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A derivation of the vibrational Hamiltonian in generalized (internal) coordinates within a grid representation
using the Fourier Grid Hamiltonian (FGH) method is presented. The objective of the theory is to make possible
the solution of vibrational problems in two or more dimensions in terms of internal coordinates. These
coordinates are often the ones of choice when the vibrations of interest are localized or when only selected
coordinates are considered in a larger system. As in the case of the original FGH method, the matrix elements
are easy to evaluate in a fast and robust manner. The method is tested on two different molecular systems,
FHF and picolinic acidN-oxide, both containing strong hydrogen bonds. The illustrative problems are two-
dimensional and are highly anharmonic. The importance of both the coupling terms, as well as the variable
reduced masses, required by the formulation of the Hamiltonian in generalized coordinates, are examined,
and the formalism is shown to be robust in that identical results are obtained using different sets of internal
coordinates applied to the same physical problem. Good agreement between calculated and observed vibrational
frequencies is also obtained.

I. Introduction potentiald® to calculate predissociation line widths and in
conjunction with complex scaling methods to study multiphoton

Hydrogen bonds are known to .be highly anharmom(_:, an_d N above threshold dissociatiéhWebb and Hammes-Schiffér
general, a normal mode harmonic treatment of the vibrations

. . e have developed a multiconfigurational self-consistent-field
of such b_onds d°?s not yield reliable results for the wbranongl version of the method and have applied it to hydrogen tunneling
frequenue; An |mproved treatment, beyor)d the ha””."”'c problems. The method has been used in conjunction with time-
approximation, requires a more exact _solutlon of the time- dependent quantum theory to study photodissociation pro-
independent vibrational Schiimger equation (SE). When the cessedl?2in conjunction with R-matrix theory to develop a

V|brat|c_)nal motion is localized or when we wish to restrict the new L2 approach to scattering the@iand to study methods
analysis of the problem to a subset of the total number of degrees

L . .~ ~~of stabilizing Feschbach resonances to form ultracold mol-
.Of freedom, itis O.ften most convenient to perfo_rm_the dy”a”_"cs ecules®® In the present paper, we seek to extend the method so
in terms of chal internal coordu_'lates. The ab initio calculation hat it may be used in conjunction with generalized internal
.Of the potenthl energy surfa_ce in such a case IS best pgrforme oordinates and, in principle, for any number of dimensions.
in the same internal cqordlnates. The d|sadv§1ntage N USING e theory needed for the generalization of the FGH method
generalized local coordinates as compared with Cartesian or

| mod dinates lies in th lexity of the f ; is developed in section Il. Some discussion concerning the
normal mode coordinates 3|es_|n € complexity of the 1orm Of - .5 1ation of theS matrix (or the coordinate-dependent reduced
the kinetic energy operatér? This operator contains both mixed

derivative t 46 matri hich be Vi d ¢ masses) is also given in this section. Section Ill describes two
erivalive terms and @ matrix, which may be viewed as a set oy problems, both involving strong intramolecular hydrogen
of coordinate-dependent reduced masses.

) | e ) bonds, which are known to be highly anharmonic and require
The Fourier grid Hamiltonigh(FGH) method was introduced o accurate solution of the SE for their correct description. They

in 1989 and has proved a remarkably easy and robust method, ¢ yespectively (i) the hydrogen difluoride anion and (ii)
for compgtlng the vibrational motion of one-dimensional ,icoinic acidN-oxide. Both examples involve the solution of
systems."® Two maintained Internet web sifeé®are available 5 yo_dimensional vibrational problem in several different sets
where a computer code based on the method can be used tQ¢ generalized internal coordinates, the different sets of coor-
solve one-dimensional vibrational prob_lems. A modified form  ginates giving rise to different mixed derivative terms aBd

of the method has been suggestednd it has been extended  yprices. Section IV presents the results of our test calculations
to three dimension¥: A “mapped” version of the method, ging the generalized FGH method and compares results for

suitable for calculations involving long range and Coulomb o same system carried out using different coordinates. Section
forces, has been developédind extensively used.- 17 The V presents some concluding remarks.

FGH method has been used in conjunction with complex optical
II. Theory
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from Cartesian coordinates to generalized coordinates was firstof the WilsonG matrix are constant. The resulting kinetic energy
proposed by Podolsky in 1928For recent critical discussion  operator is:
concerning the problem of coordinate transformation, see Schaad

and Hu? R BF2M M o
The vibrational Schidinger equation can be written in terms Tg=~— —ZZGrS (5)
of Cartesian coordinates of the ator{is}, where{x} = x;, i = ASES 00,00
1, ..., , and N is the number of nuclei involved in the
vibrational problem. The corresponding Hamiltonian is Alternatively, one could still retain the coordinate dependence
of the Wilson G-matrix elements, but neglect the kinetic
~ R23N 1 42 coupling terms; hence, by omitting the mixed second derivatives
H=——)———+V (1) from eq 4, we obtain:
2&m 52
. M g 3
wherem is the mass of the nucleus associated with ithe Ty=——) — [G" —] (6)
Cartesian coordinate anlis the potential energy. The subscript 21 90, o0

x on the symbol, refers to the coordinate system in which

the operator is represented (e.g., Cartesian). We will use thisFinally, we may combine both thectnstant-G and the ‘ho
notation for other coordinate systems as well. This paper is kinetic coupling approximation, yielding practically the same
concerned with the use of a grid representation, and the potentialexpression as for the Hamiltonian expressed in Cartesian
energy operator is a simple multiplicative operator in such a coordinates (eq 1):

representation. From now on, therefore, our attention will be

focused on the kinetic energy operator. A B2 M 52
Besides atomic Cartesian coordinates, which are clearly the Tq =——Y G — @)
simplest from a mathematical viewpoint, there are other 2= aqr2

coordinates, such as the normal or internal coordinates, which
are much more suitable for treating vibrational problems. The aAmong the possible levels of simplification of the original

challenge is then to rewrite eq 1 for a set of generalized pgyqolsky expression for the kinetic energy operator (eq 2),
coordinates{q}, which should include internal coordinates such iha gne yielding eq 4 is reasonable and generally acceptable.
as interatomic distances, valence and torsional angles, as wellrhis is however. not always true for thednstant-G or

as normal coordinates, symmetry coordinates, or coordinatesty; the *no kinetic coupling approximation (eqs 57)

of any other type. Podolskyshowed that the kinetic energy (yige infray When discussing techniques for solving the
operator, represented in a general set of coordifafesshould  gepigiinger equation, we will, if not otherwise stated, use

take the form: the kinetic energy operator given in eq 4. Note also that,
although we will apply our treatment to handle vibrational

s 0y problems in terms of internal coordinates, any other type of
|G E[J 2] @) coordinate may be used in the approach we develop

s below. Furthermore, the treatments we develop in this paper
for a FGH representation of the approximate forms of the kinetic
energy operator represented by egs74may readily be
generalized to encompass also the exact form of eq 2, which
may be needed if the approximate forms give rise to significant
errors.

B. Fourier Grid Hamiltonian Method in Generalized
N 1 g, 8 Coordinates. The original derivation of the FGH methbdias
G® = - s ?) based on the formalism of Dir&tin which the operators could
&rm 9% 9% be expressed in either the coordinate, or Sdimger, repre-
sentation or in the momentum representation. The transforma-
tions between these two representations constituted a key aspect

The G matrix is symmetricGS" = G'S, and its matrix elements f this derivation. The th lined in th di "
may be regarded as corresponding to reciprocal reduced masses, this derivation. The theory outline In (e preceding section
I.e., eqs 1-7) is expressed within the Scltioger representa-

Unlike its Cartesian analogue, the kinetic energy operator in . . A
eqg 2 includes mixed second derivatives, known as kinetic t!on,_and for cqn5|_stency, we will remain within this representa-
coupling terms. Moreover, all of the termg Y2, andG's are, tion in the derivation given here.

in general, functions of the coordinates in the §g; thus, We will concentrate on the form of the kinetic energy operator
they should be included in the differentiation. If we asséfme given in eq 4 and on its action on a wave function. The term
that the coordinate dependence of the Jacobian determjpant, on the right-hand side of the summation signs in eq 4 involves
is much smaller than the dependence of a particular individual only two active coordinates at a time, thouglt is a function
componeniG's, eq 2 takes on the simplified form: of all of the coordinates. We first consider the action of a partial
differential operator on a wave function. We will need to use
the Fourier representation of the Dirac delta funcfi®#?. This

(4) IS:

K2 M

T =—_ M[juzi
! 2;; g

In the above equatiorj, is the determinant of the Jacobian
transformation matrix betwegnx} and{d}, j = det J;|, where

Jj = ox/0q;. M is the number of coordinates taken into account
andG' is the element of the kinetic energy matrix, introduced
by Wilsor? (also known ass matrix), and is equal to:

. REM M 5

W= 5220

A further approximation could be to assume that the elements

3
90,

GFS

S(X — ) = 2—171 [ e g ®)
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where we have taken the rangekofo be —o < x < +o and
we will take the range ok to be 0< X < oo,

D09 = [ 9K = Xp(x) ax

— 8 —o{znﬁ— i o k=) dk}w(x) d

= fxio{gﬂz_mike_ik“’” dduooc (@

We will now discretize botlk andx on uniform grids. We will

Stare and Balint-Kurti

A similar derivation leads to the following expression for the
grid representation of the second derivative:

32
0 it B

_(2%7)2 n(n_;— 1 forj=t
_(2_77)2;
L/ 2N sir?[(t — j)z/N]
(n+ 1) cos[g + 1)t — j)2a/N] —

sin[(n + 1)(t — j)27/N] cot[(t — j)a/N]]

[(—=1)7(n + 1) cos[t — j)/N] +

forj=t

(13)

We can now address the form of the grid representation of

use an odd number of grid points as this is needed to obtain atne “yariable-G’ form of the kinetic energy operator (eq 4).

real form for the matrix representation of the first derivative
operator (eq 9) in the grid representation. If the length of the
coordinate grid is taken to bk and there aré\ grid points
(noteN is odd), the grid spacing is given lyx = L/N and the
value of the coordinate for thi grid point is given byx; =
JAX.

The spacing in the momentum grid is giversbik = 27/L.
The values ok are evenly distributed about zero, ranging from
k = —nAk to k = +nAk, wheren = (N — 1)/2. Using all of
these definitions, we can write the value of the partial differential
at thejth grid point as:

[ - W )]
—YPX
8X X:X]-

N

1 0 ) )
Z{z_n > ipAke"PAk“‘J)AXAk} P AX
= p=-n

N

n
Z{Zﬂ z ipe i 27p(t— J)/N] P AX
L%pEn
Z{ - 2_”21”0 2PN _
= L2
—i27p(t—j)/N

e

N ol .
= Z{ — mpz‘p sin[27p(j t)/N]] Py

wherey; = y(x) and we can identify the term in braces, which
is the (, )" element of a matrix, as the grid representation of
the first derivative operator. We can therefore write:

NS

(10)

a

0X it

[—ﬂn sin[2r '—t/N} 11
LNpZ‘p [27p(] — t)/N] (11)

The summation in eq 11 may be performed analytically (see
eq 1.352 of ref 31) to yield:

[

0 forj=t
2z [sin[0+1)G —)27/N] (=17 (n+1) _
LN 2sirf[(j — t)z/N] sin[(j — t)a/N] forj=t

(12)

The grid representation of this operator can be written as

T —

oot 3o 'y
Ny
rsz i i Grs(qf"’ sy qiv/‘i) +
aqr qru-qu aqr qr\'qrzr

hZM M
a0y

222

30,

G qw,[ qSLsusqsﬂ
M

Grs(qr,u’r’ sy qiu“i) |_| 6/4 Wi (14)
i=r,s

The notationg; ,, indicates the grid point, of the coordinate

gr and G'(0r ., Osusiy) iNdicates that, among the arguments
of G5, theq,, term stands for all of the coordinates other than
the “running” coordinates, andgs, i.e.,i = r, s. Similarly, the
grid representation of the kinetic energy operator for the
“constant-G approximation (see eq 5) takes the form

[ qr] G,

X |_| M ‘lt (15)

i=rs

2MM

o

aqr] Gr ’ qj O

The grid representation of the potential energy is just the
potential energy evaluated at the grid points:

Uyl o'y~

(1-06,9G"

M

= V(ql‘ul’ A qM,ﬂM) 6‘uiﬂ'i (16)
1=

Vm,---ﬂM;ﬂ'ly---#’M

The overall Hamiltonian in the grid representation is then
just the sum of the kinetic energy and the potential energy terms
(i.e., eqs 14 plus 16 or eqgs 15 plus 16. The vibrational
eigenvalues and eigenfunctions are obtained by diagonalizing
this grid representation of the Hamiltonian matrix. The resulting
eigenvectorsyy;, are normalized according to:

z |1/)l(q1ﬂ1’ q2;42’ "'qM,,uM)|2 = 1 (17)

MM

The dimensionality of the vibrational problem can pose severe
limitations to the applicability of this approach to problems
involving more than a few dimensions. It is at present difficult
to treat a vibrational problem in more than two dimensions by
using the above generalized FGH method because of the
limitations of computer memory. Although it is possible to
overcome this limitation by using iterative diagonalization
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techniques? the problem of evaluating the potential energy
surface (normally by pointwise ab initio or density functional
theory (DFT) calculations) remains a bottleneck and normally
limits the number of dimensions that can still be treated by this
approach to about six.

C. Calculation of G's. The evaluation of th& matrix, eq 3,

J. Phys. Chem. A, Vol. 107, No. 37, 200807

constraints. Therefore, all of the derivatives/dq, in general
assume nonzero values. On the other hand, in eq 3, the Cartesian
coordinates are the independent and the internal coordinates are
the dependent variables. Thus, when evaluating the derivative
9q:/0x, one should first make a variation of the Cartesian
coordinategx;, and calculate the resulting change in the internal

requires a knowledge of the mutual dependence between thecoordinatedq, after imposing the constraints required by the

Cartesian and the internal coordinates. Clearly Glielements
will in general be functions of the internal coordinates. To

Eckart conditions. Imposition of the Eckart conditions will, in
this case, affect only the Cartesian coordinates but none of the

account for this functional dependence, one needs to evaluatenternal ones and the only nonzero derivatives in eq 3 arise when

the G functions over some appropriate range of the internal

the definition ofq; itself involves the Cartesian coordinate

coordinates of interest. From eq 3, it follows that the dependenceFor these reasons, the application of eq 20, followed by matrix

of the internal coordinateg;, and gs on the complete set of

inversion, is the method of choice for the calculatiorGst for

Cartesian coordinates must be known in order to calculate apure vibrational coordinates.

particularG' function and its derivatives. The most practical
way of doing this is to extract the system geometries simulta-
neously with the pointwise determination of the potential energy
function.

To deal with a pure vibrational problem, one needs to remove
translational and rotational degrees of freedom from the overall
nuclear motion. This can be done by enforcing the EéRart
conditions for each nuclear conformation of the system con-

sidered. Each particular conformation is translated and rotated

with respect to the reference structure (which may be, but is
not necessarily, the minimum energy structure) in order to satisfy
the following equations of constraint

N
ZW(da-rﬁ) =0 (18)

N
Zma(da x 1) =0 (19)

In the expressions abovéi denotes the position vector of the
ofh atom in the reference geometry with respect to the center
of mass of the system, anfj is the displacement vector of the
ath atom from its position in the reference geometry. Note that
the product in eq 18 is the dot (scalar) product of vecthyrs
andrg, whereas that in eq 19 is the cross (vector) product.

Having ensured that all of the displacements conform to the
Eckart conditions, one can evaluate the derivatives of the type
9q,/0x and calculate th&-matrix elements by using eq 3. As
an alternative to doing this, it is possible to first calculate the
elements of the inverse of th@ matrix, G;s, where:

3N
G = Z
=

The values ofG™ are then obtained by inverting the matrix of
Grs. This procedure is based on that introduced by Alexandrov
et al3* The main advantage of this approach, as compared with
the direct evaluation of eq 3, is that it takes full account for the
“coupling” between all possible pairs of internal and Cartesian
coordinatesq andx;), caused by imposing the Eckart condi-

X 9%
m_ —_—

(20)
99, 90,

Ill. Model Systems and Computational Details

A. Hydrogen Difluoride Anion in the Gas Phase.The
hydrogen difluoride anion probably features the strongest and
shortest hydrogen bond of any chemical species. The-F
separation determined from gas-phase experirfeist.2777
A, and the hydrogen bond dissociation energy is 45.8 kcaffnol.
The equilibrium structure is linear with the proton located in
the middle symmetrically between the fluorines.

The infrared spectrufhof FHF~ in the gas phase shows three
fundamental bandsvl(a;’) at 583 cn1! (symmetric stretch-
ing), v2(r,) at 1286 cm® (bending), andrs(o,)) at 1331 cm!
(asymmetric stretching). The latter was initially believed to be
at a much higher frequency, 1848 th#® but because of the
large discrepancy with computationally determined vaf§i¢ise
band at 1848 cm' was reassigned as the + v3; overtone.
The infrared spectrum of the deuterated analogue (FDias
been recorded and assigned in a similar wayor more
references to experimental studies on FHREhe reader is
referred to ref 35. For recent ultrafast purprobe spectroscopy
studies of the FHF entity in pyriding(HF), complexes, see ref
40.

There have been many computational studies devoted to the
FHF~ system. Analyses of the potential energy surface (PES)
and the hydrogen bond dissociation energy have shown that
high level ab initio methods, rather than DFT, should be used
for reliable calculations, together with large basis sets of at least
valence triple-zeta quality% 6

The vibrational problem for the hydrogen difluoride anion
has been thoroughly discussed by several auttio?8.Since
1972, a number of high-quality calculations, which have gone
beyond the harmonic approximation, have been performed.
Alml&f 47 performed a variational two-dimensional calculation
of the vibrational problem for collinear FHHRn the orthogonal
symmetry coordinatesy =r; — r, andQ, = r; + rp, where
r, andr; are the two F-H distances). Janssen efatletermined
the vibrational levels and wave functions using normal coor-
dinates and a three-dimensional quartic potential. A vibrational
self-consistent field meth6d was first performed and was
followed by a vibrational configuration interaction calculation.
Spirko et al*® used a rather sophisticated set of rectilinear

tions. In eq 20, the internal coordinates are the independentvibrational coordinates in conjunction with the Watson isomor-
variables, whereas the Cartesian coordinates are the dependemthic Hamiltonia®? in a three-dimensional treatment of the

variables. Evaluation of the derivativg/dq, thus requires first
making a small variation of the internal coordinadey, then
imposing the Eckart conditions on the structure resulting from
the distortion, and finally calculating the resulting change of
the Cartesian coordinate®y. The key point is that a variation

of the internal coordinate of interest affects all of the Cartesian
coordinates of the system through the imposition of the Eckart

vibrational problem. Yamashita et ®l.used hyperspherical
coordinates combined with a mixed discrete variable-finite basis
representation and applied an adiabatic separation between the
“heavy-atom” (symmetric stretching) and other vibrational
modes. All of the authors used PESs computed using highly
correlated ab initio methods coupled with large orbital basis
sets. Their findings, especially those in refs 49 and 50, are in
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TABLE 1: Fitted Parameters of the Gaussian-Type
Potential Energy Surface of the Linear Hydrogen Difluoride
Anion2

i Ni[kcal/mol]  oi[A~Y Bi[AY riO1A] riC[A]

1 688.093744 0.286313 0.757860 2.217042 0.908539
2 6025414202 2.907677  2.9042870.103445 0.568055

3 3643.870535 8.151267  1.0771360.042802  1.240373

4 1653.010505 1.933486 735.167507 1.467196.001189

5 1889.030488  0.584252  3.096505 1.806931 0.140254
6 2018.253942  2.798651  0.246531 0.42916@.189854

7 688.093744 0.757860 0.286313 0.908539  2.217042
8 6025414202  2.904287 2.907677 0.568058.103445

9 3643.870535 1.077136 8.151267  1.240378.042802

10 1653.010505 735.167507  1.9334860.001189 1.467196
11 1889.030488  3.096505  0.584252 0.140254  1.806931
12 2018.253942  0.246531  2.7986512.189854  0.429166

aThe analytical form read¥(ry, r;) = Ve — Y12, Nig i)
e "1 \whereV, is the constant termVf = 12649.257711 kcal/
mol), and for each particular Gaussibinis its coefficient,o; and i
are the exponential constants, ahtiandr} are the coordinates of its
center. The two internal coordinatesandr, correspond to the two
F—H distances.

on
o-Ho
o |
o”° | N
G

Figure 1. Structure of picolinic acidN-oxide (PANO) and the ©H
stretching and bending internal coordinates.
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masses were calculated as follows. All of the 422 structures
appearing in the pointwise calculation of the PES were
represented in the center-of-mass Cartesian coordinate system,
hence satisfying eq 18. Because all of these structures were
linear with onlyx atomic coordinates assuming nonzero values,
there was no need of decoupling the rotational degrees of
freedom. Next, for each possible constant valugoeach of

the atomic Cartesian coordinatesvas 1D spline-interpolated
alongq; and thedx/dq; derivatives were evaluated at each of
theq; values. The same procedure was repeated with changed
roles betweel; andg, in order to obtairdx/dg,. TheG,s matrix
elements were calculated using eq 20 for each particular
structure; thes'™ elements were obtained by inverting the matrix
of Gs.

Finally, for each coordinate set, a two-dimensional grid was
laid alongg: andq; in such a way that at least the lowest 100
kcal/mol portion of the PES (relative to the global minimum)
was completely covered by the grid and the vibrational SE was
solved. The grid resolution, i.e., the number of basis functions,
was optimized for the lowest 20 eigenvalues within 1-é¢m
precision; that is, we found the minimal grid resolution, for
which the resulting 20 lowest eigenvalues differ less than 1'cm
from the reference results. The latter were obtained by using a
grid of much higher resolution (101 grid points per each
dimension). Typically, we found the convergent grid resolution
to be about 41 by 41. In addition, we reduced the Hamiltonian
matrix size by discarding the grid points with the potential
energy higher than a certain threshélthat we set to 100 kcal/
mol. By discarding the high energy region basis functions, we

good agreement with experiment and suggest a high degree ofconsiderably reduced the Hamiltonian matrix size (up to 50%),
anharmonicity for the asymmetric stretching mode and strong and thus the CPU time required for diagonalization, without
coupling between the asymmetric stretching and bending modesaltering the lower range of the eigenvalues, relevant for
The bending mode, however, exhibits virtually no deviation from vibrational spectroscopy.
harmonicity. B. Picolinic Acid N-Oxide in the Solid State.Picolinic acid
The purpose of our work is not further improvement of the N-oxide (PANO, Figure 1) contains a very short-@---O
reliability of such calculations but rather a demonstration that hydrogen bond with an asymmetric single well proton potential.
vibrational problems can be reliably treated in terms of a very The structure of crystalline PANO has been well resolved by

simple set of internal coordinates. The example of Fidieely

X-ray®* and neutro?P diffraction. The X-ray determined ©O

illustrates the necessity of proper inclusion of the coupling terms distance is 2.425 A. Infrared spectra of PANO, either in the

in the kinetic energy part of the vibrational Hamiltonian.

solid state or in solution (using various solverisjeature a

Computational DetailsThe PES was evaluated by performing  broad absorption in the range between 1000 and 180¢,cm

calculations at 422 collinear geometries of theH—F~ system
using the MP4(SDQ)/6-31+G(2d,2p) level of theory. The
calculations were performed using the Gaussiai¥ @@mputer
code, and the HF separations,; andr,, were varied over the

range 0.8-2.5 A. The PES was fitted to an analytical function

of the formV/(ry, ro) = Ve — 32, Nie @i r%e B 12 The

which has been assigned to the-B stretching mode. NMR
studies provide additional evidence for a strong, short hydrogen
bond, with the chemical shift of the hydrogen-bonded proton
being about 18 ppm in solutions using different solvénts.
Recent ab initio and DFT calculations on PANO have shown
that proper inclusion of the crystal field is essential to obtain

12 two-dimensional Gaussian functions in this expansion are reasonable agreement with experiment for the geometry of
divided into two groups of six, guaranteeing compliance with pANO, as well as for the shape of the proton potential. The

the symmetry conditionV(ry, rz) = V(rp, r1). All of the
exponential factorsof,3;), the centers of the Gaussiarré'io(
r'2'°), the coefficients ), and the constant ternV{) were

O---O distance in the optimized geometry of an isolated
molecule was found to be greater than 2.50 A, no matter what
level of theory was used, compared to 2.43 A, determined by

optimized using a nonlinear least squares procedure. The averagehe X-ray and neutron diffraction. Introducing periodicity into
fitting error was 0.0211 kcal/mol per point in the lowest 20 DFT calculations using the CaParrinello method shifts the

kcal/mol region of the PES (relative to minimum); hence, the computed equilibrium ©-0 distance to 2.45 A and significantly
fit was of very high quality. The parameters of the PES are “flattens” the proton potentig®

listed in Table 1, and the surface is displayed in Figure 2.

A gas phase model of PANO has been found to yield results

Three distinct coordinate sets were used for solving the for the vibrations of the proton involved in the hydrogen bond

vibrational SE:

(a) th=r1 and Q=r2;
(b) Gi=r and Qo=r1 +ry;
(C) Qi=r— 12 and Qo=I1 + .

which differ considerably from those observed experimentally
in the solid state or solution. A harmonic frequency calculation
for the isolated molecule at the B3LYP/6-3#1+G(3df,3pd)
level of theory yieldsvoy = 2977 cnmil, whereas a two-
dimensional anharmonic frequency calculation along théHO

For each of the abovéq, g2} coordinate sets, the reduced stretching and @-O stretching coordinates givegy = 1733
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Figure 2. Potential energy surfaces (PESs) of the hydrogen difluoride anion (top) and picolinis-aside, PANO (bottom). The contours are
drawn at each 10 kcal/mol, and the inner contour corresponds to an energy lying 10 kcal/mol above the minimum of the PES.

TABLE 2: G-Matrix Elements (in amu~1) of Hydrogen Difluoride Anion in Three Different Coordinate Sets?

coordinate set G G* G2
@) (1, r2) 1.05263 (0.55263) 1.05263 (0.55263) —-1(-0.5)
(b) (r,ratr) 1.05263 (0.55263) 0.10526 (0.10526) 0.05263 (0.05263)
©)(ra—rzrit+ry) 4.10526 (2.10526) 0.10526 (0.10526) 0(0)

a2 The values in parentheses pertain to the deuterated analogue. See text for definition of the coordinate sets.

cm~1.80 We therefore decided to study the vibrational problem  Computational DetailsThe PES was calculated, one nuclear
of PANO within the solid-state model. In the present study, we geometry at a time, using the CdParrinello Molecular
address the two-dimensional-®1 stretching/bending vibrational ~ Dynamics program (CPMD v. 3.5.$353 A BLYP density
problem. We have chosen the bendidg{) mode to be the functional coupled with a plane wave basis set with an energy
second coordinate because the bending mode, although it hasutoff of 120 Rydbergs and a relativistic Goedecker pseudo-
not yet been well assigned, is believed to be located aroundpotentials were used. The periodicity of the system was fully
1500 cnt? (i.e., quite close to the center of the broad- taken into account in a way consistent with the crystallographic
stretching mode) and may be anharmonically coupled to the data®* The PES along the ©H distance ¢, = rop) and the
O—H stretching mode. In unpublished work, we observed traces C—O—H bending angled; = ¢) was evaluated for 340 nuclear
of anharmonic coupling betweeryy and don within the gas- geometriesroy was varied from 0.80 to 1.75 A, whereas
phase modéei! was varried between 70 and £5@nly the proton position was



7210 J. Phys. Chem. A, Vol. 107, No. 37, 2003 Stare and Balint-Kurti

TABLE 3: Calculated and Observed Vibrational Frequencies and Zero-Point Energies of the Hydrogen Difluoride Anion (All
Values in cnr1)2

level of calculation ZPE V1 V3 2 )
full HamiltoniarP 961 (742) 592 (597) 1369 (935) 1891 (1470)
no couplingé coordinate set (a) 1828 (1306) 2938 (2112) 896 (631) 3908 (2854)
no couplingt coordinate set (b) 978 (763) 584 (580) 1411 (990) 1928 (1510)
Spirko? 580 (587) 1315 (919) 1814 (1443)
Morokumg 595 (602) 1374 (956) 1904 (1502)
harmonié¢ 843 (695) 645 (644) 1041 (746) 1686 (1390)
experimental 583 (588) 1331 (934) 1848 (1469)

2Values in parentheses pertain to deuterated analogue. Please note that the zero-point energy of a harmonic osdillager w@B0 cn1?
corresponds to 500 crhor 1.429572 kcal/mol. See text for definition of the coordinate $at¢ith kinetic part given by eq 5 With kinetic part
given by eq 79 Reference 4% Reference 50.Calculated at the MP4(SDQ)/6-313-G(2d,2p) level of theory on a previously minimized structure.
9 Taken as 1/2( + v3). " References 37 and 39.
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Figure 3. Overlaid structures of picolinic acii-oxide, represented 0
in the center-of-mass Cartesian coordinate system, as appearing in the-0.002
calculation of the potential energy surface after elimination of -0.004
translational and rotational components from the nuclear motion. The -0.006
nuclei are represented as dot-centered circles. Note that the coordinate-o.008
zassumes a value of zero throughout, because the structure is planar.

displaced, whereas the other nuclei were fixed at their equilib-
rium positions. A two-dimensional spline interpolatf®acheme
was used to evaluate the potential energy at the grid points
needed in the dynamical calculations. The PES of PANO is
displayed in Figure 2. The values & were determined in
the same way as described for the hydrogen difluoride anion,
with the difference that rotational components of the nuclear &*amu™
motion were eliminated by rotating each particular nuclear
structure in order to satisfy the conditions of eq 19. This was
done just before performing the spline interpolation of the
Cartesian coordinates as a function of the internal coordinates.
Figure 3 displays the overlaid structures of PANO, arising in
the calculation of the PES, after elimination of translational and
rotational degrees of freedom. We again use a two-dimensional
spline interpolation procedure to evaluate the elementsrof

at each grid point in the internal coordinate space, just as we
did in the case of the potential energy surface. Finally, a grid
alongron andg was laid and optimized in the same way as in
the case of the FHE and the vibrational SE was solved. All
calculations were performed on a cluster of 24 dual-CPU PC/
Linux systems (AMD Athlon XP 1606 CPUs, 512 MB of
memory).

Figure 4. G-matrix elements (i.e., reciprocal reduced masses) of
IV. Results and Discussion picolinic acidN-oxide along the stretching and bending coordinates as
functions of internal coordinates. The contour$éf andG!2 are drawn
A. Hydrogen Difluoride Anion. Regardless of the coordinate  at each 0.001 anm, whereas those d&?2 are at each 0.1 ami In

set, in which the vibrational problem was formulated, e.g., (a), each case, one of the contours is labeled according to its actual value.
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Figure 5. Vibrational wave functions of FHE (a) ground state; (by, excited state (symmetric stretching); (e excited state (asymmetric
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TABLE 4: Fundamental Vibrational Frequencies (in cm™1)

(b), or (c), theG-matrix elements were found to have constant of Solid Picolinic Acid N-Oxide

values as a function of the internal coordinates. Therefore, eq _

4 for the kinetic part of the Hamiltonian of this system can be 1D full no , o coupling

simplified to eq 5 without any loss of accuracy. The values of ___models Hamiltoniat coupling constantS® and constanG®

the G-matrix elements within each of the above coordinate sets ¥1 1450 1299 1299 1386 1386

are listed in Table 2. The coordinate set c is clearly orthogonal *2 157% 1767 1767 1831 1831

and thus free of coupling; coordinates within this set are called  aThe potential energy surface was calculated at the BLYP DFT level

symmetry coordinatesnd were used by Almfd” in his studies and the periodic structure of the solid was taken into accéuMith

of the vibrational problem in FHFE Coordinate sets a and b kinetic part given by eq 4 With kinetic part given by eq 6! With

are not orthogonal and include a nonz&® coupling term. kmetu}:]_par; given by eg Eeglv_lt: t')('”ec}.'c p?rt given by eq 7.0-H

This coupling term is much larger in coordinate set a than in b, stretching frequency () ending frequency.

especially when judged relative to the values of the diagonal kinetic coupling still yields qualitatively correct results. In

elementsG!! and G.22 contrast, neglect of this coupling when using coordinate set (a)
Table 3 lists the vibrational frequencies computed in the produces completely wrong results, leading to an increase of

present work and also gives frequencies computed by otherv; by 396% and a decrease »f by 34%.

workers for comparison. Wave functions corresponding to the  B. Picolinic Acid N-Oxide. Unlike the case of the FHF

eigenstates listed in Table 3 are displayed in Figure 5. All three ion, we found that th&-matrix elements for PANO displayed

coordinate sets (a, b and c) yield virtually identical frequencies, a considerable coordinate dependence. This is particularly the

provided that the coupling terms were taken into account. Thesecase for the dependence GF2 on ron. Figure 4 shows the

calculations are referred to as the “full Hamiltonian” approach G-matrix elements as functions oy and¢. In contrast to the

in the table. The calculated frequencies compare very well both hydrogen difluoride anion, where the coupling term was of

with the previous calculations and with experimental values. significant importance for some choices of the internal coor-

The table clearly shows that a normal mode harmonic treatmentdinates, in PANO, the coupling term is small and has no

of the system yields completely unsatisfactory results. It significant effect on the final result&!! is always close to unity

overestimates; by 62 cnt! and underestimates by as much and G?? varies from 0.32 to 1.58G!, on the other hand,

as 290 cmi, assumes values betweer0.006 and 0.003, which may be
Omission of the coupling term from the Hamiltonian, i.e., considered negligible in comparison to the diagonal elements.

using eq 7 instead of eq 5 for the kinetic part of the Hamiltonian, = The frequencies of PANO, calculated using different ap-

shifts the calculated frequencies away from the experimental proximations for the kinetic energy operator are listed in Table

values. In the case of coordinate set b, the “no coupling” 4. Preliminary one-dimensional calculations along the stretching

approximation still yields reasonable values for the stretching and bending coordinates yielded the frequencies of 1450 and

frequencies. Although is shifted down by only 8 crrt, being 1577 cnv for stretching and bending, respectively. Combining

by chance in even better agreement with the experimental value these coordinates and solving the two-dimensional vibrational

vz is increased by 42 cm. For coordinate set (b) neglect of SE leads to a considerable shift of the frequencies. The two
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Figure 6. Vibrational wave functions of picolinic acitl-oxide: (a) ground state; (b) first excited statg){ (c) second excited state,j. The
corresponding two-dimensional contour plots are added for convenience.

lowest

1767 cmt! (v) above the ground state, respectively. This
corresponds to a shift of about 150 chdownward and 190
cm~t upward relative to the values obtained from the one-

excited states are now calculated to be at 129%fd dependence of thé matrix is significant and has an important

effect on the frequencies. If constant values of @Genatrix
elements are use®f = 1.01493 amu?, G = 0.91355 amu?,
G2 = 0.00038 amu!) corresponding to the equilibrium

dimensional model calculations. However, these two excited geometry, v; and v, are increased by 87 and 64 cin

states can no longer be clearly assigned as stretching andespectively. Nevertheless, the nature of the two excited states
bending, because both excited states possess approximatelgeems to remain unchanged: they both still have approximately
equal contributions of each of these internal coordinates (seeequal contributions of stretching and bending coordinates. The
6). increase of frequencies can readily be explained in the following
In contrast to the hydrogen difluoride anion, kinetic coupling way. The PES of PANO has a wide low-energy region at rather

Figure

in PANO has virtually no influence on the resulting frequencies large O-H distances (see Figure 2); at the same time Gke
and can be omitted. On the other hand, the coordinate term decreases significantly with the increasingtdistance
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(see Figure 4). Because tlematrix elements play the role of  cases, the calculated frequencies are in reasonable agreement
reciprocal reduced masses, this can be viewed as a substantiakith the experimental data. We have also shown that a further
increase of the reduced mass with the increasing valugof efficiency can be achieved by eliminating grid points which
Therefore, the system can be regarded as possessing an easilyorrespond to potential energy values above a chosen thres-
accessible region in which the reduced mass is considerablyhold!
larger than at the minimum of the PES, an effect that should The generalized FGH method has proved to provide a stable,
decrease the frequencies. Therefore, the frequencies, obtainefhst, and robust way for the evaluation of the Hamiltonian matrix
by assuming constant values of tBematrix elements, should  elements and for solving the vibrational Satlirger equation.
be larger than the ones calculated by taking account of its It can, in principle, be applied to vibrational problems of higher
coordinate-dependence. dimensionality. If this is done, the size of the matrices which
Because the vibrational bands of the-B---O moiety in must be diagonalized grows rapidly with increasing dimension-
PANO cannot all be fully assigned or characterized in the ality, and alternative techniques may have to be used for the
observed infrared spectruthiye cannot easily deduce how well  diagonalization step. In such cases, it may be necessary to resort
the calculated stretching and bending frequencies agree withto iterative diagonalization techniques to compute a limited
the experimental data. The two frequenciesof 1299 cnr? number of the lowest eigenvalu&* Application of some
andv,; = 1767 cnt! in general fit into the broad absorption aspects of the formalism developed herein to enhanced DVR
range of the observed spectrum, though the value,seems  methods, such as the potential-optimized DY is also
to be somewhat low anegb somewhat high. On the other hand, possible. The most critical, computationally limiting part of the
the value ofv; calculated using thecbnstant-G approximation calculation is however the necessity of evaluating the potential
(v1 = 1386¢nTY) is nearer to what is believed to be the center energy at a very large number of grid points in the internal
of the O-H stretching mode; however, the other calculated coordinate space, because the potential energy surface should
frequency ofv, = 1831 cn1! fits less well into the broad  normally be evaluated pointwise by computationally expensive
experimentally observed absorption region (16@800 cnm?). high-level ab initio or DFT calculations.
Calculations within the present model indicate very strong
anharmonic potential-energy coupling between the stretching Acknowledgment. Financial support from the Ministry of
and bending modes (the kinetic coupling is, as shown, negli- Education, Science and Sports of the Republic of Slovenia is
gible). Nevertheless, there are other relevant modes that takegratefully acknowledged. Warm thanks are due to Prof.abus
part in the vibrations of the ©H-:+O moiety. These other = Hadi and Dr. Janez Mavri, National Institute of Chemistry,

modes, namely, those involving -©@0, C=0, and N-O Ljubljana, Slovenia, for many stimulating discussions and
motions, should be taken into account in a more complete studycritical reading of the manuscript. We thank the EPSRC for
of the vibrations of PANO. the provision of funds to purchase the computers on which part

of this work was performed.
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