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A derivation of the vibrational Hamiltonian in generalized (internal) coordinates within a grid representation
using the Fourier Grid Hamiltonian (FGH) method is presented. The objective of the theory is to make possible
the solution of vibrational problems in two or more dimensions in terms of internal coordinates. These
coordinates are often the ones of choice when the vibrations of interest are localized or when only selected
coordinates are considered in a larger system. As in the case of the original FGH method, the matrix elements
are easy to evaluate in a fast and robust manner. The method is tested on two different molecular systems,
FHF- and picolinic acidN-oxide, both containing strong hydrogen bonds. The illustrative problems are two-
dimensional and are highly anharmonic. The importance of both the coupling terms, as well as the variable
reduced masses, required by the formulation of the Hamiltonian in generalized coordinates, are examined,
and the formalism is shown to be robust in that identical results are obtained using different sets of internal
coordinates applied to the same physical problem. Good agreement between calculated and observed vibrational
frequencies is also obtained.

I. Introduction

Hydrogen bonds are known to be highly anharmonic, and in
general, a normal mode harmonic treatment of the vibrations
of such bonds does not yield reliable results for the vibrational
frequencies. An improved treatment, beyond the harmonic
approximation, requires a more exact solution of the time-
independent vibrational Schro¨dinger equation (SE). When the
vibrational motion is localized or when we wish to restrict the
analysis of the problem to a subset of the total number of degrees
of freedom, it is often most convenient to perform the dynamics
in terms of local internal coordinates. The ab initio calculation
of the potential energy surface in such a case is best performed
in the same internal coordinates. The disadvantage in using
generalized local coordinates as compared with Cartesian or
normal mode coordinates lies in the complexity of the form of
the kinetic energy operator.1-3 This operator contains both mixed
derivative terms and aG matrix, which may be viewed as a set
of coordinate-dependent reduced masses.

The Fourier grid Hamiltonian4 (FGH) method was introduced
in 1989 and has proved a remarkably easy and robust method
for computing the vibrational motion of one-dimensional
systems.5-8 Two maintained Internet web sites9,10 are available
where a computer code based on the method can be used to
solve one-dimensional vibrational problems. A modified form
of the method has been suggested,11 and it has been extended
to three dimensions.12 A “mapped” version of the method,
suitable for calculations involving long range and Coulomb
forces, has been developed13 and extensively used.14-17 The
FGH method has been used in conjunction with complex optical

potentials18 to calculate predissociation line widths and in
conjunction with complex scaling methods to study multiphoton
above threshold dissociation.19 Webb and Hammes-Schiffer20

have developed a multiconfigurational self-consistent-field
version of the method and have applied it to hydrogen tunneling
problems. The method has been used in conjunction with time-
dependent quantum theory to study photodissociation pro-
cesses,21,22 in conjunction with R-matrix theory to develop a
new L2 approach to scattering theory23,24and to study methods
of stabilizing Feschbach resonances to form ultracold mol-
ecules.25 In the present paper, we seek to extend the method so
that it may be used in conjunction with generalized internal
coordinates and, in principle, for any number of dimensions.

The theory needed for the generalization of the FGH method
is developed in section II. Some discussion concerning the
calculation of theG matrix (or the coordinate-dependent reduced
masses) is also given in this section. Section III describes two
test problems, both involving strong intramolecular hydrogen
bonds, which are known to be highly anharmonic and require
an accurate solution of the SE for their correct description. They
are respectively (i) the hydrogen difluoride anion and (ii)
picolinic acidN-oxide. Both examples involve the solution of
a two-dimensional vibrational problem in several different sets
of generalized internal coordinates, the different sets of coor-
dinates giving rise to different mixed derivative terms andG
matrices. Section IV presents the results of our test calculations
using the generalized FGH method and compares results for
the same system carried out using different coordinates. Section
V presents some concluding remarks.

II. Theory

A. Schro1dinger Equation in Generalized Coordinates.The
formalism for transforming the quantum Hamiltonian operator
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from Cartesian coordinates to generalized coordinates was first
proposed by Podolsky in 1928.1 For recent critical discussion
concerning the problem of coordinate transformation, see Schaad
and Hu.3

The vibrational Schro¨dinger equation can be written in terms
of Cartesian coordinates of the atoms,{x}, where{x} ≡ xi, i )
1, ..., 3N, and N is the number of nuclei involved in the
vibrational problem. The corresponding Hamiltonian is

where mi is the mass of the nucleus associated with theith

Cartesian coordinate andV is the potential energy. The subscript
x on the symbolĤx refers to the coordinate system in which
the operator is represented (e.g., Cartesian). We will use this
notation for other coordinate systems as well. This paper is
concerned with the use of a grid representation, and the potential
energy operator is a simple multiplicative operator in such a
representation. From now on, therefore, our attention will be
focused on the kinetic energy operator.

Besides atomic Cartesian coordinates, which are clearly the
simplest from a mathematical viewpoint, there are other
coordinates, such as the normal or internal coordinates, which
are much more suitable for treating vibrational problems. The
challenge is then to rewrite eq 1 for a set of generalized
coordinates,{q}, which should include internal coordinates such
as interatomic distances, valence and torsional angles, as well
as normal coordinates, symmetry coordinates, or coordinates
of any other type. Podolsky1 showed that the kinetic energy
operator, represented in a general set of coordinates{q}, should
take the form:

In the above equation,j is the determinant of the Jacobian
transformation matrix between{x} and{q}, j ) det| Jij|, where
Jij ) ∂xi/∂qj. M is the number of coordinates taken into account
andGrs is the element of the kinetic energy matrix, introduced
by Wilson2 (also known asG matrix), and is equal to:

TheG matrix is symmetric,Gsr ) Grs, and its matrix elements
may be regarded as corresponding to reciprocal reduced masses.
Unlike its Cartesian analogue, the kinetic energy operator in
eq 2 includes mixed second derivatives, known as kinetic
coupling terms. Moreover, all of the termsj, j-1/2, andGrs are,
in general, functions of the coordinates in the set{q}; thus,
they should be included in the differentiation. If we assume26

that the coordinate dependence of the Jacobian determinant,j,
is much smaller than the dependence of a particular individual
componentGrs, eq 2 takes on the simplified form:

A further approximation could be to assume that the elements

of the WilsonG matrix are constant. The resulting kinetic energy
operator is:

Alternatively, one could still retain the coordinate dependence
of the Wilson G-matrix elements, but neglect the kinetic
coupling terms; hence, by omitting the mixed second derivatives
from eq 4, we obtain:

Finally, we may combine both the “constant-G” and the “no
kinetic coupling” approximation, yielding practically the same
expression as for the Hamiltonian expressed in Cartesian
coordinates (eq 1):

Among the possible levels of simplification of the original
Podolsky expression for the kinetic energy operator (eq 2),
the one yielding eq 4 is reasonable and generally acceptable.
This is, however, not always true for the “constant-G” or
for the “no kinetic coupling” approximation (eqs 5-7)
(vide infra). When discussing techniques for solving the
Schrödinger equation, we will, if not otherwise stated, use
the kinetic energy operator given in eq 4. Note also that,
although we will apply our treatment to handle vibrational
problems in terms of internal coordinates, any other type of
coordinate may be used in the approach we develop
below. Furthermore, the treatments we develop in this paper
for a FGH representation of the approximate forms of the kinetic
energy operator represented by eqs 4-7 may readily be
generalized to encompass also the exact form of eq 2, which
may be needed if the approximate forms give rise to significant
errors.

B. Fourier Grid Hamiltonian Method in Generalized
Coordinates.The original derivation of the FGH method4 was
based on the formalism of Dirac28 in which the operators could
be expressed in either the coordinate, or Schro¨dinger, repre-
sentation or in the momentum representation. The transforma-
tions between these two representations constituted a key aspect
of this derivation. The theory outlined in the preceding section
(i.e., eqs 1-7) is expressed within the Schro¨dinger representa-
tion, and for consistency, we will remain within this representa-
tion in the derivation given here.

We will concentrate on the form of the kinetic energy operator
given in eq 4 and on its action on a wave function. The term
on the right-hand side of the summation signs in eq 4 involves
only two active coordinates at a time, thoughGrs is a function
of all of the coordinates. We first consider the action of a partial
differential operator on a wave function. We will need to use
the Fourier representation of the Dirac delta function.28,29This
is:
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where we have taken the range ofk to be-∞ e x e +∞ and
we will take the range ofx to be 0e x e ∞.

We will now discretize bothk andx on uniform grids. We will
use an odd number of grid points as this is needed to obtain a
real form for the matrix representation of the first derivative
operator (eq 9) in the grid representation. If the length of the
coordinate grid is taken to beL and there areN grid points
(noteN is odd), the grid spacing is given by∆x ) L/N and the
value of the coordinate for thejth grid point is given byxj )
j∆x.

The spacing in the momentum grid is given by30 ∆k ) 2π/L.
The values ofk are evenly distributed about zero, ranging from
k ) -n∆k to k ) +n∆k, wheren ) (N - 1)/2. Using all of
these definitions, we can write the value of the partial differential
at thejth grid point as:

whereψt ) ψ(xt) and we can identify the term in braces, which
is the (j, t)th element of a matrix, as the grid representation of
the first derivative operator. We can therefore write:

The summation in eq 11 may be performed analytically (see
eq 1.352 of ref 31) to yield:

A similar derivation leads to the following expression for the
grid representation of the second derivative:

We can now address the form of the grid representation of
the “Variable-G” form of the kinetic energy operator (eq 4).
The grid representation of this operator can be written as

The notationqr,µr indicates the grid pointµr of the coordinate
qr andGrs(qr,µ′r, qs,µs;qi,µi) indicates that, among the arguments
of Grs, theqi,µi term stands for all of the coordinates other than
the “running” coordinatesqr andqs, i.e., i * r, s. Similarly, the
grid representation of the kinetic energy operator for the
“constant-G” approximation (see eq 5) takes the form

The grid representation of the potential energy is just the
potential energy evaluated at the grid points:

The overall Hamiltonian in the grid representation is then
just the sum of the kinetic energy and the potential energy terms
(i.e., eqs 14 plus 16 or eqs 15 plus 16. The vibrational
eigenvalues and eigenfunctions are obtained by diagonalizing
this grid representation of the Hamiltonian matrix. The resulting
eigenvectors,ψλ, are normalized according to:

The dimensionality of the vibrational problem can pose severe
limitations to the applicability of this approach to problems
involving more than a few dimensions. It is at present difficult
to treat a vibrational problem in more than two dimensions by
using the above generalized FGH method because of the
limitations of computer memory. Although it is possible to
overcome this limitation by using iterative diagonalization

∂
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techniques,32 the problem of evaluating the potential energy
surface (normally by pointwise ab initio or density functional
theory (DFT) calculations) remains a bottleneck and normally
limits the number of dimensions that can still be treated by this
approach to about six.

C. Calculation of Grs. The evaluation of theG matrix, eq 3,
requires a knowledge of the mutual dependence between the
Cartesian and the internal coordinates. Clearly, theGrs elements
will in general be functions of the internal coordinates. To
account for this functional dependence, one needs to evaluate
the Grs functions over some appropriate range of the internal
coordinates of interest. From eq 3, it follows that the dependence
of the internal coordinatesqr and qs on the complete set of
Cartesian coordinates must be known in order to calculate a
particularGrs function and its derivatives. The most practical
way of doing this is to extract the system geometries simulta-
neously with the pointwise determination of the potential energy
function.

To deal with a pure vibrational problem, one needs to remove
translational and rotational degrees of freedom from the overall
nuclear motion. This can be done by enforcing the Eckart33

conditions for each nuclear conformation of the system con-
sidered. Each particular conformation is translated and rotated
with respect to the reference structure (which may be, but is
not necessarily, the minimum energy structure) in order to satisfy
the following equations of constraint

In the expressions above,rR
0 denotes the position vector of the

Rth atom in the reference geometry with respect to the center
of mass of the system, anddR is the displacement vector of the
Rth atom from its position in the reference geometry. Note that
the product in eq 18 is the dot (scalar) product of vectorsdR

and rR
0, whereas that in eq 19 is the cross (vector) product.

Having ensured that all of the displacements conform to the
Eckart conditions, one can evaluate the derivatives of the type
∂qr/∂xi and calculate theG-matrix elements by using eq 3. As
an alternative to doing this, it is possible to first calculate the
elements of the inverse of theG matrix, Grs, where:

The values ofGrs are then obtained by inverting the matrix of
Grs. This procedure is based on that introduced by Alexandrov
et al.34 The main advantage of this approach, as compared with
the direct evaluation of eq 3, is that it takes full account for the
“coupling” between all possible pairs of internal and Cartesian
coordinates (qr andxi), caused by imposing the Eckart condi-
tions. In eq 20, the internal coordinates are the independent
variables, whereas the Cartesian coordinates are the dependent
variables. Evaluation of the derivative∂xi/∂qr thus requires first
making a small variation of the internal coordinate,δqr, then
imposing the Eckart conditions on the structure resulting from
the distortion, and finally calculating the resulting change of
the Cartesian coordinates,δxi. The key point is that a variation
of the internal coordinate of interest affects all of the Cartesian
coordinates of the system through the imposition of the Eckart

constraints. Therefore, all of the derivatives∂xi/∂qr in general
assume nonzero values. On the other hand, in eq 3, the Cartesian
coordinates are the independent and the internal coordinates are
the dependent variables. Thus, when evaluating the derivative
∂qr/∂xi, one should first make a variation of the Cartesian
coordinate,δxi, and calculate the resulting change in the internal
coordinate,δqr, after imposing the constraints required by the
Eckart conditions. Imposition of the Eckart conditions will, in
this case, affect only the Cartesian coordinates but none of the
internal ones and the only nonzero derivatives in eq 3 arise when
the definition ofqr itself involves the Cartesian coordinatexi.
For these reasons, the application of eq 20, followed by matrix
inversion, is the method of choice for the calculation ofGrs for
pure vibrational coordinates.

III. Model Systems and Computational Details

A. Hydrogen Difluoride Anion in the Gas Phase. The
hydrogen difluoride anion probably features the strongest and
shortest hydrogen bond of any chemical species. The F‚‚‚F
separation determined from gas-phase experiments35 is 2.2777
Å, and the hydrogen bond dissociation energy is 45.8 kcal/mol.36

The equilibrium structure is linear with the proton located in
the middle symmetrically between the fluorines.

The infrared spectrum37 of FHF- in the gas phase shows three
fundamental bands:ν1(σg

+) at 583 cm-1 (symmetric stretch-
ing), ν2(πu) at 1286 cm-1 (bending), andν3(σu

+) at 1331 cm-1

(asymmetric stretching). The latter was initially believed to be
at a much higher frequency, 1848 cm-1,35 but because of the
large discrepancy with computationally determined values,38 the
band at 1848 cm-1 was reassigned as theν1 + ν3 overtone.
The infrared spectrum of the deuterated analogue (FDF-) has
been recorded and assigned in a similar way.39 For more
references to experimental studies on FHF-, the reader is
referred to ref 35. For recent ultrafast pump-probe spectroscopy
studies of the FHF entity in pyridine-(HF)2 complexes, see ref
40.

There have been many computational studies devoted to the
FHF- system. Analyses of the potential energy surface (PES)
and the hydrogen bond dissociation energy have shown that
high level ab initio methods, rather than DFT, should be used
for reliable calculations, together with large basis sets of at least
valence triple-zeta quality.41-46

The vibrational problem for the hydrogen difluoride anion
has been thoroughly discussed by several authors.47-50 Since
1972, a number of high-quality calculations, which have gone
beyond the harmonic approximation, have been performed.
Almlöf 47 performed a variational two-dimensional calculation
of the vibrational problem for collinear FHF- in the orthogonal
symmetry coordinates (Q1 ) r1 - r2 andQ2 ) r1 + r2, where
r1 andr2 are the two F-H distances). Janssen et al.38 determined
the vibrational levels and wave functions using normal coor-
dinates and a three-dimensional quartic potential. A vibrational
self-consistent field method51 was first performed and was
followed by a vibrational configuration interaction calculation.
Špirko et al.49 used a rather sophisticated set of rectilinear
vibrational coordinates in conjunction with the Watson isomor-
phic Hamiltonian52 in a three-dimensional treatment of the
vibrational problem. Yamashita et al.50 used hyperspherical
coordinates combined with a mixed discrete variable-finite basis
representation and applied an adiabatic separation between the
“heavy-atom” (symmetric stretching) and other vibrational
modes. All of the authors used PESs computed using highly
correlated ab initio methods coupled with large orbital basis
sets. Their findings, especially those in refs 49 and 50, are in

∑
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good agreement with experiment and suggest a high degree of
anharmonicity for the asymmetric stretching mode and strong
coupling between the asymmetric stretching and bending modes.
The bending mode, however, exhibits virtually no deviation from
harmonicity.

The purpose of our work is not further improvement of the
reliability of such calculations but rather a demonstration that
vibrational problems can be reliably treated in terms of a very
simple set of internal coordinates. The example of FHF- nicely
illustrates the necessity of proper inclusion of the coupling terms
in the kinetic energy part of the vibrational Hamiltonian.

Computational Details.The PES was evaluated by performing
calculations at 422 collinear geometries of the F-H-F- system
using the MP4(SDQ)/6-311++G(2d,2p) level of theory. The
calculations were performed using the Gaussian 9853 computer
code, and the H-F separations,r1 andr2, were varied over the
range 0.8-2.5 Å. The PES was fitted to an analytical function
of the formV(r1, r2) ) Vc - ∑i)1

12 Nie-Ri
2(r1-r 1

i,0)2e-âi
2(r2-r 2

i,0)2. The
12 two-dimensional Gaussian functions in this expansion are
divided into two groups of six, guaranteeing compliance with
the symmetry conditionV(r1, r2) ) V(r2, r1). All of the
exponential factors (Ri,âi), the centers of the Gaussians (r1

i,0,
r2

i,0), the coefficients (Ni), and the constant term (Vc) were
optimized using a nonlinear least squares procedure. The average
fitting error was 0.0211 kcal/mol per point in the lowest 20
kcal/mol region of the PES (relative to minimum); hence, the
fit was of very high quality. The parameters of the PES are
listed in Table 1, and the surface is displayed in Figure 2.

Three distinct coordinate sets were used for solving the
vibrational SE:

For each of the above{q1, q2} coordinate sets, the reduced

masses were calculated as follows. All of the 422 structures
appearing in the pointwise calculation of the PES were
represented in the center-of-mass Cartesian coordinate system,
hence satisfying eq 18. Because all of these structures were
linear with onlyx atomic coordinates assuming nonzero values,
there was no need of decoupling the rotational degrees of
freedom. Next, for each possible constant value ofq2, each of
the atomic Cartesian coordinatesxi was 1D spline-interpolated
alongq1 and the∂xi/∂q1 derivatives were evaluated at each of
theq1 values. The same procedure was repeated with changed
roles betweenq1 andq2 in order to obtain∂xi/∂q2. TheGrs matrix
elements were calculated using eq 20 for each particular
structure; theGrs elements were obtained by inverting the matrix
of Grs.

Finally, for each coordinate set, a two-dimensional grid was
laid alongq1 andq2 in such a way that at least the lowest 100
kcal/mol portion of the PES (relative to the global minimum)
was completely covered by the grid and the vibrational SE was
solved. The grid resolution, i.e., the number of basis functions,
was optimized for the lowest 20 eigenvalues within 1 cm-1

precision; that is, we found the minimal grid resolution, for
which the resulting 20 lowest eigenvalues differ less than 1 cm-1

from the reference results. The latter were obtained by using a
grid of much higher resolution (101 grid points per each
dimension). Typically, we found the convergent grid resolution
to be about 41 by 41. In addition, we reduced the Hamiltonian
matrix size by discarding the grid points with the potential
energy higher than a certain threshold11 that we set to 100 kcal/
mol. By discarding the high energy region basis functions, we
considerably reduced the Hamiltonian matrix size (up to 50%),
and thus the CPU time required for diagonalization, without
altering the lower range of the eigenvalues, relevant for
vibrational spectroscopy.

B. Picolinic Acid N-Oxide in the Solid State.Picolinic acid
N-oxide (PANO, Figure 1) contains a very short O-H‚‚‚O
hydrogen bond with an asymmetric single well proton potential.
The structure of crystalline PANO has been well resolved by
X-ray54 and neutron55 diffraction. The X-ray determined O‚‚‚O
distance is 2.425 Å. Infrared spectra of PANO, either in the
solid state or in solution (using various solvents),56 feature a
broad absorption in the range between 1000 and 1800 cm-1,
which has been assigned to the O-H stretching mode. NMR
studies provide additional evidence for a strong, short hydrogen
bond, with the chemical shift of the hydrogen-bonded proton
being about 18 ppm in solutions using different solvents.57,58

Recent ab initio and DFT calculations on PANO have shown
that proper inclusion of the crystal field is essential to obtain
reasonable agreement with experiment for the geometry of
PANO, as well as for the shape of the proton potential. The
O‚‚‚O distance in the optimized geometry of an isolated
molecule was found to be greater than 2.50 Å, no matter what
level of theory was used, compared to 2.43 Å, determined by
the X-ray and neutron diffraction. Introducing periodicity into
DFT calculations using the Car-Parrinello method shifts the
computed equilibrium O‚‚‚O distance to 2.45 Å and significantly
“flattens” the proton potential.59

A gas phase model of PANO has been found to yield results
for the vibrations of the proton involved in the hydrogen bond
which differ considerably from those observed experimentally
in the solid state or solution. A harmonic frequency calculation
for the isolated molecule at the B3LYP/6-311++G(3df,3pd)
level of theory yieldsνOH ) 2977 cm-1, whereas a two-
dimensional anharmonic frequency calculation along the O-H
stretching and O‚‚‚O stretching coordinates givesνOH ) 1733

TABLE 1: Fitted Parameters of the Gaussian-Type
Potential Energy Surface of the Linear Hydrogen Difluoride
Aniona

i Ni [kcal/mol] Ri[Å -1] âi [Å -1] r1
i,0 [Å] r2

i,0 [Å]

1 688.093744 0.286313 0.757860 2.217042 0.908539
2 6025.414202 2.907677 2.904287-0.103445 0.568055
3 3643.870535 8.151267 1.077136-0.042802 1.240373
4 1653.010505 1.933486 735.167507 1.467196-0.001189
5 1889.030488 0.584252 3.096505 1.806931 0.140254
6 2018.253942 2.798651 0.246531 0.429166-2.189854
7 688.093744 0.757860 0.286313 0.908539 2.217042
8 6025.414202 2.904287 2.907677 0.568055-0.103445
9 3643.870535 1.077136 8.151267 1.240373-0.042802

10 1653.010505 735.167507 1.933486-0.001189 1.467196
11 1889.030488 3.096505 0.584252 0.140254 1.806931
12 2018.253942 0.246531 2.798651-2.189854 0.429166

a The analytical form readsV(r1, r2) ) Vc - ∑i)1
12 Nie-Ri

2(r1-r 1
i,0)2

e-â
i
2(r2-r 2

i,0)2, whereVc is the constant term (Vc ) 12649.257711 kcal/
mol), and for each particular GaussianNi is its coefficient,Ri andâi

are the exponential constants, andr1
i,0 andr2

i,0 are the coordinates of its
center. The two internal coordinatesr1 and r2 correspond to the two
F-H distances.

Figure 1. Structure of picolinic acidN-oxide (PANO) and the O-H
stretching and bending internal coordinates.

(a) q1≡r1 and q2≡r2;
(b) q1≡r1 and q2≡r1 + r2;
(c) q1≡r1 - r2 and q2≡r1 + r2.
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cm-1.60 We therefore decided to study the vibrational problem
of PANO within the solid-state model. In the present study, we
address the two-dimensional O-H stretching/bending vibrational
problem. We have chosen the bending (δOH) mode to be the
second coordinate because the bending mode, although it has
not yet been well assigned, is believed to be located around
1500 cm-1 (i.e., quite close to the center of the broad O-H
stretching mode) and may be anharmonically coupled to the
O-H stretching mode. In unpublished work, we observed traces
of anharmonic coupling betweenνOH andδOH within the gas-
phase model.61

Computational Details.The PES was calculated, one nuclear
geometry at a time, using the Car-Parrinello Molecular
Dynamics program (CPMD v. 3.5.1).62,63 A BLYP density
functional coupled with a plane wave basis set with an energy
cutoff of 120 Rydbergs and a relativistic Goedecker pseudo-
potentials were used. The periodicity of the system was fully
taken into account in a way consistent with the crystallographic
data.54 The PES along the O-H distance (q1 ≡ rOH) and the
C-O-H bending angle (q2 ≡ æ) was evaluated for 340 nuclear
geometries.rOH was varied from 0.80 to 1.75 Å, whereasæ
was varried between 70 and 150°. Only the proton position was

Figure 2. Potential energy surfaces (PESs) of the hydrogen difluoride anion (top) and picolinic acidN-oxide, PANO (bottom). The contours are
drawn at each 10 kcal/mol, and the inner contour corresponds to an energy lying 10 kcal/mol above the minimum of the PES.

TABLE 2: G-Matrix Elements (in amu-1) of Hydrogen Difluoride Anion in Three Different Coordinate Setsa

coordinate set G11 G22 G12

(a) (r1, r2) 1.05263 (0.55263) 1.05263 (0.55263) -1 (-0.5)
(b) (r1, r1 + r2) 1.05263 (0.55263) 0.10526 (0.10526) 0.05263 (0.05263)
(c) (r1 - r2, r1 + r2) 4.10526 (2.10526) 0.10526 (0.10526) 0 (0)

a The values in parentheses pertain to the deuterated analogue. See text for definition of the coordinate sets.
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displaced, whereas the other nuclei were fixed at their equilib-
rium positions. A two-dimensional spline interpolation30 scheme
was used to evaluate the potential energy at the grid points
needed in the dynamical calculations. The PES of PANO is
displayed in Figure 2. The values ofGrs were determined in
the same way as described for the hydrogen difluoride anion,
with the difference that rotational components of the nuclear
motion were eliminated by rotating each particular nuclear
structure in order to satisfy the conditions of eq 19. This was
done just before performing the spline interpolation of the
Cartesian coordinates as a function of the internal coordinates.
Figure 3 displays the overlaid structures of PANO, arising in
the calculation of the PES, after elimination of translational and
rotational degrees of freedom. We again use a two-dimensional
spline interpolation procedure to evaluate the elements ofGrs

at each grid point in the internal coordinate space, just as we
did in the case of the potential energy surface. Finally, a grid
alongrOH andæ was laid and optimized in the same way as in
the case of the FHF-, and the vibrational SE was solved. All
calculations were performed on a cluster of 24 dual-CPU PC/
Linux systems (AMD Athlon XP 1600+ CPUs, 512 MB of
memory).

IV. Results and Discussion

A. Hydrogen Difluoride Anion. Regardless of the coordinate
set, in which the vibrational problem was formulated, e.g., (a),

TABLE 3: Calculated and Observed Vibrational Frequencies and Zero-Point Energies of the Hydrogen Difluoride Anion (All
Values in cm-1)a

level of calculation ZPE ν1 ν3 ν1 + ν3

full Hamiltonianb 961 (742) 592 (597) 1369 (935) 1891 (1470)
no coupling;c coordinate set (a) 1828 (1306) 2938 (2112) 896 (631) 3908 (2854)
no coupling;c coordinate set (b) 978 (763) 584 (580) 1411 (990) 1928 (1510)
Špirkod 580 (587) 1315 (919) 1814 (1443)
Morokumae 595 (602) 1374 (956) 1904 (1502)
harmonicf 843g (695) 645 (644) 1041 (746) 1686 (1390)
experimentalh 583 (588) 1331 (934) 1848 (1469)

a Values in parentheses pertain to deuterated analogue. Please note that the zero-point energy of a harmonic oscillator withpω0 ) 1000 cm-1

corresponds to 500 cm-1 or 1.429572 kcal/mol. See text for definition of the coordinate sets.b With kinetic part given by eq 5.c With kinetic part
given by eq 7.d Reference 49.e Reference 50.f Calculated at the MP4(SDQ)/6-311++G(2d,2p) level of theory on a previously minimized structure.
g Taken as 1/2(ν1 + ν3). h References 37 and 39.

Figure 3. Overlaid structures of picolinic acidN-oxide, represented
in the center-of-mass Cartesian coordinate system, as appearing in the
calculation of the potential energy surface after elimination of
translational and rotational components from the nuclear motion. The
nuclei are represented as dot-centered circles. Note that the coordinate
z assumes a value of zero throughout, because the structure is planar.

Figure 4. G-matrix elements (i.e., reciprocal reduced masses) of
picolinic acidN-oxide along the stretching and bending coordinates as
functions of internal coordinates. The contours ofG11 andG12 are drawn
at each 0.001 amu-1, whereas those ofG22 are at each 0.1 amu-1. In
each case, one of the contours is labeled according to its actual value.
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(b), or (c), theG-matrix elements were found to have constant
values as a function of the internal coordinates. Therefore, eq
4 for the kinetic part of the Hamiltonian of this system can be
simplified to eq 5 without any loss of accuracy. The values of
theG-matrix elements within each of the above coordinate sets
are listed in Table 2. The coordinate set c is clearly orthogonal
and thus free of coupling; coordinates within this set are called
symmetry coordinatesand were used by Almlo¨f 47 in his studies
of the vibrational problem in FHF-. Coordinate sets a and b
are not orthogonal and include a nonzeroG12 coupling term.
This coupling term is much larger in coordinate set a than in b,
especially when judged relative to the values of the diagonal
elements,G11 andG.22

Table 3 lists the vibrational frequencies computed in the
present work and also gives frequencies computed by other
workers for comparison. Wave functions corresponding to the
eigenstates listed in Table 3 are displayed in Figure 5. All three
coordinate sets (a, b and c) yield virtually identical frequencies,
provided that the coupling terms were taken into account. These
calculations are referred to as the “full Hamiltonian” approach
in the table. The calculated frequencies compare very well both
with the previous calculations and with experimental values.
The table clearly shows that a normal mode harmonic treatment
of the system yields completely unsatisfactory results. It
overestimatesν1 by 62 cm-1 and underestimatesν3 by as much
as 290 cm-1.

Omission of the coupling term from the Hamiltonian, i.e.,
using eq 7 instead of eq 5 for the kinetic part of the Hamiltonian,
shifts the calculated frequencies away from the experimental
values. In the case of coordinate set b, the “no coupling”
approximation still yields reasonable values for the stretching
frequencies. Althoughν1 is shifted down by only 8 cm-1, being
by chance in even better agreement with the experimental value,
ν3 is increased by 42 cm-1. For coordinate set (b) neglect of

kinetic coupling still yields qualitatively correct results. In
contrast, neglect of this coupling when using coordinate set (a)
produces completely wrong results, leading to an increase of
ν1 by 396% and a decrease ofν3 by 34%.

B. Picolinic Acid N-Oxide. Unlike the case of the FHF-

ion, we found that theG-matrix elements for PANO displayed
a considerable coordinate dependence. This is particularly the
case for the dependence ofG22 on rOH. Figure 4 shows the
G-matrix elements as functions ofrOH andæ. In contrast to the
hydrogen difluoride anion, where the coupling term was of
significant importance for some choices of the internal coor-
dinates, in PANO, the coupling term is small and has no
significant effect on the final results.G11 is always close to unity
and G22 varies from 0.32 to 1.58.G12, on the other hand,
assumes values between-0.006 and 0.003, which may be
considered negligible in comparison to the diagonal elements.

The frequencies of PANO, calculated using different ap-
proximations for the kinetic energy operator are listed in Table
4. Preliminary one-dimensional calculations along the stretching
and bending coordinates yielded the frequencies of 1450 and
1577 cm-1 for stretching and bending, respectively. Combining
these coordinates and solving the two-dimensional vibrational
SE leads to a considerable shift of the frequencies. The two

Figure 5. Vibrational wave functions of FHF-: (a) ground state; (b)ν1 excited state (symmetric stretching); (c)ν3 excited state (asymmetric
stretching); (d) combined excited state (ν1 + ν3 overtone).

TABLE 4: Fundamental Vibrational Frequencies (in cm-1)
of Solid Picolinic Acid N-Oxide

1D
models

full
Hamiltonianb

no
couplingc constant-Gd

no coupling
and constant-Ge

ν1 1450f 1299 1299 1386 1386
ν2 1577g 1767 1767 1831 1831

a The potential energy surface was calculated at the BLYP DFT level
and the periodic structure of the solid was taken into account.b With
kinetic part given by eq 4.c With kinetic part given by eq 6.d With
kinetic part given by eq 5.e With kinetic part given by eq 7.f O-H
stretching frequency.g (C)-O-H bending frequency.
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lowest excited states are now calculated to be at 1299 (ν1) and
1767 cm-1 (ν2) above the ground state, respectively. This
corresponds to a shift of about 150 cm-1 downward and 190
cm-1 upward relative to the values obtained from the one-
dimensional model calculations. However, these two excited
states can no longer be clearly assigned as stretching and
bending, because both excited states possess approximately
equal contributions of each of these internal coordinates (see
Figure 6).

In contrast to the hydrogen difluoride anion, kinetic coupling
in PANO has virtually no influence on the resulting frequencies
and can be omitted. On the other hand, the coordinate

dependence of theG matrix is significant and has an important
effect on the frequencies. If constant values of theG-matrix
elements are used (G11 ) 1.01493 amu-1, G22 ) 0.91355 amu-1,
G12 ) 0.00038 amu-1) corresponding to the equilibrium
geometry, ν1 and ν2 are increased by 87 and 64 cm-1,
respectively. Nevertheless, the nature of the two excited states
seems to remain unchanged: they both still have approximately
equal contributions of stretching and bending coordinates. The
increase of frequencies can readily be explained in the following
way. The PES of PANO has a wide low-energy region at rather
large O-H distances (see Figure 2); at the same time, theG22

term decreases significantly with the increasing O-H distance

Figure 6. Vibrational wave functions of picolinic acidN-oxide: (a) ground state; (b) first excited state (ν1); (c) second excited state (ν2). The
corresponding two-dimensional contour plots are added for convenience.
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(see Figure 4). Because theG-matrix elements play the role of
reciprocal reduced masses, this can be viewed as a substantial
increase of the reduced mass with the increasing value ofrOH.
Therefore, the system can be regarded as possessing an easily
accessible region in which the reduced mass is considerably
larger than at the minimum of the PES, an effect that should
decrease the frequencies. Therefore, the frequencies, obtained
by assuming constant values of theG-matrix elements, should
be larger than the ones calculated by taking account of its
coordinate-dependence.

Because the vibrational bands of the O-H‚‚‚O moiety in
PANO cannot all be fully assigned or characterized in the
observed infrared spectrum,56 we cannot easily deduce how well
the calculated stretching and bending frequencies agree with
the experimental data. The two frequencies ofν1 ) 1299 cm-1

and ν2 ) 1767 cm-1 in general fit into the broad absorption
range of the observed spectrum, though the value ofν1 seems
to be somewhat low andν2 somewhat high. On the other hand,
the value ofν1 calculated using the “constant-G” approximation
(ν1 ) 1386cm-1) is nearer to what is believed to be the center
of the O-H stretching mode; however, the other calculated
frequency ofν2 ) 1831 cm-1 fits less well into the broad
experimentally observed absorption region (1000-1800 cm-1).
Calculations within the present model indicate very strong
anharmonic potential-energy coupling between the stretching
and bending modes (the kinetic coupling is, as shown, negli-
gible). Nevertheless, there are other relevant modes that take
part in the vibrations of the O-H‚‚‚O moiety. These other
modes, namely, those involving O‚‚‚O, CdO, and N-O
motions, should be taken into account in a more complete study
of the vibrations of PANO.

V. Concluding Remarks

We have developed a generalized form FGH method4,8 which
permits the use of generalized internal coordinates. In particular
it allows for the inclusion of both mixed derivative terms and
of coordinate dependent WilsonG-matrix elements,1,2 which
act as inverse coordinate dependent reduced masses. The
formulation is completely general and is valid for an arbitrary
number of dimensions. As with the original FGH method, the
matrix elements of the kinetic energy operator are all simple
analytic expressions and the potential andG-matrix functions
must be evaluated on a multidimensional grid of evenly spaced
points. After calculating the Hamiltonian matrix elements in
the grid representation using the simple formulas derived above,
the vibrational energy levels and wave functions may be
obtained by standard diagonalization techniques.30

The methods we have developed were applied to two
illustrative test examples, the hydrogen difluoride anion and
picolinic acidN-oxide. Both of the test systems contain strong
hydrogen bonds. In each case, we have formulated and solved
a two-dimensional vibrational problem in the internal coordi-
nates: the two F-H stretchings in the hydrogen difluoride anion
and the O-H stretching and (C)-O-H bending in picolinic acid
N-oxide. In the former case, we used three different sets of
internal coordinates to illustrate that the formalism gave the same
results when solved in different sets of coordinates. In the case
of the hydrogen difluoride anion, it was shown to be essential
to include the kinetic coupling terms (mixed derivative terms)
in order to obtain correct results in some of the internal
coordinate sets. For picolinic acidN-oxide, the G-matrix
elements varied markedly with internal coordinates, and accurate
results were only achievable if this coordinate dependence of
the reduced masses was correctly taken into account. In both

cases, the calculated frequencies are in reasonable agreement
with the experimental data. We have also shown that a further
efficiency can be achieved by eliminating grid points which
correspond to potential energy values above a chosen thres-
hold.11

The generalized FGH method has proved to provide a stable,
fast, and robust way for the evaluation of the Hamiltonian matrix
elements and for solving the vibrational Schro¨dinger equation.
It can, in principle, be applied to vibrational problems of higher
dimensionality. If this is done, the size of the matrices which
must be diagonalized grows rapidly with increasing dimension-
ality, and alternative techniques may have to be used for the
diagonalization step. In such cases, it may be necessary to resort
to iterative diagonalization techniques to compute a limited
number of the lowest eigenvalues.32,64 Application of some
aspects of the formalism developed herein to enhanced DVR
methods, such as the potential-optimized DVR,65,66 is also
possible. The most critical, computationally limiting part of the
calculation is however the necessity of evaluating the potential
energy at a very large number of grid points in the internal
coordinate space, because the potential energy surface should
normally be evaluated pointwise by computationally expensive
high-level ab initio or DFT calculations.
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(49) Špirko, V.; Čejchan, A.; Diercksen, G. H. F.Chem. Phys.1991,
151, 45-58.

(50) Yamashita, K.; Morokuma, K.; Leforestier, C.J. Chem. Phys.1993,
99, 8848-8855.

(51) Bowman, J. M.J. Chem. Phys.1978, 68, 608-610.
(52) Watson, J. K. G.Mol. Phys.1970, 19, 465-487.
(53) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,

M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.;
Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A.
D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi,
M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.;
Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick,
D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.;
Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi,
I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M.
W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon,
M.; Replogle, E. S.; Pople, J. A.Gaussian 98, revision A.7; Gaussian,
Inc.: Pittsburgh, PA, 1998.

(54) Steiner, T.; Schreurs, A. M. M.; Lutz, M.; Kroon, J.Acta
Crystallogr.2000, C56, 577-579.

(55) Steiner, T. unpublished work.
(56) Stare, J.; Mavri, J.; Ambrozˇič, G.; Hadži, D. J. Mol. Struct.
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