. Lett.

2001, 87, 103901.
(14) Bergmann, K.; Shore, B. W. Coherent Population Transfer. In

Molecular Dynamics Spectroscopy by Stimulated Emission Pumping; Dai,
H. L., Field, R. W., Eds.; Advanced Series in Physical Chemistry; World
Scientific: Singapore, 1995; Vol. 4, pp 315-373.

(15) Shirley, J. H.Phys. ReV. B 1975, 138, 979.
(16) Ben-Tal, N.; Moiseyev, N.; Kosloff, R.; Cerjan, C.J. Phys. B1993,

26, 1445.
(17) Moiseyev, N.; Weinhold, F.Phys. ReV. Lett. 1997, 78, 2100.
(18) Corkum, P. B.Phys. ReV. Lett. 1993, 71, 1994.
(19) Burnett, K.; Reed, V. C.; Cooper, J.; Knight, P. L.Phys. ReV. A

1992, 45, 3347.
(20) The Letropet Symposium View on a Generalized Inner Product;
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